/* This file is included from kernel/sched.c */ #include #include #include static void update_time_litmus(struct rq *rq, struct task_struct *p) { u64 delta = rq->clock - p->se.exec_start; if (unlikely((s64)delta < 0)) delta = 0; /* per job counter */ p->rt_param.job_params.exec_time += delta; /* task counter */ p->se.sum_exec_runtime += delta; /* sched_clock() */ p->se.exec_start = rq->clock; cpuacct_charge(p, delta); } static void double_rq_lock(struct rq *rq1, struct rq *rq2); static void double_rq_unlock(struct rq *rq1, struct rq *rq2); /* * litmus_tick gets called by scheduler_tick() with HZ freq * Interrupts are disabled */ static void litmus_tick(struct rq *rq, struct task_struct *p) { TS_PLUGIN_TICK_START; if (is_realtime(p)) update_time_litmus(rq, p); /* plugin tick */ litmus->tick(p); TS_PLUGIN_TICK_END; return; } static struct task_struct * litmus_schedule(struct rq *rq, struct task_struct *prev) { struct rq* other_rq; struct task_struct *next; long was_running; lt_t _maybe_deadlock = 0; /* let the plugin schedule */ next = litmus->schedule(prev); /* check if a global plugin pulled a task from a different RQ */ if (next && task_rq(next) != rq) { /* we need to migrate the task */ other_rq = task_rq(next); TRACE_TASK(next, "migrate from %d\n", other_rq->cpu); /* while we drop the lock, the prev task could change its * state */ was_running = is_running(prev); mb(); raw_spin_unlock(&rq->lock); /* Don't race with a concurrent switch. This could deadlock in * the case of cross or circular migrations. It's the job of * the plugin to make sure that doesn't happen. */ TRACE_TASK(next, "stack_in_use=%d\n", next->rt_param.stack_in_use); if (next->rt_param.stack_in_use != NO_CPU) { TRACE_TASK(next, "waiting to deschedule\n"); _maybe_deadlock = litmus_clock(); } while (next->rt_param.stack_in_use != NO_CPU) { cpu_relax(); mb(); if (next->rt_param.stack_in_use == NO_CPU) TRACE_TASK(next,"descheduled. Proceeding.\n"); if (lt_before(_maybe_deadlock + 10000000, litmus_clock())) { /* We've been spinning for 10ms. * Something can't be right! * Let's abandon the task and bail out; at least * we will have debug info instead of a hard * deadlock. */ TRACE_TASK(next,"stack too long in use. " "Deadlock?\n"); next = NULL; /* bail out */ raw_spin_lock(&rq->lock); return next; } } #ifdef __ARCH_WANT_UNLOCKED_CTXSW if (next->oncpu) TRACE_TASK(next, "waiting for !oncpu"); while (next->oncpu) { cpu_relax(); mb(); } #endif double_rq_lock(rq, other_rq); mb(); if (is_realtime(prev) && is_running(prev) != was_running) { TRACE_TASK(prev, "state changed while we dropped" " the lock: is_running=%d, was_running=%d\n", is_running(prev), was_running); if (is_running(prev) && !was_running) { /* prev task became unblocked * we need to simulate normal sequence of events * to scheduler plugins. */ litmus->task_block(prev); litmus->task_wake_up(prev); } } set_task_cpu(next, smp_processor_id()); /* DEBUG: now that we have the lock we need to make sure a * couple of things still hold: * - it is still a real-time task * - it is still runnable (could have been stopped) * If either is violated, then the active plugin is * doing something wrong. */ if (!is_realtime(next) || !is_running(next)) { /* BAD BAD BAD */ TRACE_TASK(next,"BAD: migration invariant FAILED: " "rt=%d running=%d\n", is_realtime(next), is_running(next)); /* drop the task */ next = NULL; } /* release the other CPU's runqueue, but keep ours */ raw_spin_unlock(&other_rq->lock); } if (next) { next->rt_param.stack_in_use = rq->cpu; next->se.exec_start = rq->clock; } update_enforcement_timer(next); return next; } static void enqueue_task_litmus(struct rq *rq, struct task_struct *p, int flags) { if (flags & ENQUEUE_WAKEUP) { sched_trace_task_resume(p); tsk_rt(p)->present = 1; /* LITMUS^RT plugins need to update the state * _before_ making it available in global structures. * Linux gets away with being lazy about the task state * update. We can't do that, hence we update the task * state already here. * * WARNING: this needs to be re-evaluated when porting * to newer kernel versions. */ p->state = TASK_RUNNING; litmus->task_wake_up(p); rq->litmus.nr_running++; } else TRACE_TASK(p, "ignoring an enqueue, not a wake up.\n"); } static void dequeue_task_litmus(struct rq *rq, struct task_struct *p, int flags) { if (flags & DEQUEUE_SLEEP) { litmus->task_block(p); tsk_rt(p)->present = 0; sched_trace_task_block(p); rq->litmus.nr_running--; } else TRACE_TASK(p, "ignoring a dequeue, not going to sleep.\n"); } static void yield_task_litmus(struct rq *rq) { BUG_ON(rq->curr != current); /* sched_yield() is called to trigger delayed preemptions. * Thus, mark the current task as needing to be rescheduled. * This will cause the scheduler plugin to be invoked, which can * then determine if a preemption is still required. */ clear_exit_np(current); set_tsk_need_resched(current); } /* Plugins are responsible for this. */ static void check_preempt_curr_litmus(struct rq *rq, struct task_struct *p, int flags) { } static void put_prev_task_litmus(struct rq *rq, struct task_struct *p) { } static void pre_schedule_litmus(struct rq *rq, struct task_struct *prev) { update_time_litmus(rq, prev); if (!is_running(prev)) tsk_rt(prev)->present = 0; } /* pick_next_task_litmus() - litmus_schedule() function * * return the next task to be scheduled */ static struct task_struct *pick_next_task_litmus(struct rq *rq) { /* get the to-be-switched-out task (prev) */ struct task_struct *prev = rq->litmus.prev; struct task_struct *next; /* if not called from schedule() but from somewhere * else (e.g., migration), return now! */ if(!rq->litmus.prev) return NULL; rq->litmus.prev = NULL; TS_PLUGIN_SCHED_START; next = litmus_schedule(rq, prev); TS_PLUGIN_SCHED_END; return next; } static void task_tick_litmus(struct rq *rq, struct task_struct *p, int queued) { /* nothing to do; tick related tasks are done by litmus_tick() */ return; } static void switched_to_litmus(struct rq *rq, struct task_struct *p, int running) { } static void prio_changed_litmus(struct rq *rq, struct task_struct *p, int oldprio, int running) { } unsigned int get_rr_interval_litmus(struct rq *rq, struct task_struct *p) { /* return infinity */ return 0; } /* This is called when a task became a real-time task, either due to a SCHED_* * class transition or due to PI mutex inheritance. We don't handle Linux PI * mutex inheritance yet (and probably never will). Use LITMUS provided * synchronization primitives instead. */ static void set_curr_task_litmus(struct rq *rq) { rq->curr->se.exec_start = rq->clock; } #ifdef CONFIG_SMP /* execve tries to rebalance task in this scheduling domain. * We don't care about the scheduling domain; can gets called from * exec, fork, wakeup. */ static int select_task_rq_litmus(struct rq *rq, struct task_struct *p, int sd_flag, int flags) { /* preemption is already disabled. * We don't want to change cpu here */ return task_cpu(p); } #endif static const struct sched_class litmus_sched_class = { .next = &rt_sched_class, .enqueue_task = enqueue_task_litmus, .dequeue_task = dequeue_task_litmus, .yield_task = yield_task_litmus, .check_preempt_curr = check_preempt_curr_litmus, .pick_next_task = pick_next_task_litmus, .put_prev_task = put_prev_task_litmus, #ifdef CONFIG_SMP .select_task_rq = select_task_rq_litmus, .pre_schedule = pre_schedule_litmus, #endif .set_curr_task = set_curr_task_litmus, .task_tick = task_tick_litmus, .get_rr_interval = get_rr_interval_litmus, .prio_changed = prio_changed_litmus, .switched_to = switched_to_litmus, };