/* * litmus/sched_gsn_edf.c * * Implementation of the GSN-EDF scheduling algorithm. * * This version uses the simple approach and serializes all scheduling * decisions by the use of a queue lock. This is probably not the * best way to do it, but it should suffice for now. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SCHED_CPU_AFFINITY #include #endif /* to set up domain/cpu mappings */ #include #include /* Overview of GSN-EDF operations. * * For a detailed explanation of GSN-EDF have a look at the FMLP paper. This * description only covers how the individual operations are implemented in * LITMUS. * * link_task_to_cpu(T, cpu) - Low-level operation to update the linkage * structure (NOT the actually scheduled * task). If there is another linked task To * already it will set To->linked_on = NO_CPU * (thereby removing its association with this * CPU). However, it will not requeue the * previously linked task (if any). It will set * T's state to not completed and check whether * it is already running somewhere else. If T * is scheduled somewhere else it will link * it to that CPU instead (and pull the linked * task to cpu). T may be NULL. * * unlink(T) - Unlink removes T from all scheduler data * structures. If it is linked to some CPU it * will link NULL to that CPU. If it is * currently queued in the gsnedf queue it will * be removed from the rt_domain. It is safe to * call unlink(T) if T is not linked. T may not * be NULL. * * requeue(T) - Requeue will insert T into the appropriate * queue. If the system is in real-time mode and * the T is released already, it will go into the * ready queue. If the system is not in * real-time mode is T, then T will go into the * release queue. If T's release time is in the * future, it will go into the release * queue. That means that T's release time/job * no/etc. has to be updated before requeu(T) is * called. It is not safe to call requeue(T) * when T is already queued. T may not be NULL. * * gsnedf_job_arrival(T) - This is the catch all function when T enters * the system after either a suspension or at a * job release. It will queue T (which means it * is not safe to call gsnedf_job_arrival(T) if * T is already queued) and then check whether a * preemption is necessary. If a preemption is * necessary it will update the linkage * accordingly and cause scheduled to be called * (either with an IPI or need_resched). It is * safe to call gsnedf_job_arrival(T) if T's * next job has not been actually released yet * (releast time in the future). T will be put * on the release queue in that case. * * curr_job_completion() - Take care of everything that needs to be done * to prepare the current task for its next * release and place it in the right queue with * gsnedf_job_arrival(). * * * When we now that T is linked to CPU then link_task_to_cpu(NULL, CPU) is * equivalent to unlink(T). Note that if you unlink a task from a CPU none of * the functions will automatically propagate pending task from the ready queue * to a linked task. This is the job of the calling function ( by means of * __take_ready). */ /* cpu_entry_t - maintain the linked and scheduled state */ typedef struct { int cpu; struct task_struct* linked; /* only RT tasks */ struct task_struct* scheduled; /* only RT tasks */ struct bheap_node* hn; } cpu_entry_t; DEFINE_PER_CPU(cpu_entry_t, gsnedf_cpu_entries); cpu_entry_t* gsnedf_cpus[NR_CPUS]; /* the cpus queue themselves according to priority in here */ static struct bheap_node gsnedf_heap_node[NR_CPUS]; static struct bheap gsnedf_cpu_heap; static rt_domain_t gsnedf; #define gsnedf_lock (gsnedf.ready_lock) /* Uncomment this if you want to see all scheduling decisions in the * TRACE() log. #define WANT_ALL_SCHED_EVENTS */ static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b) { cpu_entry_t *a, *b; a = _a->value; b = _b->value; /* Note that a and b are inverted: we want the lowest-priority CPU at * the top of the heap. */ return edf_higher_prio(b->linked, a->linked); } /* update_cpu_position - Move the cpu entry to the correct place to maintain * order in the cpu queue. Caller must hold gsnedf lock. */ static void update_cpu_position(cpu_entry_t *entry) { if (likely(bheap_node_in_heap(entry->hn))) bheap_delete(cpu_lower_prio, &gsnedf_cpu_heap, entry->hn); bheap_insert(cpu_lower_prio, &gsnedf_cpu_heap, entry->hn); } /* caller must hold gsnedf lock */ static cpu_entry_t* lowest_prio_cpu(void) { struct bheap_node* hn; hn = bheap_peek(cpu_lower_prio, &gsnedf_cpu_heap); return hn->value; } /* link_task_to_cpu - Update the link of a CPU. * Handles the case where the to-be-linked task is already * scheduled on a different CPU. */ static noinline void link_task_to_cpu(struct task_struct* linked, cpu_entry_t *entry) { cpu_entry_t *sched; struct task_struct* tmp; int on_cpu; BUG_ON(linked && !is_realtime(linked)); /* Currently linked task is set to be unlinked. */ if (entry->linked) { entry->linked->rt_param.linked_on = NO_CPU; } /* Link new task to CPU. */ if (linked) { /* handle task is already scheduled somewhere! */ on_cpu = linked->rt_param.scheduled_on; if (on_cpu != NO_CPU) { sched = &per_cpu(gsnedf_cpu_entries, on_cpu); /* this should only happen if not linked already */ BUG_ON(sched->linked == linked); /* If we are already scheduled on the CPU to which we * wanted to link, we don't need to do the swap -- * we just link ourselves to the CPU and depend on * the caller to get things right. */ if (entry != sched) { TRACE_TASK(linked, "already scheduled on %d, updating link.\n", sched->cpu); tmp = sched->linked; linked->rt_param.linked_on = sched->cpu; sched->linked = linked; update_cpu_position(sched); linked = tmp; } } if (linked) /* might be NULL due to swap */ linked->rt_param.linked_on = entry->cpu; } entry->linked = linked; #ifdef WANT_ALL_SCHED_EVENTS if (linked) TRACE_TASK(linked, "linked to %d.\n", entry->cpu); else TRACE("NULL linked to %d.\n", entry->cpu); #endif update_cpu_position(entry); } /* unlink - Make sure a task is not linked any longer to an entry * where it was linked before. Must hold gsnedf_lock. */ static noinline void unlink(struct task_struct* t) { cpu_entry_t *entry; if (t->rt_param.linked_on != NO_CPU) { /* unlink */ entry = &per_cpu(gsnedf_cpu_entries, t->rt_param.linked_on); t->rt_param.linked_on = NO_CPU; link_task_to_cpu(NULL, entry); } else if (is_queued(t)) { /* This is an interesting situation: t is scheduled, * but was just recently unlinked. It cannot be * linked anywhere else (because then it would have * been relinked to this CPU), thus it must be in some * queue. We must remove it from the list in this * case. */ remove(&gsnedf, t); } } /* preempt - force a CPU to reschedule */ static void preempt(cpu_entry_t *entry) { preempt_if_preemptable(entry->scheduled, entry->cpu); } /* requeue - Put an unlinked task into gsn-edf domain. * Caller must hold gsnedf_lock. */ static noinline void requeue(struct task_struct* task) { BUG_ON(!task); /* sanity check before insertion */ BUG_ON(is_queued(task)); if (is_early_releasing(task) || is_released(task, litmus_clock())) __add_ready(&gsnedf, task); else { /* it has got to wait */ add_release(&gsnedf, task); } } #ifdef CONFIG_SCHED_CPU_AFFINITY static cpu_entry_t* gsnedf_get_nearest_available_cpu(cpu_entry_t *start) { cpu_entry_t *affinity; get_nearest_available_cpu(affinity, start, gsnedf_cpu_entries, #ifdef CONFIG_RELEASE_MASTER gsnedf.release_master, #else NO_CPU, #endif cpu_online_mask); return(affinity); } #endif /* check for any necessary preemptions */ static void check_for_preemptions(void) { struct task_struct *task; cpu_entry_t *last; #ifdef CONFIG_PREFER_LOCAL_LINKING cpu_entry_t *local; /* Before linking to other CPUs, check first whether the local CPU is * idle. */ local = this_cpu_ptr(&gsnedf_cpu_entries); task = __peek_ready(&gsnedf); if (task && !local->linked #ifdef CONFIG_RELEASE_MASTER && likely(local->cpu != gsnedf.release_master) #endif ) { task = __take_ready(&gsnedf); TRACE_TASK(task, "linking to local CPU %d to avoid IPI\n", local->cpu); link_task_to_cpu(task, local); preempt(local); } #endif for (last = lowest_prio_cpu(); edf_preemption_needed(&gsnedf, last->linked); last = lowest_prio_cpu()) { /* preemption necessary */ task = __take_ready(&gsnedf); TRACE("check_for_preemptions: attempting to link task %d to %d\n", task->pid, last->cpu); #ifdef CONFIG_SCHED_CPU_AFFINITY { cpu_entry_t *affinity = gsnedf_get_nearest_available_cpu( &per_cpu(gsnedf_cpu_entries, task_cpu(task))); if (affinity) last = affinity; else if (requeue_preempted_job(last->linked)) requeue(last->linked); } #else if (requeue_preempted_job(last->linked)) requeue(last->linked); #endif link_task_to_cpu(task, last); preempt(last); } } /* gsnedf_job_arrival: task is either resumed or released */ static noinline void gsnedf_job_arrival(struct task_struct* task) { BUG_ON(!task); requeue(task); check_for_preemptions(); } static void gsnedf_release_jobs(rt_domain_t* rt, struct bheap* tasks) { unsigned long flags; raw_spin_lock_irqsave(&gsnedf_lock, flags); __merge_ready(rt, tasks); check_for_preemptions(); raw_spin_unlock_irqrestore(&gsnedf_lock, flags); } /* caller holds gsnedf_lock */ static noinline void curr_job_completion(int forced) { struct task_struct *t = current; BUG_ON(!t); sched_trace_task_completion(t, forced); TRACE_TASK(t, "job_completion(forced=%d).\n", forced); /* set flags */ tsk_rt(t)->completed = 0; /* prepare for next period */ prepare_for_next_period(t); if (is_early_releasing(t) || is_released(t, litmus_clock())) sched_trace_task_release(t); /* unlink */ unlink(t); /* requeue * But don't requeue a blocking task. */ if (is_current_running()) gsnedf_job_arrival(t); } /* Getting schedule() right is a bit tricky. schedule() may not make any * assumptions on the state of the current task since it may be called for a * number of reasons. The reasons include a scheduler_tick() determined that it * was necessary, because sys_exit_np() was called, because some Linux * subsystem determined so, or even (in the worst case) because there is a bug * hidden somewhere. Thus, we must take extreme care to determine what the * current state is. * * The CPU could currently be scheduling a task (or not), be linked (or not). * * The following assertions for the scheduled task could hold: * * - !is_running(scheduled) // the job blocks * - scheduled->timeslice == 0 // the job completed (forcefully) * - is_completed() // the job completed (by syscall) * - linked != scheduled // we need to reschedule (for any reason) * - is_np(scheduled) // rescheduling must be delayed, * sys_exit_np must be requested * * Any of these can occur together. */ static struct task_struct* gsnedf_schedule(struct task_struct * prev) { cpu_entry_t* entry = this_cpu_ptr(&gsnedf_cpu_entries); int out_of_time, sleep, preempt, np, exists, blocks; struct task_struct* next = NULL; #ifdef CONFIG_RELEASE_MASTER /* Bail out early if we are the release master. * The release master never schedules any real-time tasks. */ if (unlikely(gsnedf.release_master == entry->cpu)) { sched_state_task_picked(); return NULL; } #endif raw_spin_lock(&gsnedf_lock); /* sanity checking */ BUG_ON(entry->scheduled && entry->scheduled != prev); BUG_ON(entry->scheduled && !is_realtime(prev)); BUG_ON(is_realtime(prev) && !entry->scheduled); /* (0) Determine state */ exists = entry->scheduled != NULL; blocks = exists && !is_current_running(); out_of_time = exists && budget_enforced(entry->scheduled) && budget_exhausted(entry->scheduled); np = exists && is_np(entry->scheduled); sleep = exists && is_completed(entry->scheduled); preempt = entry->scheduled != entry->linked; #ifdef WANT_ALL_SCHED_EVENTS TRACE_TASK(prev, "invoked gsnedf_schedule.\n"); #endif if (exists) TRACE_TASK(prev, "blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d " "state:%d sig:%d\n", blocks, out_of_time, np, sleep, preempt, prev->state, signal_pending(prev)); if (entry->linked && preempt) TRACE_TASK(prev, "will be preempted by %s/%d\n", entry->linked->comm, entry->linked->pid); /* If a task blocks we have no choice but to reschedule. */ if (blocks) unlink(entry->scheduled); /* Request a sys_exit_np() call if we would like to preempt but cannot. * We need to make sure to update the link structure anyway in case * that we are still linked. Multiple calls to request_exit_np() don't * hurt. */ if (np && (out_of_time || preempt || sleep)) { unlink(entry->scheduled); request_exit_np(entry->scheduled); } /* Any task that is preemptable and either exhausts its execution * budget or wants to sleep completes. We may have to reschedule after * this. Don't do a job completion if we block (can't have timers running * for blocked jobs). */ if (!np && (out_of_time || sleep)) curr_job_completion(!sleep); /* Link pending task if we became unlinked. */ if (!entry->linked) link_task_to_cpu(__take_ready(&gsnedf), entry); /* The final scheduling decision. Do we need to switch for some reason? * If linked is different from scheduled, then select linked as next. */ if ((!np || blocks) && entry->linked != entry->scheduled) { /* Schedule a linked job? */ if (entry->linked) { entry->linked->rt_param.scheduled_on = entry->cpu; next = entry->linked; TRACE_TASK(next, "scheduled_on = P%d\n", smp_processor_id()); } if (entry->scheduled) { /* not gonna be scheduled soon */ entry->scheduled->rt_param.scheduled_on = NO_CPU; TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n"); } } else /* Only override Linux scheduler if we have a real-time task * scheduled that needs to continue. */ if (exists) next = prev; sched_state_task_picked(); raw_spin_unlock(&gsnedf_lock); #ifdef WANT_ALL_SCHED_EVENTS TRACE("gsnedf_lock released, next=0x%p\n", next); if (next) TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); else if (exists && !next) TRACE("becomes idle at %llu.\n", litmus_clock()); #endif return next; } /* _finish_switch - we just finished the switch away from prev */ static void gsnedf_finish_switch(struct task_struct *prev) { cpu_entry_t* entry = this_cpu_ptr(&gsnedf_cpu_entries); entry->scheduled = is_realtime(current) ? current : NULL; #ifdef WANT_ALL_SCHED_EVENTS TRACE_TASK(prev, "switched away from\n"); #endif } /* Prepare a task for running in RT mode */ static void gsnedf_task_new(struct task_struct * t, int on_rq, int is_scheduled) { unsigned long flags; cpu_entry_t* entry; TRACE("gsn edf: task new %d\n", t->pid); raw_spin_lock_irqsave(&gsnedf_lock, flags); /* setup job params */ release_at(t, litmus_clock()); if (is_scheduled) { entry = &per_cpu(gsnedf_cpu_entries, task_cpu(t)); BUG_ON(entry->scheduled); #ifdef CONFIG_RELEASE_MASTER if (entry->cpu != gsnedf.release_master) { #endif entry->scheduled = t; tsk_rt(t)->scheduled_on = task_cpu(t); #ifdef CONFIG_RELEASE_MASTER } else { /* do not schedule on release master */ preempt(entry); /* force resched */ tsk_rt(t)->scheduled_on = NO_CPU; } #endif } else { t->rt_param.scheduled_on = NO_CPU; } t->rt_param.linked_on = NO_CPU; if (on_rq || is_scheduled) gsnedf_job_arrival(t); raw_spin_unlock_irqrestore(&gsnedf_lock, flags); } static void gsnedf_task_wake_up(struct task_struct *task) { unsigned long flags; lt_t now; TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); raw_spin_lock_irqsave(&gsnedf_lock, flags); now = litmus_clock(); if (is_sporadic(task) && is_tardy(task, now)) { /* new sporadic release */ sched_trace_last_suspension_as_completion(task); release_at(task, now); sched_trace_task_release(task); } gsnedf_job_arrival(task); raw_spin_unlock_irqrestore(&gsnedf_lock, flags); } static void gsnedf_task_block(struct task_struct *t) { unsigned long flags; TRACE_TASK(t, "block at %llu\n", litmus_clock()); /* unlink if necessary */ raw_spin_lock_irqsave(&gsnedf_lock, flags); unlink(t); raw_spin_unlock_irqrestore(&gsnedf_lock, flags); BUG_ON(!is_realtime(t)); } static void gsnedf_task_exit(struct task_struct * t) { unsigned long flags; /* unlink if necessary */ raw_spin_lock_irqsave(&gsnedf_lock, flags); unlink(t); if (tsk_rt(t)->scheduled_on != NO_CPU) { gsnedf_cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL; tsk_rt(t)->scheduled_on = NO_CPU; } raw_spin_unlock_irqrestore(&gsnedf_lock, flags); BUG_ON(!is_realtime(t)); TRACE_TASK(t, "RIP\n"); } static long gsnedf_admit_task(struct task_struct* tsk) { return 0; } #ifdef CONFIG_LITMUS_LOCKING #include /* called with IRQs off */ static void set_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh) { int linked_on; int check_preempt = 0; raw_spin_lock(&gsnedf_lock); TRACE_TASK(t, "inherits priority from %s/%d\n", prio_inh->comm, prio_inh->pid); tsk_rt(t)->inh_task = prio_inh; linked_on = tsk_rt(t)->linked_on; /* If it is scheduled, then we need to reorder the CPU heap. */ if (linked_on != NO_CPU) { TRACE_TASK(t, "%s: linked on %d\n", __FUNCTION__, linked_on); /* Holder is scheduled; need to re-order CPUs. * We can't use heap_decrease() here since * the cpu_heap is ordered in reverse direction, so * it is actually an increase. */ bheap_delete(cpu_lower_prio, &gsnedf_cpu_heap, gsnedf_cpus[linked_on]->hn); bheap_insert(cpu_lower_prio, &gsnedf_cpu_heap, gsnedf_cpus[linked_on]->hn); } else { /* holder may be queued: first stop queue changes */ raw_spin_lock(&gsnedf.release_lock); if (is_queued(t)) { TRACE_TASK(t, "%s: is queued\n", __FUNCTION__); /* We need to update the position of holder in some * heap. Note that this could be a release heap if we * budget enforcement is used and this job overran. */ check_preempt = !bheap_decrease(edf_ready_order, tsk_rt(t)->heap_node); } else { /* Nothing to do: if it is not queued and not linked * then it is either sleeping or currently being moved * by other code (e.g., a timer interrupt handler) that * will use the correct priority when enqueuing the * task. */ TRACE_TASK(t, "%s: is NOT queued => Done.\n", __FUNCTION__); } raw_spin_unlock(&gsnedf.release_lock); /* If holder was enqueued in a release heap, then the following * preemption check is pointless, but we can't easily detect * that case. If you want to fix this, then consider that * simply adding a state flag requires O(n) time to update when * releasing n tasks, which conflicts with the goal to have * O(log n) merges. */ if (check_preempt) { /* heap_decrease() hit the top level of the heap: make * sure preemption checks get the right task, not the * potentially stale cache. */ bheap_uncache_min(edf_ready_order, &gsnedf.ready_queue); check_for_preemptions(); } } raw_spin_unlock(&gsnedf_lock); } /* called with IRQs off */ static void clear_priority_inheritance(struct task_struct* t) { raw_spin_lock(&gsnedf_lock); /* A job only stops inheriting a priority when it releases a * resource. Thus we can make the following assumption.*/ BUG_ON(tsk_rt(t)->scheduled_on == NO_CPU); TRACE_TASK(t, "priority restored\n"); tsk_rt(t)->inh_task = NULL; /* Check if rescheduling is necessary. We can't use heap_decrease() * since the priority was effectively lowered. */ unlink(t); gsnedf_job_arrival(t); raw_spin_unlock(&gsnedf_lock); } /* ******************** FMLP support ********************** */ /* struct for semaphore with priority inheritance */ struct fmlp_semaphore { struct litmus_lock litmus_lock; /* current resource holder */ struct task_struct *owner; /* highest-priority waiter */ struct task_struct *hp_waiter; /* FIFO queue of waiting tasks */ wait_queue_head_t wait; }; static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock) { return container_of(lock, struct fmlp_semaphore, litmus_lock); } /* caller is responsible for locking */ struct task_struct* find_hp_waiter(struct fmlp_semaphore *sem, struct task_struct* skip) { struct list_head *pos; struct task_struct *queued, *found = NULL; list_for_each(pos, &sem->wait.task_list) { queued = (struct task_struct*) list_entry(pos, wait_queue_t, task_list)->private; /* Compare task prios, find high prio task. */ if (queued != skip && edf_higher_prio(queued, found)) found = queued; } return found; } int gsnedf_fmlp_lock(struct litmus_lock* l) { struct task_struct* t = current; struct fmlp_semaphore *sem = fmlp_from_lock(l); wait_queue_t wait; unsigned long flags; if (!is_realtime(t)) return -EPERM; /* prevent nested lock acquisition --- not supported by FMLP */ if (tsk_rt(t)->num_locks_held) return -EBUSY; spin_lock_irqsave(&sem->wait.lock, flags); if (sem->owner) { /* resource is not free => must suspend and wait */ init_waitqueue_entry(&wait, t); /* FIXME: interruptible would be nice some day */ set_task_state(t, TASK_UNINTERRUPTIBLE); __add_wait_queue_tail_exclusive(&sem->wait, &wait); /* check if we need to activate priority inheritance */ if (edf_higher_prio(t, sem->hp_waiter)) { sem->hp_waiter = t; if (edf_higher_prio(t, sem->owner)) set_priority_inheritance(sem->owner, sem->hp_waiter); } TS_LOCK_SUSPEND; /* release lock before sleeping */ spin_unlock_irqrestore(&sem->wait.lock, flags); /* We depend on the FIFO order. Thus, we don't need to recheck * when we wake up; we are guaranteed to have the lock since * there is only one wake up per release. */ schedule(); TS_LOCK_RESUME; /* Since we hold the lock, no other task will change * ->owner. We can thus check it without acquiring the spin * lock. */ BUG_ON(sem->owner != t); } else { /* it's ours now */ sem->owner = t; spin_unlock_irqrestore(&sem->wait.lock, flags); } tsk_rt(t)->num_locks_held++; return 0; } int gsnedf_fmlp_unlock(struct litmus_lock* l) { struct task_struct *t = current, *next; struct fmlp_semaphore *sem = fmlp_from_lock(l); unsigned long flags; int err = 0; spin_lock_irqsave(&sem->wait.lock, flags); if (sem->owner != t) { err = -EINVAL; goto out; } tsk_rt(t)->num_locks_held--; /* check if there are jobs waiting for this resource */ next = __waitqueue_remove_first(&sem->wait); if (next) { /* next becomes the resouce holder */ sem->owner = next; TRACE_CUR("lock ownership passed to %s/%d\n", next->comm, next->pid); /* determine new hp_waiter if necessary */ if (next == sem->hp_waiter) { TRACE_TASK(next, "was highest-prio waiter\n"); /* next has the highest priority --- it doesn't need to * inherit. However, we need to make sure that the * next-highest priority in the queue is reflected in * hp_waiter. */ sem->hp_waiter = find_hp_waiter(sem, next); if (sem->hp_waiter) TRACE_TASK(sem->hp_waiter, "is new highest-prio waiter\n"); else TRACE("no further waiters\n"); } else { /* Well, if next is not the highest-priority waiter, * then it ought to inherit the highest-priority * waiter's priority. */ set_priority_inheritance(next, sem->hp_waiter); } /* wake up next */ wake_up_process(next); } else /* becomes available */ sem->owner = NULL; /* we lose the benefit of priority inheritance (if any) */ if (tsk_rt(t)->inh_task) clear_priority_inheritance(t); out: spin_unlock_irqrestore(&sem->wait.lock, flags); return err; } int gsnedf_fmlp_close(struct litmus_lock* l) { struct task_struct *t = current; struct fmlp_semaphore *sem = fmlp_from_lock(l); unsigned long flags; int owner; spin_lock_irqsave(&sem->wait.lock, flags); owner = sem->owner == t; spin_unlock_irqrestore(&sem->wait.lock, flags); if (owner) gsnedf_fmlp_unlock(l); return 0; } void gsnedf_fmlp_free(struct litmus_lock* lock) { kfree(fmlp_from_lock(lock)); } static struct litmus_lock_ops gsnedf_fmlp_lock_ops = { .close = gsnedf_fmlp_close, .lock = gsnedf_fmlp_lock, .unlock = gsnedf_fmlp_unlock, .deallocate = gsnedf_fmlp_free, }; static struct litmus_lock* gsnedf_new_fmlp(void) { struct fmlp_semaphore* sem; sem = kmalloc(sizeof(*sem), GFP_KERNEL); if (!sem) return NULL; sem->owner = NULL; sem->hp_waiter = NULL; init_waitqueue_head(&sem->wait); sem->litmus_lock.ops = &gsnedf_fmlp_lock_ops; return &sem->litmus_lock; } /* **** lock constructor **** */ static long gsnedf_allocate_lock(struct litmus_lock **lock, int type, void* __user unused) { int err = -ENXIO; /* GSN-EDF currently only supports the FMLP for global resources. */ switch (type) { case FMLP_SEM: /* Flexible Multiprocessor Locking Protocol */ *lock = gsnedf_new_fmlp(); if (*lock) err = 0; else err = -ENOMEM; break; }; return err; } #endif static struct domain_proc_info gsnedf_domain_proc_info; static long gsnedf_get_domain_proc_info(struct domain_proc_info **ret) { *ret = &gsnedf_domain_proc_info; return 0; } static void gsnedf_setup_domain_proc(void) { int i, cpu; int release_master = #ifdef CONFIG_RELEASE_MASTER atomic_read(&release_master_cpu); #else NO_CPU; #endif int num_rt_cpus = num_online_cpus() - (release_master != NO_CPU); struct cd_mapping *map; memset(&gsnedf_domain_proc_info, 0, sizeof(gsnedf_domain_proc_info)); init_domain_proc_info(&gsnedf_domain_proc_info, num_rt_cpus, 1); gsnedf_domain_proc_info.num_cpus = num_rt_cpus; gsnedf_domain_proc_info.num_domains = 1; gsnedf_domain_proc_info.domain_to_cpus[0].id = 0; for (cpu = 0, i = 0; cpu < num_online_cpus(); ++cpu) { if (cpu == release_master) continue; map = &gsnedf_domain_proc_info.cpu_to_domains[i]; map->id = cpu; cpumask_set_cpu(0, map->mask); ++i; /* add cpu to the domain */ cpumask_set_cpu(cpu, gsnedf_domain_proc_info.domain_to_cpus[0].mask); } } static long gsnedf_activate_plugin(void) { int cpu; cpu_entry_t *entry; bheap_init(&gsnedf_cpu_heap); #ifdef CONFIG_RELEASE_MASTER gsnedf.release_master = atomic_read(&release_master_cpu); #endif for_each_online_cpu(cpu) { entry = &per_cpu(gsnedf_cpu_entries, cpu); bheap_node_init(&entry->hn, entry); entry->linked = NULL; entry->scheduled = NULL; #ifdef CONFIG_RELEASE_MASTER if (cpu != gsnedf.release_master) { #endif TRACE("GSN-EDF: Initializing CPU #%d.\n", cpu); update_cpu_position(entry); #ifdef CONFIG_RELEASE_MASTER } else { TRACE("GSN-EDF: CPU %d is release master.\n", cpu); } #endif } gsnedf_setup_domain_proc(); return 0; } static long gsnedf_deactivate_plugin(void) { destroy_domain_proc_info(&gsnedf_domain_proc_info); return 0; } /* Plugin object */ static struct sched_plugin gsn_edf_plugin __cacheline_aligned_in_smp = { .plugin_name = "GSN-EDF", .finish_switch = gsnedf_finish_switch, .task_new = gsnedf_task_new, .complete_job = complete_job, .task_exit = gsnedf_task_exit, .schedule = gsnedf_schedule, .task_wake_up = gsnedf_task_wake_up, .task_block = gsnedf_task_block, .admit_task = gsnedf_admit_task, .activate_plugin = gsnedf_activate_plugin, .deactivate_plugin = gsnedf_deactivate_plugin, .get_domain_proc_info = gsnedf_get_domain_proc_info, #ifdef CONFIG_LITMUS_LOCKING .allocate_lock = gsnedf_allocate_lock, #endif }; static int __init init_gsn_edf(void) { int cpu; cpu_entry_t *entry; bheap_init(&gsnedf_cpu_heap); /* initialize CPU state */ for (cpu = 0; cpu < NR_CPUS; cpu++) { entry = &per_cpu(gsnedf_cpu_entries, cpu); gsnedf_cpus[cpu] = entry; entry->cpu = cpu; entry->hn = &gsnedf_heap_node[cpu]; bheap_node_init(&entry->hn, entry); } edf_domain_init(&gsnedf, NULL, gsnedf_release_jobs); return register_sched_plugin(&gsn_edf_plugin); } module_init(init_gsn_edf);