/* * DECnet An implementation of the DECnet protocol suite for the LINUX * operating system. DECnet is implemented using the BSD Socket * interface as the means of communication with the user level. * * DECnet Device Layer * * Authors: Steve Whitehouse * Eduardo Marcelo Serrat * * Changes: * Steve Whitehouse : Devices now see incoming frames so they * can mark on who it came from. * Steve Whitehouse : Fixed bug in creating neighbours. Each neighbour * can now have a device specific setup func. * Steve Whitehouse : Added /proc/sys/net/decnet/conf// * Steve Whitehouse : Fixed bug which sometimes killed timer * Steve Whitehouse : Multiple ifaddr support * Steve Whitehouse : SIOCGIFCONF is now a compile time option * Steve Whitehouse : /proc/sys/net/decnet/conf//forwarding * Steve Whitehouse : Removed timer1 - it's a user space issue now * Patrick Caulfield : Fixed router hello message format * Steve Whitehouse : Got rid of constant sizes for blksize for * devices. All mtu based now. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DN_IFREQ_SIZE (sizeof(struct ifreq) - sizeof(struct sockaddr) + sizeof(struct sockaddr_dn)) static char dn_rt_all_end_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x04,0x00,0x00}; static char dn_rt_all_rt_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x03,0x00,0x00}; static char dn_hiord[ETH_ALEN] = {0xAA,0x00,0x04,0x00,0x00,0x00}; static unsigned char dn_eco_version[3] = {0x02,0x00,0x00}; extern struct neigh_table dn_neigh_table; /* * decnet_address is kept in network order. */ __le16 decnet_address = 0; static DEFINE_RWLOCK(dndev_lock); static struct net_device *decnet_default_device; static BLOCKING_NOTIFIER_HEAD(dnaddr_chain); static struct dn_dev *dn_dev_create(struct net_device *dev, int *err); static void dn_dev_delete(struct net_device *dev); static void dn_ifaddr_notify(int event, struct dn_ifaddr *ifa); static int dn_eth_up(struct net_device *); static void dn_eth_down(struct net_device *); static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa); static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa); static struct dn_dev_parms dn_dev_list[] = { { .type = ARPHRD_ETHER, /* Ethernet */ .mode = DN_DEV_BCAST, .state = DN_DEV_S_RU, .t2 = 1, .t3 = 10, .name = "ethernet", .ctl_name = NET_DECNET_CONF_ETHER, .up = dn_eth_up, .down = dn_eth_down, .timer3 = dn_send_brd_hello, }, { .type = ARPHRD_IPGRE, /* DECnet tunneled over GRE in IP */ .mode = DN_DEV_BCAST, .state = DN_DEV_S_RU, .t2 = 1, .t3 = 10, .name = "ipgre", .ctl_name = NET_DECNET_CONF_GRE, .timer3 = dn_send_brd_hello, }, #if 0 { .type = ARPHRD_X25, /* Bog standard X.25 */ .mode = DN_DEV_UCAST, .state = DN_DEV_S_DS, .t2 = 1, .t3 = 120, .name = "x25", .ctl_name = NET_DECNET_CONF_X25, .timer3 = dn_send_ptp_hello, }, #endif #if 0 { .type = ARPHRD_PPP, /* DECnet over PPP */ .mode = DN_DEV_BCAST, .state = DN_DEV_S_RU, .t2 = 1, .t3 = 10, .name = "ppp", .ctl_name = NET_DECNET_CONF_PPP, .timer3 = dn_send_brd_hello, }, #endif { .type = ARPHRD_DDCMP, /* DECnet over DDCMP */ .mode = DN_DEV_UCAST, .state = DN_DEV_S_DS, .t2 = 1, .t3 = 120, .name = "ddcmp", .ctl_name = NET_DECNET_CONF_DDCMP, .timer3 = dn_send_ptp_hello, }, { .type = ARPHRD_LOOPBACK, /* Loopback interface - always last */ .mode = DN_DEV_BCAST, .state = DN_DEV_S_RU, .t2 = 1, .t3 = 10, .name = "loopback", .ctl_name = NET_DECNET_CONF_LOOPBACK, .timer3 = dn_send_brd_hello, } }; #define DN_DEV_LIST_SIZE (sizeof(dn_dev_list)/sizeof(struct dn_dev_parms)) #define DN_DEV_PARMS_OFFSET(x) ((int) ((char *) &((struct dn_dev_parms *)0)->x)) #ifdef CONFIG_SYSCTL static int min_t2[] = { 1 }; static int max_t2[] = { 60 }; /* No max specified, but this seems sensible */ static int min_t3[] = { 1 }; static int max_t3[] = { 8191 }; /* Must fit in 16 bits when multiplied by BCT3MULT or T3MULT */ static int min_priority[1]; static int max_priority[] = { 127 }; /* From DECnet spec */ static int dn_forwarding_proc(ctl_table *, int, struct file *, void __user *, size_t *, loff_t *); static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen, void __user *oldval, size_t __user *oldlenp, void __user *newval, size_t newlen, void **context); static struct dn_dev_sysctl_table { struct ctl_table_header *sysctl_header; ctl_table dn_dev_vars[5]; ctl_table dn_dev_dev[2]; ctl_table dn_dev_conf_dir[2]; ctl_table dn_dev_proto_dir[2]; ctl_table dn_dev_root_dir[2]; } dn_dev_sysctl = { NULL, { { .ctl_name = NET_DECNET_CONF_DEV_FORWARDING, .procname = "forwarding", .data = (void *)DN_DEV_PARMS_OFFSET(forwarding), .maxlen = sizeof(int), .mode = 0644, .proc_handler = dn_forwarding_proc, .strategy = dn_forwarding_sysctl, }, { .ctl_name = NET_DECNET_CONF_DEV_PRIORITY, .procname = "priority", .data = (void *)DN_DEV_PARMS_OFFSET(priority), .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .strategy = sysctl_intvec, .extra1 = &min_priority, .extra2 = &max_priority }, { .ctl_name = NET_DECNET_CONF_DEV_T2, .procname = "t2", .data = (void *)DN_DEV_PARMS_OFFSET(t2), .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .strategy = sysctl_intvec, .extra1 = &min_t2, .extra2 = &max_t2 }, { .ctl_name = NET_DECNET_CONF_DEV_T3, .procname = "t3", .data = (void *)DN_DEV_PARMS_OFFSET(t3), .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_minmax, .strategy = sysctl_intvec, .extra1 = &min_t3, .extra2 = &max_t3 }, {0} }, {{ .ctl_name = 0, .procname = "", .mode = 0555, .child = dn_dev_sysctl.dn_dev_vars }, {0}}, {{ .ctl_name = NET_DECNET_CONF, .procname = "conf", .mode = 0555, .child = dn_dev_sysctl.dn_dev_dev }, {0}}, {{ .ctl_name = NET_DECNET, .procname = "decnet", .mode = 0555, .child = dn_dev_sysctl.dn_dev_conf_dir }, {0}}, {{ .ctl_name = CTL_NET, .procname = "net", .mode = 0555, .child = dn_dev_sysctl.dn_dev_proto_dir }, {0}} }; static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms) { struct dn_dev_sysctl_table *t; int i; t = kmemdup(&dn_dev_sysctl, sizeof(*t), GFP_KERNEL); if (t == NULL) return; for(i = 0; i < ARRAY_SIZE(t->dn_dev_vars) - 1; i++) { long offset = (long)t->dn_dev_vars[i].data; t->dn_dev_vars[i].data = ((char *)parms) + offset; t->dn_dev_vars[i].de = NULL; } if (dev) { t->dn_dev_dev[0].procname = dev->name; t->dn_dev_dev[0].ctl_name = dev->ifindex; } else { t->dn_dev_dev[0].procname = parms->name; t->dn_dev_dev[0].ctl_name = parms->ctl_name; } t->dn_dev_dev[0].child = t->dn_dev_vars; t->dn_dev_dev[0].de = NULL; t->dn_dev_conf_dir[0].child = t->dn_dev_dev; t->dn_dev_conf_dir[0].de = NULL; t->dn_dev_proto_dir[0].child = t->dn_dev_conf_dir; t->dn_dev_proto_dir[0].de = NULL; t->dn_dev_root_dir[0].child = t->dn_dev_proto_dir; t->dn_dev_root_dir[0].de = NULL; t->dn_dev_vars[0].extra1 = (void *)dev; t->sysctl_header = register_sysctl_table(t->dn_dev_root_dir, 0); if (t->sysctl_header == NULL) kfree(t); else parms->sysctl = t; } static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms) { if (parms->sysctl) { struct dn_dev_sysctl_table *t = parms->sysctl; parms->sysctl = NULL; unregister_sysctl_table(t->sysctl_header); kfree(t); } } static int dn_forwarding_proc(ctl_table *table, int write, struct file *filep, void __user *buffer, size_t *lenp, loff_t *ppos) { #ifdef CONFIG_DECNET_ROUTER struct net_device *dev = table->extra1; struct dn_dev *dn_db; int err; int tmp, old; if (table->extra1 == NULL) return -EINVAL; dn_db = dev->dn_ptr; old = dn_db->parms.forwarding; err = proc_dointvec(table, write, filep, buffer, lenp, ppos); if ((err >= 0) && write) { if (dn_db->parms.forwarding < 0) dn_db->parms.forwarding = 0; if (dn_db->parms.forwarding > 2) dn_db->parms.forwarding = 2; /* * What an ugly hack this is... its works, just. It * would be nice if sysctl/proc were just that little * bit more flexible so I don't have to write a special * routine, or suffer hacks like this - SJW */ tmp = dn_db->parms.forwarding; dn_db->parms.forwarding = old; if (dn_db->parms.down) dn_db->parms.down(dev); dn_db->parms.forwarding = tmp; if (dn_db->parms.up) dn_db->parms.up(dev); } return err; #else return -EINVAL; #endif } static int dn_forwarding_sysctl(ctl_table *table, int __user *name, int nlen, void __user *oldval, size_t __user *oldlenp, void __user *newval, size_t newlen, void **context) { #ifdef CONFIG_DECNET_ROUTER struct net_device *dev = table->extra1; struct dn_dev *dn_db; int value; if (table->extra1 == NULL) return -EINVAL; dn_db = dev->dn_ptr; if (newval && newlen) { if (newlen != sizeof(int)) return -EINVAL; if (get_user(value, (int __user *)newval)) return -EFAULT; if (value < 0) return -EINVAL; if (value > 2) return -EINVAL; if (dn_db->parms.down) dn_db->parms.down(dev); dn_db->parms.forwarding = value; if (dn_db->parms.up) dn_db->parms.up(dev); } return 0; #else return -EINVAL; #endif } #else /* CONFIG_SYSCTL */ static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms) { } static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms) { } #endif /* CONFIG_SYSCTL */ static inline __u16 mtu2blksize(struct net_device *dev) { u32 blksize = dev->mtu; if (blksize > 0xffff) blksize = 0xffff; if (dev->type == ARPHRD_ETHER || dev->type == ARPHRD_PPP || dev->type == ARPHRD_IPGRE || dev->type == ARPHRD_LOOPBACK) blksize -= 2; return (__u16)blksize; } static struct dn_ifaddr *dn_dev_alloc_ifa(void) { struct dn_ifaddr *ifa; ifa = kzalloc(sizeof(*ifa), GFP_KERNEL); return ifa; } static __inline__ void dn_dev_free_ifa(struct dn_ifaddr *ifa) { kfree(ifa); } static void dn_dev_del_ifa(struct dn_dev *dn_db, struct dn_ifaddr **ifap, int destroy) { struct dn_ifaddr *ifa1 = *ifap; unsigned char mac_addr[6]; struct net_device *dev = dn_db->dev; ASSERT_RTNL(); *ifap = ifa1->ifa_next; if (dn_db->dev->type == ARPHRD_ETHER) { if (ifa1->ifa_local != dn_eth2dn(dev->dev_addr)) { dn_dn2eth(mac_addr, ifa1->ifa_local); dev_mc_delete(dev, mac_addr, ETH_ALEN, 0); } } dn_ifaddr_notify(RTM_DELADDR, ifa1); blocking_notifier_call_chain(&dnaddr_chain, NETDEV_DOWN, ifa1); if (destroy) { dn_dev_free_ifa(ifa1); if (dn_db->ifa_list == NULL) dn_dev_delete(dn_db->dev); } } static int dn_dev_insert_ifa(struct dn_dev *dn_db, struct dn_ifaddr *ifa) { struct net_device *dev = dn_db->dev; struct dn_ifaddr *ifa1; unsigned char mac_addr[6]; ASSERT_RTNL(); /* Check for duplicates */ for(ifa1 = dn_db->ifa_list; ifa1; ifa1 = ifa1->ifa_next) { if (ifa1->ifa_local == ifa->ifa_local) return -EEXIST; } if (dev->type == ARPHRD_ETHER) { if (ifa->ifa_local != dn_eth2dn(dev->dev_addr)) { dn_dn2eth(mac_addr, ifa->ifa_local); dev_mc_add(dev, mac_addr, ETH_ALEN, 0); dev_mc_upload(dev); } } ifa->ifa_next = dn_db->ifa_list; dn_db->ifa_list = ifa; dn_ifaddr_notify(RTM_NEWADDR, ifa); blocking_notifier_call_chain(&dnaddr_chain, NETDEV_UP, ifa); return 0; } static int dn_dev_set_ifa(struct net_device *dev, struct dn_ifaddr *ifa) { struct dn_dev *dn_db = dev->dn_ptr; int rv; if (dn_db == NULL) { int err; dn_db = dn_dev_create(dev, &err); if (dn_db == NULL) return err; } ifa->ifa_dev = dn_db; if (dev->flags & IFF_LOOPBACK) ifa->ifa_scope = RT_SCOPE_HOST; rv = dn_dev_insert_ifa(dn_db, ifa); if (rv) dn_dev_free_ifa(ifa); return rv; } int dn_dev_ioctl(unsigned int cmd, void __user *arg) { char buffer[DN_IFREQ_SIZE]; struct ifreq *ifr = (struct ifreq *)buffer; struct sockaddr_dn *sdn = (struct sockaddr_dn *)&ifr->ifr_addr; struct dn_dev *dn_db; struct net_device *dev; struct dn_ifaddr *ifa = NULL, **ifap = NULL; int ret = 0; if (copy_from_user(ifr, arg, DN_IFREQ_SIZE)) return -EFAULT; ifr->ifr_name[IFNAMSIZ-1] = 0; #ifdef CONFIG_KMOD dev_load(ifr->ifr_name); #endif switch(cmd) { case SIOCGIFADDR: break; case SIOCSIFADDR: if (!capable(CAP_NET_ADMIN)) return -EACCES; if (sdn->sdn_family != AF_DECnet) return -EINVAL; break; default: return -EINVAL; } rtnl_lock(); if ((dev = __dev_get_by_name(ifr->ifr_name)) == NULL) { ret = -ENODEV; goto done; } if ((dn_db = dev->dn_ptr) != NULL) { for (ifap = &dn_db->ifa_list; (ifa=*ifap) != NULL; ifap = &ifa->ifa_next) if (strcmp(ifr->ifr_name, ifa->ifa_label) == 0) break; } if (ifa == NULL && cmd != SIOCSIFADDR) { ret = -EADDRNOTAVAIL; goto done; } switch(cmd) { case SIOCGIFADDR: *((__le16 *)sdn->sdn_nodeaddr) = ifa->ifa_local; goto rarok; case SIOCSIFADDR: if (!ifa) { if ((ifa = dn_dev_alloc_ifa()) == NULL) { ret = -ENOBUFS; break; } memcpy(ifa->ifa_label, dev->name, IFNAMSIZ); } else { if (ifa->ifa_local == dn_saddr2dn(sdn)) break; dn_dev_del_ifa(dn_db, ifap, 0); } ifa->ifa_local = ifa->ifa_address = dn_saddr2dn(sdn); ret = dn_dev_set_ifa(dev, ifa); } done: rtnl_unlock(); return ret; rarok: if (copy_to_user(arg, ifr, DN_IFREQ_SIZE)) ret = -EFAULT; goto done; } struct net_device *dn_dev_get_default(void) { struct net_device *dev; read_lock(&dndev_lock); dev = decnet_default_device; if (dev) { if (dev->dn_ptr) dev_hold(dev); else dev = NULL; } read_unlock(&dndev_lock); return dev; } int dn_dev_set_default(struct net_device *dev, int force) { struct net_device *old = NULL; int rv = -EBUSY; if (!dev->dn_ptr) return -ENODEV; write_lock(&dndev_lock); if (force || decnet_default_device == NULL) { old = decnet_default_device; decnet_default_device = dev; rv = 0; } write_unlock(&dndev_lock); if (old) dev_put(old); return rv; } static void dn_dev_check_default(struct net_device *dev) { write_lock(&dndev_lock); if (dev == decnet_default_device) { decnet_default_device = NULL; } else { dev = NULL; } write_unlock(&dndev_lock); if (dev) dev_put(dev); } static struct dn_dev *dn_dev_by_index(int ifindex) { struct net_device *dev; struct dn_dev *dn_dev = NULL; dev = dev_get_by_index(ifindex); if (dev) { dn_dev = dev->dn_ptr; dev_put(dev); } return dn_dev; } static int dn_dev_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) { struct rtattr **rta = arg; struct dn_dev *dn_db; struct ifaddrmsg *ifm = NLMSG_DATA(nlh); struct dn_ifaddr *ifa, **ifap; if ((dn_db = dn_dev_by_index(ifm->ifa_index)) == NULL) return -EADDRNOTAVAIL; for(ifap = &dn_db->ifa_list; (ifa=*ifap) != NULL; ifap = &ifa->ifa_next) { void *tmp = rta[IFA_LOCAL-1]; if ((tmp && memcmp(RTA_DATA(tmp), &ifa->ifa_local, 2)) || (rta[IFA_LABEL-1] && rtattr_strcmp(rta[IFA_LABEL-1], ifa->ifa_label))) continue; dn_dev_del_ifa(dn_db, ifap, 1); return 0; } return -EADDRNOTAVAIL; } static int dn_dev_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) { struct rtattr **rta = arg; struct net_device *dev; struct dn_dev *dn_db; struct ifaddrmsg *ifm = NLMSG_DATA(nlh); struct dn_ifaddr *ifa; int rv; if (rta[IFA_LOCAL-1] == NULL) return -EINVAL; if ((dev = __dev_get_by_index(ifm->ifa_index)) == NULL) return -ENODEV; if ((dn_db = dev->dn_ptr) == NULL) { int err; dn_db = dn_dev_create(dev, &err); if (!dn_db) return err; } if ((ifa = dn_dev_alloc_ifa()) == NULL) return -ENOBUFS; if (!rta[IFA_ADDRESS - 1]) rta[IFA_ADDRESS - 1] = rta[IFA_LOCAL - 1]; memcpy(&ifa->ifa_local, RTA_DATA(rta[IFA_LOCAL-1]), 2); memcpy(&ifa->ifa_address, RTA_DATA(rta[IFA_ADDRESS-1]), 2); ifa->ifa_flags = ifm->ifa_flags; ifa->ifa_scope = ifm->ifa_scope; ifa->ifa_dev = dn_db; if (rta[IFA_LABEL-1]) rtattr_strlcpy(ifa->ifa_label, rta[IFA_LABEL-1], IFNAMSIZ); else memcpy(ifa->ifa_label, dev->name, IFNAMSIZ); rv = dn_dev_insert_ifa(dn_db, ifa); if (rv) dn_dev_free_ifa(ifa); return rv; } static inline size_t dn_ifaddr_nlmsg_size(void) { return NLMSG_ALIGN(sizeof(struct ifaddrmsg)) + nla_total_size(IFNAMSIZ) /* IFA_LABEL */ + nla_total_size(2) /* IFA_ADDRESS */ + nla_total_size(2); /* IFA_LOCAL */ } static int dn_dev_fill_ifaddr(struct sk_buff *skb, struct dn_ifaddr *ifa, u32 pid, u32 seq, int event, unsigned int flags) { struct ifaddrmsg *ifm; struct nlmsghdr *nlh; unsigned char *b = skb->tail; nlh = NLMSG_NEW(skb, pid, seq, event, sizeof(*ifm), flags); ifm = NLMSG_DATA(nlh); ifm->ifa_family = AF_DECnet; ifm->ifa_prefixlen = 16; ifm->ifa_flags = ifa->ifa_flags | IFA_F_PERMANENT; ifm->ifa_scope = ifa->ifa_scope; ifm->ifa_index = ifa->ifa_dev->dev->ifindex; if (ifa->ifa_address) RTA_PUT(skb, IFA_ADDRESS, 2, &ifa->ifa_address); if (ifa->ifa_local) RTA_PUT(skb, IFA_LOCAL, 2, &ifa->ifa_local); if (ifa->ifa_label[0]) RTA_PUT(skb, IFA_LABEL, IFNAMSIZ, &ifa->ifa_label); nlh->nlmsg_len = skb->tail - b; return skb->len; nlmsg_failure: rtattr_failure: skb_trim(skb, b - skb->data); return -1; } static void dn_ifaddr_notify(int event, struct dn_ifaddr *ifa) { struct sk_buff *skb; int err = -ENOBUFS; skb = alloc_skb(dn_ifaddr_nlmsg_size(), GFP_KERNEL); if (skb == NULL) goto errout; err = dn_dev_fill_ifaddr(skb, ifa, 0, 0, event, 0); /* failure implies BUG in dn_ifaddr_nlmsg_size() */ BUG_ON(err < 0); err = rtnl_notify(skb, 0, RTNLGRP_DECnet_IFADDR, NULL, GFP_KERNEL); errout: if (err < 0) rtnl_set_sk_err(RTNLGRP_DECnet_IFADDR, err); } static int dn_dev_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb) { int idx, dn_idx; int s_idx, s_dn_idx; struct net_device *dev; struct dn_dev *dn_db; struct dn_ifaddr *ifa; s_idx = cb->args[0]; s_dn_idx = dn_idx = cb->args[1]; read_lock(&dev_base_lock); for(dev = dev_base, idx = 0; dev; dev = dev->next, idx++) { if (idx < s_idx) continue; if (idx > s_idx) s_dn_idx = 0; if ((dn_db = dev->dn_ptr) == NULL) continue; for(ifa = dn_db->ifa_list, dn_idx = 0; ifa; ifa = ifa->ifa_next, dn_idx++) { if (dn_idx < s_dn_idx) continue; if (dn_dev_fill_ifaddr(skb, ifa, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq, RTM_NEWADDR, NLM_F_MULTI) <= 0) goto done; } } done: read_unlock(&dev_base_lock); cb->args[0] = idx; cb->args[1] = dn_idx; return skb->len; } static int dn_dev_get_first(struct net_device *dev, __le16 *addr) { struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr; struct dn_ifaddr *ifa; int rv = -ENODEV; if (dn_db == NULL) goto out; ifa = dn_db->ifa_list; if (ifa != NULL) { *addr = ifa->ifa_local; rv = 0; } out: return rv; } /* * Find a default address to bind to. * * This is one of those areas where the initial VMS concepts don't really * map onto the Linux concepts, and since we introduced multiple addresses * per interface we have to cope with slightly odd ways of finding out what * "our address" really is. Mostly it's not a problem; for this we just guess * a sensible default. Eventually the routing code will take care of all the * nasties for us I hope. */ int dn_dev_bind_default(__le16 *addr) { struct net_device *dev; int rv; dev = dn_dev_get_default(); last_chance: if (dev) { read_lock(&dev_base_lock); rv = dn_dev_get_first(dev, addr); read_unlock(&dev_base_lock); dev_put(dev); if (rv == 0 || dev == &loopback_dev) return rv; } dev = &loopback_dev; dev_hold(dev); goto last_chance; } static void dn_send_endnode_hello(struct net_device *dev, struct dn_ifaddr *ifa) { struct endnode_hello_message *msg; struct sk_buff *skb = NULL; __le16 *pktlen; struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr; if ((skb = dn_alloc_skb(NULL, sizeof(*msg), GFP_ATOMIC)) == NULL) return; skb->dev = dev; msg = (struct endnode_hello_message *)skb_put(skb,sizeof(*msg)); msg->msgflg = 0x0D; memcpy(msg->tiver, dn_eco_version, 3); dn_dn2eth(msg->id, ifa->ifa_local); msg->iinfo = DN_RT_INFO_ENDN; msg->blksize = dn_htons(mtu2blksize(dev)); msg->area = 0x00; memset(msg->seed, 0, 8); memcpy(msg->neighbor, dn_hiord, ETH_ALEN); if (dn_db->router) { struct dn_neigh *dn = (struct dn_neigh *)dn_db->router; dn_dn2eth(msg->neighbor, dn->addr); } msg->timer = dn_htons((unsigned short)dn_db->parms.t3); msg->mpd = 0x00; msg->datalen = 0x02; memset(msg->data, 0xAA, 2); pktlen = (__le16 *)skb_push(skb,2); *pktlen = dn_htons(skb->len - 2); skb->nh.raw = skb->data; dn_rt_finish_output(skb, dn_rt_all_rt_mcast, msg->id); } #define DRDELAY (5 * HZ) static int dn_am_i_a_router(struct dn_neigh *dn, struct dn_dev *dn_db, struct dn_ifaddr *ifa) { /* First check time since device went up */ if ((jiffies - dn_db->uptime) < DRDELAY) return 0; /* If there is no router, then yes... */ if (!dn_db->router) return 1; /* otherwise only if we have a higher priority or.. */ if (dn->priority < dn_db->parms.priority) return 1; /* if we have equal priority and a higher node number */ if (dn->priority != dn_db->parms.priority) return 0; if (dn_ntohs(dn->addr) < dn_ntohs(ifa->ifa_local)) return 1; return 0; } static void dn_send_router_hello(struct net_device *dev, struct dn_ifaddr *ifa) { int n; struct dn_dev *dn_db = dev->dn_ptr; struct dn_neigh *dn = (struct dn_neigh *)dn_db->router; struct sk_buff *skb; size_t size; unsigned char *ptr; unsigned char *i1, *i2; __le16 *pktlen; char *src; if (mtu2blksize(dev) < (26 + 7)) return; n = mtu2blksize(dev) - 26; n /= 7; if (n > 32) n = 32; size = 2 + 26 + 7 * n; if ((skb = dn_alloc_skb(NULL, size, GFP_ATOMIC)) == NULL) return; skb->dev = dev; ptr = skb_put(skb, size); *ptr++ = DN_RT_PKT_CNTL | DN_RT_PKT_ERTH; *ptr++ = 2; /* ECO */ *ptr++ = 0; *ptr++ = 0; dn_dn2eth(ptr, ifa->ifa_local); src = ptr; ptr += ETH_ALEN; *ptr++ = dn_db->parms.forwarding == 1 ? DN_RT_INFO_L1RT : DN_RT_INFO_L2RT; *((__le16 *)ptr) = dn_htons(mtu2blksize(dev)); ptr += 2; *ptr++ = dn_db->parms.priority; /* Priority */ *ptr++ = 0; /* Area: Reserved */ *((__le16 *)ptr) = dn_htons((unsigned short)dn_db->parms.t3); ptr += 2; *ptr++ = 0; /* MPD: Reserved */ i1 = ptr++; memset(ptr, 0, 7); /* Name: Reserved */ ptr += 7; i2 = ptr++; n = dn_neigh_elist(dev, ptr, n); *i2 = 7 * n; *i1 = 8 + *i2; skb_trim(skb, (27 + *i2)); pktlen = (__le16 *)skb_push(skb, 2); *pktlen = dn_htons(skb->len - 2); skb->nh.raw = skb->data; if (dn_am_i_a_router(dn, dn_db, ifa)) { struct sk_buff *skb2 = skb_copy(skb, GFP_ATOMIC); if (skb2) { dn_rt_finish_output(skb2, dn_rt_all_end_mcast, src); } } dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src); } static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa) { struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr; if (dn_db->parms.forwarding == 0) dn_send_endnode_hello(dev, ifa); else dn_send_router_hello(dev, ifa); } static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa) { int tdlen = 16; int size = dev->hard_header_len + 2 + 4 + tdlen; struct sk_buff *skb = dn_alloc_skb(NULL, size, GFP_ATOMIC); int i; unsigned char *ptr; char src[ETH_ALEN]; if (skb == NULL) return ; skb->dev = dev; skb_push(skb, dev->hard_header_len); ptr = skb_put(skb, 2 + 4 + tdlen); *ptr++ = DN_RT_PKT_HELO; *((__le16 *)ptr) = ifa->ifa_local; ptr += 2; *ptr++ = tdlen; for(i = 0; i < tdlen; i++) *ptr++ = 0252; dn_dn2eth(src, ifa->ifa_local); dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src); } static int dn_eth_up(struct net_device *dev) { struct dn_dev *dn_db = dev->dn_ptr; if (dn_db->parms.forwarding == 0) dev_mc_add(dev, dn_rt_all_end_mcast, ETH_ALEN, 0); else dev_mc_add(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0); dev_mc_upload(dev); dn_db->use_long = 1; return 0; } static void dn_eth_down(struct net_device *dev) { struct dn_dev *dn_db = dev->dn_ptr; if (dn_db->parms.forwarding == 0) dev_mc_delete(dev, dn_rt_all_end_mcast, ETH_ALEN, 0); else dev_mc_delete(dev, dn_rt_all_rt_mcast, ETH_ALEN, 0); } static void dn_dev_set_timer(struct net_device *dev); static void dn_dev_timer_func(unsigned long arg) { struct net_device *dev = (struct net_device *)arg; struct dn_dev *dn_db = dev->dn_ptr; struct dn_ifaddr *ifa; if (dn_db->t3 <= dn_db->parms.t2) { if (dn_db->parms.timer3) { for(ifa = dn_db->ifa_list; ifa; ifa = ifa->ifa_next) { if (!(ifa->ifa_flags & IFA_F_SECONDARY)) dn_db->parms.timer3(dev, ifa); } } dn_db->t3 = dn_db->parms.t3; } else { dn_db->t3 -= dn_db->parms.t2; } dn_dev_set_timer(dev); } static void dn_dev_set_timer(struct net_device *dev) { struct dn_dev *dn_db = dev->dn_ptr; if (dn_db->parms.t2 > dn_db->parms.t3) dn_db->parms.t2 = dn_db->parms.t3; dn_db->timer.data = (unsigned long)dev; dn_db->timer.function = dn_dev_timer_func; dn_db->timer.expires = jiffies + (dn_db->parms.t2 * HZ); add_timer(&dn_db->timer); } struct dn_dev *dn_dev_create(struct net_device *dev, int *err) { int i; struct dn_dev_parms *p = dn_dev_list; struct dn_dev *dn_db; for(i = 0; i < DN_DEV_LIST_SIZE; i++, p++) { if (p->type == dev->type) break; } *err = -ENODEV; if (i == DN_DEV_LIST_SIZE) return NULL; *err = -ENOBUFS; if ((dn_db = kzalloc(sizeof(struct dn_dev), GFP_ATOMIC)) == NULL) return NULL; memcpy(&dn_db->parms, p, sizeof(struct dn_dev_parms)); smp_wmb(); dev->dn_ptr = dn_db; dn_db->dev = dev; init_timer(&dn_db->timer); dn_db->uptime = jiffies; if (dn_db->parms.up) { if (dn_db->parms.up(dev) < 0) { dev->dn_ptr = NULL; kfree(dn_db); return NULL; } } dn_db->neigh_parms = neigh_parms_alloc(dev, &dn_neigh_table); dn_dev_sysctl_register(dev, &dn_db->parms); dn_dev_set_timer(dev); *err = 0; return dn_db; } /* * This processes a device up event. We only start up * the loopback device & ethernet devices with correct * MAC addreses automatically. Others must be started * specifically. * * FIXME: How should we configure the loopback address ? If we could dispense * with using decnet_address here and for autobind, it will be one less thing * for users to worry about setting up. */ void dn_dev_up(struct net_device *dev) { struct dn_ifaddr *ifa; __le16 addr = decnet_address; int maybe_default = 0; struct dn_dev *dn_db = (struct dn_dev *)dev->dn_ptr; if ((dev->type != ARPHRD_ETHER) && (dev->type != ARPHRD_LOOPBACK)) return; /* * Need to ensure that loopback device has a dn_db attached to it * to allow creation of neighbours against it, even though it might * not have a local address of its own. Might as well do the same for * all autoconfigured interfaces. */ if (dn_db == NULL) { int err; dn_db = dn_dev_create(dev, &err); if (dn_db == NULL) return; } if (dev->type == ARPHRD_ETHER) { if (memcmp(dev->dev_addr, dn_hiord, 4) != 0) return; addr = dn_eth2dn(dev->dev_addr); maybe_default = 1; } if (addr == 0) return; if ((ifa = dn_dev_alloc_ifa()) == NULL) return; ifa->ifa_local = ifa->ifa_address = addr; ifa->ifa_flags = 0; ifa->ifa_scope = RT_SCOPE_UNIVERSE; strcpy(ifa->ifa_label, dev->name); dn_dev_set_ifa(dev, ifa); /* * Automagically set the default device to the first automatically * configured ethernet card in the system. */ if (maybe_default) { dev_hold(dev); if (dn_dev_set_default(dev, 0)) dev_put(dev); } } static void dn_dev_delete(struct net_device *dev) { struct dn_dev *dn_db = dev->dn_ptr; if (dn_db == NULL) return; del_timer_sync(&dn_db->timer); dn_dev_sysctl_unregister(&dn_db->parms); dn_dev_check_default(dev); neigh_ifdown(&dn_neigh_table, dev); if (dn_db->parms.down) dn_db->parms.down(dev); dev->dn_ptr = NULL; neigh_parms_release(&dn_neigh_table, dn_db->neigh_parms); neigh_ifdown(&dn_neigh_table, dev); if (dn_db->router) neigh_release(dn_db->router); if (dn_db->peer) neigh_release(dn_db->peer); kfree(dn_db); } void dn_dev_down(struct net_device *dev) { struct dn_dev *dn_db = dev->dn_ptr; struct dn_ifaddr *ifa; if (dn_db == NULL) return; while((ifa = dn_db->ifa_list) != NULL) { dn_dev_del_ifa(dn_db, &dn_db->ifa_list, 0); dn_dev_free_ifa(ifa); } dn_dev_delete(dev); } void dn_dev_init_pkt(struct sk_buff *skb) { return; } void dn_dev_veri_pkt(struct sk_buff *skb) { return; } void dn_dev_hello(struct sk_buff *skb) { return; } void dn_dev_devices_off(void) { struct net_device *dev; rtnl_lock(); for(dev = dev_base; dev; dev = dev->next) dn_dev_down(dev); rtnl_unlock(); } void dn_dev_devices_on(void) { struct net_device *dev; rtnl_lock(); for(dev = dev_base; dev; dev = dev->next) { if (dev->flags & IFF_UP) dn_dev_up(dev); } rtnl_unlock(); } int register_dnaddr_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&dnaddr_chain, nb); } int unregister_dnaddr_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&dnaddr_chain, nb); } #ifdef CONFIG_PROC_FS static inline struct net_device *dn_dev_get_next(struct seq_file *seq, struct net_device *dev) { do { dev = dev->next; } while(dev && !dev->dn_ptr); return dev; } static struct net_device *dn_dev_get_idx(struct seq_file *seq, loff_t pos) { struct net_device *dev; dev = dev_base; if (dev && !dev->dn_ptr) dev = dn_dev_get_next(seq, dev); if (pos) { while(dev && (dev = dn_dev_get_next(seq, dev))) --pos; } return dev; } static void *dn_dev_seq_start(struct seq_file *seq, loff_t *pos) { if (*pos) { struct net_device *dev; read_lock(&dev_base_lock); dev = dn_dev_get_idx(seq, *pos - 1); if (dev == NULL) read_unlock(&dev_base_lock); return dev; } return SEQ_START_TOKEN; } static void *dn_dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct net_device *dev = v; loff_t one = 1; if (v == SEQ_START_TOKEN) { dev = dn_dev_seq_start(seq, &one); } else { dev = dn_dev_get_next(seq, dev); if (dev == NULL) read_unlock(&dev_base_lock); } ++*pos; return dev; } static void dn_dev_seq_stop(struct seq_file *seq, void *v) { if (v && v != SEQ_START_TOKEN) read_unlock(&dev_base_lock); } static char *dn_type2asc(char type) { switch(type) { case DN_DEV_BCAST: return "B"; case DN_DEV_UCAST: return "U"; case DN_DEV_MPOINT: return "M"; } return "?"; } static int dn_dev_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) seq_puts(seq, "Name Flags T1 Timer1 T3 Timer3 BlkSize Pri State DevType Router Peer\n"); else { struct net_device *dev = v; char peer_buf[DN_ASCBUF_LEN]; char router_buf[DN_ASCBUF_LEN]; struct dn_dev *dn_db = dev->dn_ptr; seq_printf(seq, "%-8s %1s %04u %04u %04lu %04lu" " %04hu %03d %02x %-10s %-7s %-7s\n", dev->name ? dev->name : "???", dn_type2asc(dn_db->parms.mode), 0, 0, dn_db->t3, dn_db->parms.t3, mtu2blksize(dev), dn_db->parms.priority, dn_db->parms.state, dn_db->parms.name, dn_db->router ? dn_addr2asc(dn_ntohs(*(__le16 *)dn_db->router->primary_key), router_buf) : "", dn_db->peer ? dn_addr2asc(dn_ntohs(*(__le16 *)dn_db->peer->primary_key), peer_buf) : ""); } return 0; } static struct seq_operations dn_dev_seq_ops = { .start = dn_dev_seq_start, .next = dn_dev_seq_next, .stop = dn_dev_seq_stop, .show = dn_dev_seq_show, }; static int dn_dev_seq_open(struct inode *inode, struct file *file) { return seq_open(file, &dn_dev_seq_ops); } static struct file_operations dn_dev_seq_fops = { .owner = THIS_MODULE, .open = dn_dev_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; #endif /* CONFIG_PROC_FS */ static struct rtnetlink_link dnet_rtnetlink_table[RTM_NR_MSGTYPES] = { [RTM_NEWADDR - RTM_BASE] = { .doit = dn_dev_rtm_newaddr, }, [RTM_DELADDR - RTM_BASE] = { .doit = dn_dev_rtm_deladdr, }, [RTM_GETADDR - RTM_BASE] = { .dumpit = dn_dev_dump_ifaddr, }, #ifdef CONFIG_DECNET_ROUTER [RTM_NEWROUTE - RTM_BASE] = { .doit = dn_fib_rtm_newroute, }, [RTM_DELROUTE - RTM_BASE] = { .doit = dn_fib_rtm_delroute, }, [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute, .dumpit = dn_fib_dump, }, [RTM_GETRULE - RTM_BASE] = { .dumpit = dn_fib_dump_rules, }, #else [RTM_GETROUTE - RTM_BASE] = { .doit = dn_cache_getroute, .dumpit = dn_cache_dump, }, #endif }; static int __initdata addr[2]; module_param_array(addr, int, NULL, 0444); MODULE_PARM_DESC(addr, "The DECnet address of this machine: area,node"); void __init dn_dev_init(void) { if (addr[0] > 63 || addr[0] < 0) { printk(KERN_ERR "DECnet: Area must be between 0 and 63"); return; } if (addr[1] > 1023 || addr[1] < 0) { printk(KERN_ERR "DECnet: Node must be between 0 and 1023"); return; } decnet_address = dn_htons((addr[0] << 10) | addr[1]); dn_dev_devices_on(); rtnetlink_links[PF_DECnet] = dnet_rtnetlink_table; proc_net_fops_create("decnet_dev", S_IRUGO, &dn_dev_seq_fops); #ifdef CONFIG_SYSCTL { int i; for(i = 0; i < DN_DEV_LIST_SIZE; i++) dn_dev_sysctl_register(NULL, &dn_dev_list[i]); } #endif /* CONFIG_SYSCTL */ } void __exit dn_dev_cleanup(void) { rtnetlink_links[PF_DECnet] = NULL; #ifdef CONFIG_SYSCTL { int i; for(i = 0; i < DN_DEV_LIST_SIZE; i++) dn_dev_sysctl_unregister(&dn_dev_list[i]); } #endif /* CONFIG_SYSCTL */ proc_net_remove("decnet_dev"); dn_dev_devices_off(); }