/* * DECnet An implementation of the DECnet protocol suite for the LINUX * operating system. DECnet is implemented using the BSD Socket * interface as the means of communication with the user level. * * DECnet Routing Forwarding Information Base (Glue/Info List) * * Author: Steve Whitehouse <SteveW@ACM.org> * * * Changes: * Alexey Kuznetsov : SMP locking changes * Steve Whitehouse : Rewrote it... Well to be more correct, I * copied most of it from the ipv4 fib code. * Steve Whitehouse : Updated it in style and fixed a few bugs * which were fixed in the ipv4 code since * this code was copied from it. * */ #include <linux/config.h> #include <linux/string.h> #include <linux/net.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/init.h> #include <linux/skbuff.h> #include <linux/netlink.h> #include <linux/rtnetlink.h> #include <linux/proc_fs.h> #include <linux/netdevice.h> #include <linux/timer.h> #include <linux/spinlock.h> #include <asm/atomic.h> #include <asm/uaccess.h> #include <net/neighbour.h> #include <net/dst.h> #include <net/flow.h> #include <net/dn.h> #include <net/dn_route.h> #include <net/dn_fib.h> #include <net/dn_neigh.h> #include <net/dn_dev.h> #define RT_MIN_TABLE 1 #define for_fib_info() { struct dn_fib_info *fi;\ for(fi = dn_fib_info_list; fi; fi = fi->fib_next) #define endfor_fib_info() } #define for_nexthops(fi) { int nhsel; const struct dn_fib_nh *nh;\ for(nhsel = 0, nh = (fi)->fib_nh; nhsel < (fi)->fib_nhs; nh++, nhsel++) #define change_nexthops(fi) { int nhsel; struct dn_fib_nh *nh;\ for(nhsel = 0, nh = (struct dn_fib_nh *)((fi)->fib_nh); nhsel < (fi)->fib_nhs; nh++, nhsel++) #define endfor_nexthops(fi) } extern int dn_cache_dump(struct sk_buff *skb, struct netlink_callback *cb); static DEFINE_SPINLOCK(dn_fib_multipath_lock); static struct dn_fib_info *dn_fib_info_list; static DEFINE_RWLOCK(dn_fib_info_lock); static struct { int error; u8 scope; } dn_fib_props[RTA_MAX+1] = { [RTN_UNSPEC] = { .error = 0, .scope = RT_SCOPE_NOWHERE }, [RTN_UNICAST] = { .error = 0, .scope = RT_SCOPE_UNIVERSE }, [RTN_LOCAL] = { .error = 0, .scope = RT_SCOPE_HOST }, [RTN_BROADCAST] = { .error = -EINVAL, .scope = RT_SCOPE_NOWHERE }, [RTN_ANYCAST] = { .error = -EINVAL, .scope = RT_SCOPE_NOWHERE }, [RTN_MULTICAST] = { .error = -EINVAL, .scope = RT_SCOPE_NOWHERE }, [RTN_BLACKHOLE] = { .error = -EINVAL, .scope = RT_SCOPE_UNIVERSE }, [RTN_UNREACHABLE] = { .error = -EHOSTUNREACH, .scope = RT_SCOPE_UNIVERSE }, [RTN_PROHIBIT] = { .error = -EACCES, .scope = RT_SCOPE_UNIVERSE }, [RTN_THROW] = { .error = -EAGAIN, .scope = RT_SCOPE_UNIVERSE }, [RTN_NAT] = { .error = 0, .scope = RT_SCOPE_NOWHERE }, [RTN_XRESOLVE] = { .error = -EINVAL, .scope = RT_SCOPE_NOWHERE }, }; void dn_fib_free_info(struct dn_fib_info *fi) { if (fi->fib_dead == 0) { printk(KERN_DEBUG "DECnet: BUG! Attempt to free alive dn_fib_info\n"); return; } change_nexthops(fi) { if (nh->nh_dev) dev_put(nh->nh_dev); nh->nh_dev = NULL; } endfor_nexthops(fi); kfree(fi); } void dn_fib_release_info(struct dn_fib_info *fi) { write_lock(&dn_fib_info_lock); if (fi && --fi->fib_treeref == 0) { if (fi->fib_next) fi->fib_next->fib_prev = fi->fib_prev; if (fi->fib_prev) fi->fib_prev->fib_next = fi->fib_next; if (fi == dn_fib_info_list) dn_fib_info_list = fi->fib_next; fi->fib_dead = 1; dn_fib_info_put(fi); } write_unlock(&dn_fib_info_lock); } static inline int dn_fib_nh_comp(const struct dn_fib_info *fi, const struct dn_fib_info *ofi) { const struct dn_fib_nh *onh = ofi->fib_nh; for_nexthops(fi) { if (nh->nh_oif != onh->nh_oif || nh->nh_gw != onh->nh_gw || nh->nh_scope != onh->nh_scope || nh->nh_weight != onh->nh_weight || ((nh->nh_flags^onh->nh_flags)&~RTNH_F_DEAD)) return -1; onh++; } endfor_nexthops(fi); return 0; } static inline struct dn_fib_info *dn_fib_find_info(const struct dn_fib_info *nfi) { for_fib_info() { if (fi->fib_nhs != nfi->fib_nhs) continue; if (nfi->fib_protocol == fi->fib_protocol && nfi->fib_prefsrc == fi->fib_prefsrc && nfi->fib_priority == fi->fib_priority && memcmp(nfi->fib_metrics, fi->fib_metrics, sizeof(fi->fib_metrics)) == 0 && ((nfi->fib_flags^fi->fib_flags)&~RTNH_F_DEAD) == 0 && (nfi->fib_nhs == 0 || dn_fib_nh_comp(fi, nfi) == 0)) return fi; } endfor_fib_info(); return NULL; } __le16 dn_fib_get_attr16(struct rtattr *attr, int attrlen, int type) { while(RTA_OK(attr,attrlen)) { if (attr->rta_type == type) return *(__le16*)RTA_DATA(attr); attr = RTA_NEXT(attr, attrlen); } return 0; } static int dn_fib_count_nhs(struct rtattr *rta) { int nhs = 0; struct rtnexthop *nhp = RTA_DATA(rta); int nhlen = RTA_PAYLOAD(rta); while(nhlen >= (int)sizeof(struct rtnexthop)) { if ((nhlen -= nhp->rtnh_len) < 0) return 0; nhs++; nhp = RTNH_NEXT(nhp); } return nhs; } static int dn_fib_get_nhs(struct dn_fib_info *fi, const struct rtattr *rta, const struct rtmsg *r) { struct rtnexthop *nhp = RTA_DATA(rta); int nhlen = RTA_PAYLOAD(rta); change_nexthops(fi) { int attrlen = nhlen - sizeof(struct rtnexthop); if (attrlen < 0 || (nhlen -= nhp->rtnh_len) < 0) return -EINVAL; nh->nh_flags = (r->rtm_flags&~0xFF) | nhp->rtnh_flags; nh->nh_oif = nhp->rtnh_ifindex; nh->nh_weight = nhp->rtnh_hops + 1; if (attrlen) { nh->nh_gw = dn_fib_get_attr16(RTNH_DATA(nhp), attrlen, RTA_GATEWAY); } nhp = RTNH_NEXT(nhp); } endfor_nexthops(fi); return 0; } static int dn_fib_check_nh(const struct rtmsg *r, struct dn_fib_info *fi, struct dn_fib_nh *nh) { int err; if (nh->nh_gw) { struct flowi fl; struct dn_fib_res res; memset(&fl, 0, sizeof(fl)); if (nh->nh_flags&RTNH_F_ONLINK) { struct net_device *dev; if (r->rtm_scope >= RT_SCOPE_LINK) return -EINVAL; if (dnet_addr_type(nh->nh_gw) != RTN_UNICAST) return -EINVAL; if ((dev = __dev_get_by_index(nh->nh_oif)) == NULL) return -ENODEV; if (!(dev->flags&IFF_UP)) return -ENETDOWN; nh->nh_dev = dev; dev_hold(dev); nh->nh_scope = RT_SCOPE_LINK; return 0; } memset(&fl, 0, sizeof(fl)); fl.fld_dst = nh->nh_gw; fl.oif = nh->nh_oif; fl.fld_scope = r->rtm_scope + 1; if (fl.fld_scope < RT_SCOPE_LINK) fl.fld_scope = RT_SCOPE_LINK; if ((err = dn_fib_lookup(&fl, &res)) != 0) return err; err = -EINVAL; if (res.type != RTN_UNICAST && res.type != RTN_LOCAL) goto out; nh->nh_scope = res.scope; nh->nh_oif = DN_FIB_RES_OIF(res); nh->nh_dev = DN_FIB_RES_DEV(res); if (nh->nh_dev == NULL) goto out; dev_hold(nh->nh_dev); err = -ENETDOWN; if (!(nh->nh_dev->flags & IFF_UP)) goto out; err = 0; out: dn_fib_res_put(&res); return err; } else { struct net_device *dev; if (nh->nh_flags&(RTNH_F_PERVASIVE|RTNH_F_ONLINK)) return -EINVAL; dev = __dev_get_by_index(nh->nh_oif); if (dev == NULL || dev->dn_ptr == NULL) return -ENODEV; if (!(dev->flags&IFF_UP)) return -ENETDOWN; nh->nh_dev = dev; dev_hold(nh->nh_dev); nh->nh_scope = RT_SCOPE_HOST; } return 0; } struct dn_fib_info *dn_fib_create_info(const struct rtmsg *r, struct dn_kern_rta *rta, const struct nlmsghdr *nlh, int *errp) { int err; struct dn_fib_info *fi = NULL; struct dn_fib_info *ofi; int nhs = 1; if (dn_fib_props[r->rtm_type].scope > r->rtm_scope) goto err_inval; if (rta->rta_mp) { nhs = dn_fib_count_nhs(rta->rta_mp); if (nhs == 0) goto err_inval; } fi = kmalloc(sizeof(*fi)+nhs*sizeof(struct dn_fib_nh), GFP_KERNEL); err = -ENOBUFS; if (fi == NULL) goto failure; memset(fi, 0, sizeof(*fi)+nhs*sizeof(struct dn_fib_nh)); fi->fib_protocol = r->rtm_protocol; fi->fib_nhs = nhs; fi->fib_flags = r->rtm_flags; if (rta->rta_priority) fi->fib_priority = *rta->rta_priority; if (rta->rta_mx) { int attrlen = RTA_PAYLOAD(rta->rta_mx); struct rtattr *attr = RTA_DATA(rta->rta_mx); while(RTA_OK(attr, attrlen)) { unsigned flavour = attr->rta_type; if (flavour) { if (flavour > RTAX_MAX) goto err_inval; fi->fib_metrics[flavour-1] = *(unsigned*)RTA_DATA(attr); } attr = RTA_NEXT(attr, attrlen); } } if (rta->rta_prefsrc) memcpy(&fi->fib_prefsrc, rta->rta_prefsrc, 2); if (rta->rta_mp) { if ((err = dn_fib_get_nhs(fi, rta->rta_mp, r)) != 0) goto failure; if (rta->rta_oif && fi->fib_nh->nh_oif != *rta->rta_oif) goto err_inval; if (rta->rta_gw && memcmp(&fi->fib_nh->nh_gw, rta->rta_gw, 2)) goto err_inval; } else { struct dn_fib_nh *nh = fi->fib_nh; if (rta->rta_oif) nh->nh_oif = *rta->rta_oif; if (rta->rta_gw) memcpy(&nh->nh_gw, rta->rta_gw, 2); nh->nh_flags = r->rtm_flags; nh->nh_weight = 1; } if (r->rtm_type == RTN_NAT) { if (rta->rta_gw == NULL || nhs != 1 || rta->rta_oif) goto err_inval; memcpy(&fi->fib_nh->nh_gw, rta->rta_gw, 2); goto link_it; } if (dn_fib_props[r->rtm_type].error) { if (rta->rta_gw || rta->rta_oif || rta->rta_mp) goto err_inval; goto link_it; } if (r->rtm_scope > RT_SCOPE_HOST) goto err_inval; if (r->rtm_scope == RT_SCOPE_HOST) { struct dn_fib_nh *nh = fi->fib_nh; /* Local address is added */ if (nhs != 1 || nh->nh_gw) goto err_inval; nh->nh_scope = RT_SCOPE_NOWHERE; nh->nh_dev = dev_get_by_index(fi->fib_nh->nh_oif); err = -ENODEV; if (nh->nh_dev == NULL) goto failure; } else { change_nexthops(fi) { if ((err = dn_fib_check_nh(r, fi, nh)) != 0) goto failure; } endfor_nexthops(fi) } if (fi->fib_prefsrc) { if (r->rtm_type != RTN_LOCAL || rta->rta_dst == NULL || memcmp(&fi->fib_prefsrc, rta->rta_dst, 2)) if (dnet_addr_type(fi->fib_prefsrc) != RTN_LOCAL) goto err_inval; } link_it: if ((ofi = dn_fib_find_info(fi)) != NULL) { fi->fib_dead = 1; dn_fib_free_info(fi); ofi->fib_treeref++; return ofi; } fi->fib_treeref++; atomic_inc(&fi->fib_clntref); write_lock(&dn_fib_info_lock); fi->fib_next = dn_fib_info_list; fi->fib_prev = NULL; if (dn_fib_info_list) dn_fib_info_list->fib_prev = fi; dn_fib_info_list = fi; write_unlock(&dn_fib_info_lock); return fi; err_inval: err = -EINVAL; failure: *errp = err; if (fi) { fi->fib_dead = 1; dn_fib_free_info(fi); } return NULL; } int dn_fib_semantic_match(int type, struct dn_fib_info *fi, const struct flowi *fl, struct dn_fib_res *res) { int err = dn_fib_props[type].error; if (err == 0) { if (fi->fib_flags & RTNH_F_DEAD) return 1; res->fi = fi; switch(type) { case RTN_NAT: DN_FIB_RES_RESET(*res); atomic_inc(&fi->fib_clntref); return 0; case RTN_UNICAST: case RTN_LOCAL: for_nexthops(fi) { if (nh->nh_flags & RTNH_F_DEAD) continue; if (!fl->oif || fl->oif == nh->nh_oif) break; } if (nhsel < fi->fib_nhs) { res->nh_sel = nhsel; atomic_inc(&fi->fib_clntref); return 0; } endfor_nexthops(fi); res->fi = NULL; return 1; default: if (net_ratelimit()) printk("DECnet: impossible routing event : dn_fib_semantic_match type=%d\n", type); res->fi = NULL; return -EINVAL; } } return err; } void dn_fib_select_multipath(const struct flowi *fl, struct dn_fib_res *res) { struct dn_fib_info *fi = res->fi; int w; spin_lock_bh(&dn_fib_multipath_lock); if (fi->fib_power <= 0) { int power = 0; change_nexthops(fi) { if (!(nh->nh_flags&RTNH_F_DEAD)) { power += nh->nh_weight; nh->nh_power = nh->nh_weight; } } endfor_nexthops(fi); fi->fib_power = power; if (power < 0) { spin_unlock_bh(&dn_fib_multipath_lock); res->nh_sel = 0; return; } } w = jiffies % fi->fib_power; change_nexthops(fi) { if (!(nh->nh_flags&RTNH_F_DEAD) && nh->nh_power) { if ((w -= nh->nh_power) <= 0) { nh->nh_power--; fi->fib_power--; res->nh_sel = nhsel; spin_unlock_bh(&dn_fib_multipath_lock); return; } } } endfor_nexthops(fi); res->nh_sel = 0; spin_unlock_bh(&dn_fib_multipath_lock); } static int dn_fib_check_attr(struct rtmsg *r, struct rtattr **rta) { int i; for(i = 1; i <= RTA_MAX; i++) { struct rtattr *attr = rta[i-1]; if (attr) { if (RTA_PAYLOAD(attr) < 4 && RTA_PAYLOAD(attr) != 2) return -EINVAL; if (i != RTA_MULTIPATH && i != RTA_METRICS) rta[i-1] = (struct rtattr *)RTA_DATA(attr); } } return 0; } int dn_fib_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) { struct dn_fib_table *tb; struct rtattr **rta = arg; struct rtmsg *r = NLMSG_DATA(nlh); if (dn_fib_check_attr(r, rta)) return -EINVAL; tb = dn_fib_get_table(r->rtm_table, 0); if (tb) return tb->delete(tb, r, (struct dn_kern_rta *)rta, nlh, &NETLINK_CB(skb)); return -ESRCH; } int dn_fib_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) { struct dn_fib_table *tb; struct rtattr **rta = arg; struct rtmsg *r = NLMSG_DATA(nlh); if (dn_fib_check_attr(r, rta)) return -EINVAL; tb = dn_fib_get_table(r->rtm_table, 1); if (tb) return tb->insert(tb, r, (struct dn_kern_rta *)rta, nlh, &NETLINK_CB(skb)); return -ENOBUFS; } int dn_fib_dump(struct sk_buff *skb, struct netlink_callback *cb) { int t; int s_t; struct dn_fib_table *tb; if (NLMSG_PAYLOAD(cb->nlh, 0) >= sizeof(struct rtmsg) && ((struct rtmsg *)NLMSG_DATA(cb->nlh))->rtm_flags&RTM_F_CLONED) return dn_cache_dump(skb, cb); s_t = cb->args[0]; if (s_t == 0) s_t = cb->args[0] = RT_MIN_TABLE; for(t = s_t; t <= RT_TABLE_MAX; t++) { if (t < s_t) continue; if (t > s_t) memset(&cb->args[1], 0, sizeof(cb->args) - sizeof(cb->args[0])); tb = dn_fib_get_table(t, 0); if (tb == NULL) continue; if (tb->dump(tb, skb, cb) < 0) break; } cb->args[0] = t; return skb->len; } static void fib_magic(int cmd, int type, __le16 dst, int dst_len, struct dn_ifaddr *ifa) { struct dn_fib_table *tb; struct { struct nlmsghdr nlh; struct rtmsg rtm; } req; struct dn_kern_rta rta; memset(&req.rtm, 0, sizeof(req.rtm)); memset(&rta, 0, sizeof(rta)); if (type == RTN_UNICAST) tb = dn_fib_get_table(RT_MIN_TABLE, 1); else tb = dn_fib_get_table(RT_TABLE_LOCAL, 1); if (tb == NULL) return; req.nlh.nlmsg_len = sizeof(req); req.nlh.nlmsg_type = cmd; req.nlh.nlmsg_flags = NLM_F_REQUEST|NLM_F_CREATE|NLM_F_APPEND; req.nlh.nlmsg_pid = 0; req.nlh.nlmsg_seq = 0; req.rtm.rtm_dst_len = dst_len; req.rtm.rtm_table = tb->n; req.rtm.rtm_protocol = RTPROT_KERNEL; req.rtm.rtm_scope = (type != RTN_LOCAL ? RT_SCOPE_LINK : RT_SCOPE_HOST); req.rtm.rtm_type = type; rta.rta_dst = &dst; rta.rta_prefsrc = &ifa->ifa_local; rta.rta_oif = &ifa->ifa_dev->dev->ifindex; if (cmd == RTM_NEWROUTE) tb->insert(tb, &req.rtm, &rta, &req.nlh, NULL); else tb->delete(tb, &req.rtm, &rta, &req.nlh, NULL); } static void dn_fib_add_ifaddr(struct dn_ifaddr *ifa) { fib_magic(RTM_NEWROUTE, RTN_LOCAL, ifa->ifa_local, 16, ifa); #if 0 if (!(dev->flags&IFF_UP)) return; /* In the future, we will want to add default routes here */ #endif } static void dn_fib_del_ifaddr(struct dn_ifaddr *ifa) { int found_it = 0; struct net_device *dev; struct dn_dev *dn_db; struct dn_ifaddr *ifa2; ASSERT_RTNL(); /* Scan device list */ read_lock(&dev_base_lock); for(dev = dev_base; dev; dev = dev->next) { dn_db = dev->dn_ptr; if (dn_db == NULL) continue; for(ifa2 = dn_db->ifa_list; ifa2; ifa2 = ifa2->ifa_next) { if (ifa2->ifa_local == ifa->ifa_local) { found_it = 1; break; } } } read_unlock(&dev_base_lock); if (found_it == 0) { fib_magic(RTM_DELROUTE, RTN_LOCAL, ifa->ifa_local, 16, ifa); if (dnet_addr_type(ifa->ifa_local) != RTN_LOCAL) { if (dn_fib_sync_down(ifa->ifa_local, NULL, 0)) dn_fib_flush(); } } } static void dn_fib_disable_addr(struct net_device *dev, int force) { if (dn_fib_sync_down(0, dev, force)) dn_fib_flush(); dn_rt_cache_flush(0); neigh_ifdown(&dn_neigh_table, dev); } static int dn_fib_dnaddr_event(struct notifier_block *this, unsigned long event, void *ptr) { struct dn_ifaddr *ifa = (struct dn_ifaddr *)ptr; switch(event) { case NETDEV_UP: dn_fib_add_ifaddr(ifa); dn_fib_sync_up(ifa->ifa_dev->dev); dn_rt_cache_flush(-1); break; case NETDEV_DOWN: dn_fib_del_ifaddr(ifa); if (ifa->ifa_dev && ifa->ifa_dev->ifa_list == NULL) { dn_fib_disable_addr(ifa->ifa_dev->dev, 1); } else { dn_rt_cache_flush(-1); } break; } return NOTIFY_DONE; } int dn_fib_sync_down(__le16 local, struct net_device *dev, int force) { int ret = 0; int scope = RT_SCOPE_NOWHERE; if (force) scope = -1; for_fib_info() { /* * This makes no sense for DECnet.... we will almost * certainly have more than one local address the same * over all our interfaces. It needs thinking about * some more. */ if (local && fi->fib_prefsrc == local) { fi->fib_flags |= RTNH_F_DEAD; ret++; } else if (dev && fi->fib_nhs) { int dead = 0; change_nexthops(fi) { if (nh->nh_flags&RTNH_F_DEAD) dead++; else if (nh->nh_dev == dev && nh->nh_scope != scope) { spin_lock_bh(&dn_fib_multipath_lock); nh->nh_flags |= RTNH_F_DEAD; fi->fib_power -= nh->nh_power; nh->nh_power = 0; spin_unlock_bh(&dn_fib_multipath_lock); dead++; } } endfor_nexthops(fi) if (dead == fi->fib_nhs) { fi->fib_flags |= RTNH_F_DEAD; ret++; } } } endfor_fib_info(); return ret; } int dn_fib_sync_up(struct net_device *dev) { int ret = 0; if (!(dev->flags&IFF_UP)) return 0; for_fib_info() { int alive = 0; change_nexthops(fi) { if (!(nh->nh_flags&RTNH_F_DEAD)) { alive++; continue; } if (nh->nh_dev == NULL || !(nh->nh_dev->flags&IFF_UP)) continue; if (nh->nh_dev != dev || dev->dn_ptr == NULL) continue; alive++; spin_lock_bh(&dn_fib_multipath_lock); nh->nh_power = 0; nh->nh_flags &= ~RTNH_F_DEAD; spin_unlock_bh(&dn_fib_multipath_lock); } endfor_nexthops(fi); if (alive > 0) { fi->fib_flags &= ~RTNH_F_DEAD; ret++; } } endfor_fib_info(); return ret; } void dn_fib_flush(void) { int flushed = 0; struct dn_fib_table *tb; int id; for(id = RT_TABLE_MAX; id > 0; id--) { if ((tb = dn_fib_get_table(id, 0)) == NULL) continue; flushed += tb->flush(tb); } if (flushed) dn_rt_cache_flush(-1); } static struct notifier_block dn_fib_dnaddr_notifier = { .notifier_call = dn_fib_dnaddr_event, }; void __exit dn_fib_cleanup(void) { dn_fib_table_cleanup(); dn_fib_rules_cleanup(); unregister_dnaddr_notifier(&dn_fib_dnaddr_notifier); } void __init dn_fib_init(void) { dn_fib_table_init(); dn_fib_rules_init(); register_dnaddr_notifier(&dn_fib_dnaddr_notifier); }