/* * linux/mm/swap_state.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * Swap reorganised 29.12.95, Stephen Tweedie * * Rewritten to use page cache, (C) 1998 Stephen Tweedie */ #include <linux/module.h> #include <linux/mm.h> #include <linux/kernel_stat.h> #include <linux/swap.h> #include <linux/init.h> #include <linux/pagemap.h> #include <linux/buffer_head.h> #include <linux/backing-dev.h> #include <asm/pgtable.h> /* * swapper_space is a fiction, retained to simplify the path through * vmscan's shrink_list, to make sync_page look nicer, and to allow * future use of radix_tree tags in the swap cache. */ static struct address_space_operations swap_aops = { .writepage = swap_writepage, .sync_page = block_sync_page, .set_page_dirty = __set_page_dirty_nobuffers, }; static struct backing_dev_info swap_backing_dev_info = { .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK, .unplug_io_fn = swap_unplug_io_fn, }; struct address_space swapper_space = { .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), .tree_lock = RW_LOCK_UNLOCKED, .a_ops = &swap_aops, .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), .backing_dev_info = &swap_backing_dev_info, }; EXPORT_SYMBOL(swapper_space); #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) static struct { unsigned long add_total; unsigned long del_total; unsigned long find_success; unsigned long find_total; unsigned long noent_race; unsigned long exist_race; } swap_cache_info; void show_swap_cache_info(void) { printk("Swap cache: add %lu, delete %lu, find %lu/%lu, race %lu+%lu\n", swap_cache_info.add_total, swap_cache_info.del_total, swap_cache_info.find_success, swap_cache_info.find_total, swap_cache_info.noent_race, swap_cache_info.exist_race); printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10)); printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); } /* * __add_to_swap_cache resembles add_to_page_cache on swapper_space, * but sets SwapCache flag and private instead of mapping and index. */ static int __add_to_swap_cache(struct page *page, swp_entry_t entry, int gfp_mask) { int error; BUG_ON(PageSwapCache(page)); BUG_ON(PagePrivate(page)); error = radix_tree_preload(gfp_mask); if (!error) { write_lock_irq(&swapper_space.tree_lock); error = radix_tree_insert(&swapper_space.page_tree, entry.val, page); if (!error) { page_cache_get(page); SetPageLocked(page); SetPageSwapCache(page); page->private = entry.val; total_swapcache_pages++; pagecache_acct(1); } write_unlock_irq(&swapper_space.tree_lock); radix_tree_preload_end(); } return error; } static int add_to_swap_cache(struct page *page, swp_entry_t entry) { int error; if (!swap_duplicate(entry)) { INC_CACHE_INFO(noent_race); return -ENOENT; } error = __add_to_swap_cache(page, entry, GFP_KERNEL); /* * Anon pages are already on the LRU, we don't run lru_cache_add here. */ if (error) { swap_free(entry); if (error == -EEXIST) INC_CACHE_INFO(exist_race); return error; } INC_CACHE_INFO(add_total); return 0; } /* * This must be called only on pages that have * been verified to be in the swap cache. */ void __delete_from_swap_cache(struct page *page) { BUG_ON(!PageLocked(page)); BUG_ON(!PageSwapCache(page)); BUG_ON(PageWriteback(page)); radix_tree_delete(&swapper_space.page_tree, page->private); page->private = 0; ClearPageSwapCache(page); total_swapcache_pages--; pagecache_acct(-1); INC_CACHE_INFO(del_total); } /** * add_to_swap - allocate swap space for a page * @page: page we want to move to swap * * Allocate swap space for the page and add the page to the * swap cache. Caller needs to hold the page lock. */ int add_to_swap(struct page * page) { swp_entry_t entry; int pf_flags; int err; if (!PageLocked(page)) BUG(); for (;;) { entry = get_swap_page(); if (!entry.val) return 0; /* Radix-tree node allocations are performing * GFP_ATOMIC allocations under PF_MEMALLOC. * They can completely exhaust the page allocator. * * So PF_MEMALLOC is dropped here. This causes the slab * allocations to fail earlier, so radix-tree nodes will * then be allocated from the mempool reserves. * * We're still using __GFP_HIGH for radix-tree node * allocations, so some of the emergency pools are available, * just not all of them. */ pf_flags = current->flags; current->flags &= ~PF_MEMALLOC; /* * Add it to the swap cache and mark it dirty */ err = __add_to_swap_cache(page, entry, GFP_ATOMIC|__GFP_NOWARN); if (pf_flags & PF_MEMALLOC) current->flags |= PF_MEMALLOC; switch (err) { case 0: /* Success */ SetPageUptodate(page); SetPageDirty(page); INC_CACHE_INFO(add_total); return 1; case -EEXIST: /* Raced with "speculative" read_swap_cache_async */ INC_CACHE_INFO(exist_race); swap_free(entry); continue; default: /* -ENOMEM radix-tree allocation failure */ swap_free(entry); return 0; } } } /* * This must be called only on pages that have * been verified to be in the swap cache and locked. * It will never put the page into the free list, * the caller has a reference on the page. */ void delete_from_swap_cache(struct page *page) { swp_entry_t entry; BUG_ON(!PageSwapCache(page)); BUG_ON(!PageLocked(page)); BUG_ON(PageWriteback(page)); BUG_ON(PagePrivate(page)); entry.val = page->private; write_lock_irq(&swapper_space.tree_lock); __delete_from_swap_cache(page); write_unlock_irq(&swapper_space.tree_lock); swap_free(entry); page_cache_release(page); } /* * Strange swizzling function only for use by shmem_writepage */ int move_to_swap_cache(struct page *page, swp_entry_t entry) { int err = __add_to_swap_cache(page, entry, GFP_ATOMIC); if (!err) { remove_from_page_cache(page); page_cache_release(page); /* pagecache ref */ if (!swap_duplicate(entry)) BUG(); SetPageDirty(page); INC_CACHE_INFO(add_total); } else if (err == -EEXIST) INC_CACHE_INFO(exist_race); return err; } /* * Strange swizzling function for shmem_getpage (and shmem_unuse) */ int move_from_swap_cache(struct page *page, unsigned long index, struct address_space *mapping) { int err = add_to_page_cache(page, mapping, index, GFP_ATOMIC); if (!err) { delete_from_swap_cache(page); /* shift page from clean_pages to dirty_pages list */ ClearPageDirty(page); set_page_dirty(page); } return err; } /* * If we are the only user, then try to free up the swap cache. * * Its ok to check for PageSwapCache without the page lock * here because we are going to recheck again inside * exclusive_swap_page() _with_ the lock. * - Marcelo */ static inline void free_swap_cache(struct page *page) { if (PageSwapCache(page) && !TestSetPageLocked(page)) { remove_exclusive_swap_page(page); unlock_page(page); } } /* * Perform a free_page(), also freeing any swap cache associated with * this page if it is the last user of the page. Can not do a lock_page, * as we are holding the page_table_lock spinlock. */ void free_page_and_swap_cache(struct page *page) { free_swap_cache(page); page_cache_release(page); } /* * Passed an array of pages, drop them all from swapcache and then release * them. They are removed from the LRU and freed if this is their last use. */ void free_pages_and_swap_cache(struct page **pages, int nr) { int chunk = 16; struct page **pagep = pages; lru_add_drain(); while (nr) { int todo = min(chunk, nr); int i; for (i = 0; i < todo; i++) free_swap_cache(pagep[i]); release_pages(pagep, todo, 0); pagep += todo; nr -= todo; } } /* * Lookup a swap entry in the swap cache. A found page will be returned * unlocked and with its refcount incremented - we rely on the kernel * lock getting page table operations atomic even if we drop the page * lock before returning. */ struct page * lookup_swap_cache(swp_entry_t entry) { struct page *page; page = find_get_page(&swapper_space, entry.val); if (page) INC_CACHE_INFO(find_success); INC_CACHE_INFO(find_total); return page; } /* * Locate a page of swap in physical memory, reserving swap cache space * and reading the disk if it is not already cached. * A failure return means that either the page allocation failed or that * the swap entry is no longer in use. */ struct page *read_swap_cache_async(swp_entry_t entry, struct vm_area_struct *vma, unsigned long addr) { struct page *found_page, *new_page = NULL; int err; do { /* * First check the swap cache. Since this is normally * called after lookup_swap_cache() failed, re-calling * that would confuse statistics. */ found_page = find_get_page(&swapper_space, entry.val); if (found_page) break; /* * Get a new page to read into from swap. */ if (!new_page) { new_page = alloc_page_vma(GFP_HIGHUSER, vma, addr); if (!new_page) break; /* Out of memory */ } /* * Associate the page with swap entry in the swap cache. * May fail (-ENOENT) if swap entry has been freed since * our caller observed it. May fail (-EEXIST) if there * is already a page associated with this entry in the * swap cache: added by a racing read_swap_cache_async, * or by try_to_swap_out (or shmem_writepage) re-using * the just freed swap entry for an existing page. * May fail (-ENOMEM) if radix-tree node allocation failed. */ err = add_to_swap_cache(new_page, entry); if (!err) { /* * Initiate read into locked page and return. */ lru_cache_add_active(new_page); swap_readpage(NULL, new_page); return new_page; } } while (err != -ENOENT && err != -ENOMEM); if (new_page) page_cache_release(new_page); return found_page; }