/* * litmus/sched_cedf.c * * Implementation of the C-EDF scheduling algorithm. * * This implementation is based on G-EDF: * - CPUs are clustered around L2 or L3 caches. * - Clusters topology is automatically detected (this is arch dependent * and is working only on x86 at the moment --- and only with modern * cpus that exports cpuid4 information) * - The plugins _does not_ attempt to put tasks in the right cluster i.e. * the programmer needs to be aware of the topology to place tasks * in the desired cluster * - default clustering is around L2 cache (cache index = 2) * supported clusters are: L1 (private cache: pedf), L2, L3, ALL (all * online_cpus are placed in a single cluster). * * For details on functions, take a look at sched_gsn_edf.c * * Currently, we do not support changes in the number of online cpus. * If the num_online_cpus() dynamically changes, the plugin is broken. * * This version uses the simple approach and serializes all scheduling * decisions by the use of a queue lock. This is probably not the * best way to do it, but it should suffice for now. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SCHED_CPU_AFFINITY #include #endif /* to configure the cluster size */ #include #ifdef CONFIG_SCHED_CPU_AFFINITY #include #endif #ifdef CONFIG_LITMUS_SOFTIRQD #include #endif #ifdef CONFIG_LITMUS_PAI_SOFTIRQD #include #include #endif #ifdef CONFIG_LITMUS_NVIDIA #include #endif /* Reference configuration variable. Determines which cache level is used to * group CPUs into clusters. GLOBAL_CLUSTER, which is the default, means that * all CPUs form a single cluster (just like GSN-EDF). */ static enum cache_level cluster_config = GLOBAL_CLUSTER; struct clusterdomain; /* cpu_entry_t - maintain the linked and scheduled state * * A cpu also contains a pointer to the cedf_domain_t cluster * that owns it (struct clusterdomain*) */ typedef struct { int cpu; struct clusterdomain* cluster; /* owning cluster */ struct task_struct* linked; /* only RT tasks */ struct task_struct* scheduled; /* only RT tasks */ atomic_t will_schedule; /* prevent unneeded IPIs */ struct bheap_node* hn; } cpu_entry_t; /* one cpu_entry_t per CPU */ DEFINE_PER_CPU(cpu_entry_t, cedf_cpu_entries); #define set_will_schedule() \ (atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 1)) #define clear_will_schedule() \ (atomic_set(&__get_cpu_var(cedf_cpu_entries).will_schedule, 0)) #define test_will_schedule(cpu) \ (atomic_read(&per_cpu(cedf_cpu_entries, cpu).will_schedule)) #ifdef CONFIG_LITMUS_PAI_SOFTIRQD struct tasklet_head { struct tasklet_struct *head; struct tasklet_struct **tail; }; #endif /* * In C-EDF there is a cedf domain _per_ cluster * The number of clusters is dynamically determined accordingly to the * total cpu number and the cluster size */ typedef struct clusterdomain { /* rt_domain for this cluster */ rt_domain_t domain; /* cpus in this cluster */ cpu_entry_t* *cpus; /* map of this cluster cpus */ cpumask_var_t cpu_map; /* the cpus queue themselves according to priority in here */ struct bheap_node *heap_node; struct bheap cpu_heap; /* lock for this cluster */ #define cluster_lock domain.ready_lock #ifdef CONFIG_LITMUS_PAI_SOFTIRQD struct tasklet_head pending_tasklets; #endif } cedf_domain_t; /* a cedf_domain per cluster; allocation is done at init/activation time */ cedf_domain_t *cedf; #define remote_cluster(cpu) ((cedf_domain_t *) per_cpu(cedf_cpu_entries, cpu).cluster) #define task_cpu_cluster(task) remote_cluster(get_partition(task)) /* Uncomment WANT_ALL_SCHED_EVENTS if you want to see all scheduling * decisions in the TRACE() log; uncomment VERBOSE_INIT for verbose * information during the initialization of the plugin (e.g., topology) #define WANT_ALL_SCHED_EVENTS */ #define VERBOSE_INIT static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b) { cpu_entry_t *a, *b; a = _a->value; b = _b->value; /* Note that a and b are inverted: we want the lowest-priority CPU at * the top of the heap. */ return edf_higher_prio(b->linked, a->linked); } /* update_cpu_position - Move the cpu entry to the correct place to maintain * order in the cpu queue. Caller must hold cedf lock. */ static void update_cpu_position(cpu_entry_t *entry) { cedf_domain_t *cluster = entry->cluster; if (likely(bheap_node_in_heap(entry->hn))) bheap_delete(cpu_lower_prio, &cluster->cpu_heap, entry->hn); bheap_insert(cpu_lower_prio, &cluster->cpu_heap, entry->hn); } /* caller must hold cedf lock */ static cpu_entry_t* lowest_prio_cpu(cedf_domain_t *cluster) { struct bheap_node* hn; hn = bheap_peek(cpu_lower_prio, &cluster->cpu_heap); return hn->value; } /* link_task_to_cpu - Update the link of a CPU. * Handles the case where the to-be-linked task is already * scheduled on a different CPU. */ static noinline void link_task_to_cpu(struct task_struct* linked, cpu_entry_t *entry) { cpu_entry_t *sched; struct task_struct* tmp; int on_cpu; BUG_ON(linked && !is_realtime(linked)); /* Currently linked task is set to be unlinked. */ if (entry->linked) { entry->linked->rt_param.linked_on = NO_CPU; } /* Link new task to CPU. */ if (linked) { set_rt_flags(linked, RT_F_RUNNING); /* handle task is already scheduled somewhere! */ on_cpu = linked->rt_param.scheduled_on; if (on_cpu != NO_CPU) { sched = &per_cpu(cedf_cpu_entries, on_cpu); /* this should only happen if not linked already */ BUG_ON(sched->linked == linked); /* If we are already scheduled on the CPU to which we * wanted to link, we don't need to do the swap -- * we just link ourselves to the CPU and depend on * the caller to get things right. */ if (entry != sched) { TRACE_TASK(linked, "already scheduled on %d, updating link.\n", sched->cpu); tmp = sched->linked; linked->rt_param.linked_on = sched->cpu; sched->linked = linked; update_cpu_position(sched); linked = tmp; } } if (linked) /* might be NULL due to swap */ linked->rt_param.linked_on = entry->cpu; } entry->linked = linked; #ifdef WANT_ALL_SCHED_EVENTS if (linked) TRACE_TASK(linked, "linked to %d.\n", entry->cpu); else TRACE("NULL linked to %d.\n", entry->cpu); #endif update_cpu_position(entry); } /* unlink - Make sure a task is not linked any longer to an entry * where it was linked before. Must hold cluster_lock. */ static noinline void unlink(struct task_struct* t) { cpu_entry_t *entry; if (t->rt_param.linked_on != NO_CPU) { /* unlink */ entry = &per_cpu(cedf_cpu_entries, t->rt_param.linked_on); t->rt_param.linked_on = NO_CPU; link_task_to_cpu(NULL, entry); } else if (is_queued(t)) { /* This is an interesting situation: t is scheduled, * but was just recently unlinked. It cannot be * linked anywhere else (because then it would have * been relinked to this CPU), thus it must be in some * queue. We must remove it from the list in this * case. * * in C-EDF case is should be somewhere in the queue for * its domain, therefore and we can get the domain using * task_cpu_cluster */ remove(&(task_cpu_cluster(t))->domain, t); } } /* preempt - force a CPU to reschedule */ static void preempt(cpu_entry_t *entry) { preempt_if_preemptable(entry->scheduled, entry->cpu); } /* requeue - Put an unlinked task into gsn-edf domain. * Caller must hold cluster_lock. */ static noinline void requeue(struct task_struct* task) { cedf_domain_t *cluster = task_cpu_cluster(task); BUG_ON(!task); /* sanity check before insertion */ BUG_ON(is_queued(task)); if (is_released(task, litmus_clock())) __add_ready(&cluster->domain, task); else { /* it has got to wait */ add_release(&cluster->domain, task); } } #ifdef CONFIG_SCHED_CPU_AFFINITY static cpu_entry_t* cedf_get_nearest_available_cpu( cedf_domain_t *cluster, cpu_entry_t *start) { cpu_entry_t *affinity; get_nearest_available_cpu(affinity, start, cedf_cpu_entries, #ifdef CONFIG_RELEASE_MASTER cluster->domain.release_master #else NO_CPU #endif ); /* make sure CPU is in our cluster */ if (affinity && cpu_isset(affinity->cpu, *cluster->cpu_map)) return(affinity); else return(NULL); } #endif /* check for any necessary preemptions */ static void check_for_preemptions(cedf_domain_t *cluster) { struct task_struct *task; cpu_entry_t *last; for(last = lowest_prio_cpu(cluster); edf_preemption_needed(&cluster->domain, last->linked); last = lowest_prio_cpu(cluster)) { /* preemption necessary */ task = __take_ready(&cluster->domain); TRACE("check_for_preemptions: attempting to link task %d to %d\n", task->pid, last->cpu); #ifdef CONFIG_SCHED_CPU_AFFINITY { cpu_entry_t *affinity = cedf_get_nearest_available_cpu(cluster, &per_cpu(cedf_cpu_entries, task_cpu(task))); if(affinity) last = affinity; else if(last->linked) requeue(last->linked); } #else if (last->linked) requeue(last->linked); #endif link_task_to_cpu(task, last); preempt(last); } } /* cedf_job_arrival: task is either resumed or released */ static noinline void cedf_job_arrival(struct task_struct* task) { cedf_domain_t *cluster = task_cpu_cluster(task); BUG_ON(!task); requeue(task); check_for_preemptions(cluster); } static void cedf_release_jobs(rt_domain_t* rt, struct bheap* tasks) { cedf_domain_t* cluster = container_of(rt, cedf_domain_t, domain); unsigned long flags; raw_spin_lock_irqsave(&cluster->cluster_lock, flags); __merge_ready(&cluster->domain, tasks); check_for_preemptions(cluster); raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); } /* caller holds cluster_lock */ static noinline void job_completion(struct task_struct *t, int forced) { BUG_ON(!t); sched_trace_task_completion(t, forced); #ifdef CONFIG_LITMUS_NVIDIA atomic_set(&tsk_rt(t)->nv_int_count, 0); #endif TRACE_TASK(t, "job_completion().\n"); /* set flags */ set_rt_flags(t, RT_F_SLEEP); /* prepare for next period */ prepare_for_next_period(t); if (is_released(t, litmus_clock())) sched_trace_task_release(t); /* unlink */ unlink(t); /* requeue * But don't requeue a blocking task. */ if (is_running(t)) cedf_job_arrival(t); } /* cedf_tick - this function is called for every local timer * interrupt. * * checks whether the current task has expired and checks * whether we need to preempt it if it has not expired */ static void cedf_tick(struct task_struct* t) { if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) { if (!is_np(t)) { /* np tasks will be preempted when they become * preemptable again */ litmus_reschedule_local(); set_will_schedule(); TRACE("cedf_scheduler_tick: " "%d is preemptable " " => FORCE_RESCHED\n", t->pid); } else if (is_user_np(t)) { TRACE("cedf_scheduler_tick: " "%d is non-preemptable, " "preemption delayed.\n", t->pid); request_exit_np(t); } } } #ifdef CONFIG_LITMUS_PAI_SOFTIRQD static void __do_lit_tasklet(struct tasklet_struct* tasklet, unsigned long flushed) { if (!atomic_read(&tasklet->count)) { if(tasklet->owner) { sched_trace_tasklet_begin(tasklet->owner); } if (!test_and_clear_bit(TASKLET_STATE_SCHED, &tasklet->state)) { BUG(); } TRACE("%s: Invoking tasklet with owner pid = %d (flushed = %d).\n", __FUNCTION__, (tasklet->owner) ? tasklet->owner->pid : -1, (tasklet->owner) ? 0 : 1); tasklet->func(tasklet->data); tasklet_unlock(tasklet); if(tasklet->owner) { sched_trace_tasklet_end(tasklet->owner, flushed); } } else { BUG(); } } static void __extract_tasklets(cedf_domain_t* cluster, struct task_struct* task, struct tasklet_head* task_tasklets) { struct tasklet_struct* step; struct tasklet_struct* tasklet; struct tasklet_struct* prev; task_tasklets->head = NULL; task_tasklets->tail = &(task_tasklets->head); prev = NULL; for(step = cluster->pending_tasklets.head; step != NULL; step = step->next) { if(step->owner == task) { TRACE("%s: Found tasklet to flush: %d\n", __FUNCTION__, step->owner->pid); tasklet = step; if(prev) { prev->next = tasklet->next; } else if(cluster->pending_tasklets.head == tasklet) { // we're at the head. cluster->pending_tasklets.head = tasklet->next; } if(cluster->pending_tasklets.tail == &tasklet) { // we're at the tail if(prev) { cluster->pending_tasklets.tail = &prev; } else { cluster->pending_tasklets.tail = &(cluster->pending_tasklets.head); } } tasklet->next = NULL; *(task_tasklets->tail) = tasklet; task_tasklets->tail = &(tasklet->next); } else { prev = step; } } } static void flush_tasklets(cedf_domain_t* cluster, struct task_struct* task) { #if 0 unsigned long flags; struct tasklet_head task_tasklets; struct tasklet_struct* step; raw_spin_lock_irqsave(&cluster->cluster_lock, flags); __extract_tasklets(cluster, task, &task_tasklets); raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); if(cluster->pending_tasklets.head != NULL) { TRACE("%s: Flushing tasklets for %d...\n", __FUNCTION__, task->pid); } // now execute any flushed tasklets. for(step = cluster->pending_tasklets.head; step != NULL; /**/) { struct tasklet_struct* temp = step->next; step->next = NULL; __do_lit_tasklet(step, 1ul); step = temp; } #endif // lazy flushing. // just change ownership to NULL and let an idle processor // take care of it. :P struct tasklet_struct* step; unsigned long flags; raw_spin_lock_irqsave(&cluster->cluster_lock, flags); for(step = cluster->pending_tasklets.head; step != NULL; step = step->next) { if(step->owner == task) { TRACE("%s: Found tasklet to flush: %d\n", __FUNCTION__, step->owner->pid); step->owner = NULL; } } raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); } static void do_lit_tasklets(cedf_domain_t* cluster, struct task_struct* sched_task) { int work_to_do = 1; struct tasklet_struct *tasklet = NULL; //struct tasklet_struct *step; unsigned long flags; while(work_to_do) { TS_NV_SCHED_BOTISR_START; // remove tasklet at head of list if it has higher priority. raw_spin_lock_irqsave(&cluster->cluster_lock, flags); /* step = cluster->pending_tasklets.head; TRACE("%s: (BEFORE) dumping tasklet queue...\n", __FUNCTION__); while(step != NULL){ TRACE("%s: %p (%d)\n", __FUNCTION__, step, step->owner->pid); step = step->next; } TRACE("%s: tail = %p (%d)\n", __FUNCTION__, *(cluster->pending_tasklets.tail), (*(cluster->pending_tasklets.tail) != NULL) ? (*(cluster->pending_tasklets.tail))->owner->pid : -1); TRACE("%s: done.\n", __FUNCTION__); */ if(cluster->pending_tasklets.head != NULL) { // remove tasklet at head. tasklet = cluster->pending_tasklets.head; if(edf_higher_prio(tasklet->owner, sched_task)) { if(NULL == tasklet->next) { // tasklet is at the head, list only has one element TRACE("%s: Tasklet for %d is the last element in tasklet queue.\n", __FUNCTION__, (tasklet->owner) ? tasklet->owner->pid : -1); cluster->pending_tasklets.tail = &(cluster->pending_tasklets.head); } // remove the tasklet from the queue cluster->pending_tasklets.head = tasklet->next; TRACE("%s: Removed tasklet for %d from tasklet queue.\n", __FUNCTION__, (tasklet->owner) ? tasklet->owner->pid : -1); } else { TRACE("%s: Pending tasklet (%d) does not have priority to run on this CPU (%d).\n", __FUNCTION__, (tasklet->owner) ? tasklet->owner->pid : -1, smp_processor_id()); tasklet = NULL; } } else { TRACE("%s: Tasklet queue is empty.\n", __FUNCTION__); } /* step = cluster->pending_tasklets.head; TRACE("%s: (AFTER) dumping tasklet queue...\n", __FUNCTION__); while(step != NULL){ TRACE("%s: %p (%d)\n", __FUNCTION__, step, step->owner->pid); step = step->next; } TRACE("%s: tail = %p (%d)\n", __FUNCTION__, *(cluster->pending_tasklets.tail), (*(cluster->pending_tasklets.tail) != NULL) ? (*(cluster->pending_tasklets.tail))->owner->pid : -1); TRACE("%s: done.\n", __FUNCTION__); */ raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); TS_NV_SCHED_BOTISR_END; if(tasklet) { __do_lit_tasklet(tasklet, 0ul); tasklet = NULL; } else { work_to_do = 0; } } //TRACE("%s: exited.\n", __FUNCTION__); } static void run_tasklets(struct task_struct* sched_task) { cedf_domain_t* cluster; #if 0 int task_is_rt = is_realtime(sched_task); cedf_domain_t* cluster; if(is_realtime(sched_task)) { cluster = task_cpu_cluster(sched_task); } else { cluster = remote_cluster(get_cpu()); } if(cluster && cluster->pending_tasklets.head != NULL) { TRACE("%s: There are tasklets to process.\n", __FUNCTION__); do_lit_tasklets(cluster, sched_task); } if(!task_is_rt) { put_cpu_no_resched(); } #else preempt_disable(); cluster = (is_realtime(sched_task)) ? task_cpu_cluster(sched_task) : remote_cluster(smp_processor_id()); if(cluster && cluster->pending_tasklets.head != NULL) { TRACE("%s: There are tasklets to process.\n", __FUNCTION__); do_lit_tasklets(cluster, sched_task); } preempt_enable_no_resched(); #endif } static void __add_pai_tasklet(struct tasklet_struct* tasklet, cedf_domain_t* cluster) { struct tasklet_struct* step; /* step = cluster->pending_tasklets.head; TRACE("%s: (BEFORE) dumping tasklet queue...\n", __FUNCTION__); while(step != NULL){ TRACE("%s: %p (%d)\n", __FUNCTION__, step, step->owner->pid); step = step->next; } TRACE("%s: tail = %p (%d)\n", __FUNCTION__, *(cluster->pending_tasklets.tail), (*(cluster->pending_tasklets.tail) != NULL) ? (*(cluster->pending_tasklets.tail))->owner->pid : -1); TRACE("%s: done.\n", __FUNCTION__); */ tasklet->next = NULL; // make sure there are no old values floating around step = cluster->pending_tasklets.head; if(step == NULL) { TRACE("%s: tasklet queue empty. inserting tasklet for %d at head.\n", __FUNCTION__, tasklet->owner->pid); // insert at tail. *(cluster->pending_tasklets.tail) = tasklet; cluster->pending_tasklets.tail = &(tasklet->next); } else if((*(cluster->pending_tasklets.tail) != NULL) && edf_higher_prio((*(cluster->pending_tasklets.tail))->owner, tasklet->owner)) { // insert at tail. TRACE("%s: tasklet belongs at end. inserting tasklet for %d at tail.\n", __FUNCTION__, tasklet->owner->pid); *(cluster->pending_tasklets.tail) = tasklet; cluster->pending_tasklets.tail = &(tasklet->next); } else { //WARN_ON(1 == 1); // insert the tasklet somewhere in the middle. TRACE("%s: tasklet belongs somewhere in the middle.\n", __FUNCTION__); while(step->next && edf_higher_prio(step->next->owner, tasklet->owner)) { step = step->next; } // insert tasklet right before step->next. TRACE("%s: inserting tasklet for %d between %d and %d.\n", __FUNCTION__, tasklet->owner->pid, (step->owner) ? step->owner->pid : -1, (step->next) ? ((step->next->owner) ? step->next->owner->pid : -1) : -1); tasklet->next = step->next; step->next = tasklet; // patch up the head if needed. if(cluster->pending_tasklets.head == step) { TRACE("%s: %d is the new tasklet queue head.\n", __FUNCTION__, tasklet->owner->pid); cluster->pending_tasklets.head = tasklet; } } /* step = cluster->pending_tasklets.head; TRACE("%s: (AFTER) dumping tasklet queue...\n", __FUNCTION__); while(step != NULL){ TRACE("%s: %p (%d)\n", __FUNCTION__, step, step->owner->pid); step = step->next; } TRACE("%s: tail = %p (%d)\n", __FUNCTION__, *(cluster->pending_tasklets.tail), (*(cluster->pending_tasklets.tail) != NULL) ? (*(cluster->pending_tasklets.tail))->owner->pid : -1); TRACE("%s: done.\n", __FUNCTION__); */ // TODO: Maintain this list in priority order. // tasklet->next = NULL; // *(cluster->pending_tasklets.tail) = tasklet; // cluster->pending_tasklets.tail = &tasklet->next; } static int enqueue_pai_tasklet(struct tasklet_struct* tasklet) { cedf_domain_t *cluster = NULL; cpu_entry_t *targetCPU = NULL; int thisCPU; int runLocal = 0; int runNow = 0; unsigned long flags; if(unlikely((tasklet->owner == NULL) || !is_realtime(tasklet->owner))) { TRACE("%s: No owner associated with this tasklet!\n", __FUNCTION__); return 0; } cluster = task_cpu_cluster(tasklet->owner); raw_spin_lock_irqsave(&cluster->cluster_lock, flags); thisCPU = smp_processor_id(); #if 1 #ifdef CONFIG_SCHED_CPU_AFFINITY { cpu_entry_t* affinity = NULL; // use this CPU if it is in our cluster and isn't running any RT work. if(cpu_isset(thisCPU, *cluster->cpu_map) && (__get_cpu_var(cedf_cpu_entries).linked == NULL)) { affinity = &(__get_cpu_var(cedf_cpu_entries)); } else { // this CPU is busy or shouldn't run tasklet in this cluster. // look for available near by CPUs. // NOTE: Affinity towards owner and not this CPU. Is this right? affinity = cedf_get_nearest_available_cpu(cluster, &per_cpu(cedf_cpu_entries, task_cpu(tasklet->owner))); } targetCPU = affinity; } #endif #endif if (targetCPU == NULL) { targetCPU = lowest_prio_cpu(cluster); } if (edf_higher_prio(tasklet->owner, targetCPU->linked)) { if (thisCPU == targetCPU->cpu) { TRACE("%s: Run tasklet locally (and now).\n", __FUNCTION__); runLocal = 1; runNow = 1; } else { TRACE("%s: Run tasklet remotely (and now).\n", __FUNCTION__); runLocal = 0; runNow = 1; } } else { runLocal = 0; runNow = 0; } if(!runLocal) { // enqueue the tasklet __add_pai_tasklet(tasklet, cluster); } raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); if (runLocal /*&& runNow */) { // runNow == 1 is implied TRACE("%s: Running tasklet on CPU where it was received.\n", __FUNCTION__); __do_lit_tasklet(tasklet, 0ul); } else if (runNow /*&& !runLocal */) { // runLocal == 0 is implied TRACE("%s: Triggering CPU %d to run tasklet.\n", __FUNCTION__, targetCPU->cpu); preempt(targetCPU); // need to be protected by cluster_lock? } else { TRACE("%s: Scheduling of tasklet was deferred.\n", __FUNCTION__); } return(1); // success } #endif /* Getting schedule() right is a bit tricky. schedule() may not make any * assumptions on the state of the current task since it may be called for a * number of reasons. The reasons include a scheduler_tick() determined that it * was necessary, because sys_exit_np() was called, because some Linux * subsystem determined so, or even (in the worst case) because there is a bug * hidden somewhere. Thus, we must take extreme care to determine what the * current state is. * * The CPU could currently be scheduling a task (or not), be linked (or not). * * The following assertions for the scheduled task could hold: * * - !is_running(scheduled) // the job blocks * - scheduled->timeslice == 0 // the job completed (forcefully) * - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall) * - linked != scheduled // we need to reschedule (for any reason) * - is_np(scheduled) // rescheduling must be delayed, * sys_exit_np must be requested * * Any of these can occur together. */ static struct task_struct* cedf_schedule(struct task_struct * prev) { cpu_entry_t* entry = &__get_cpu_var(cedf_cpu_entries); cedf_domain_t *cluster = entry->cluster; int out_of_time, sleep, preempt, np, exists, blocks; struct task_struct* next = NULL; #ifdef CONFIG_RELEASE_MASTER /* Bail out early if we are the release master. * The release master never schedules any real-time tasks. */ if (unlikely(cluster->domain.release_master == entry->cpu)) { sched_state_task_picked(); return NULL; } #endif raw_spin_lock(&cluster->cluster_lock); clear_will_schedule(); /* sanity checking */ BUG_ON(entry->scheduled && entry->scheduled != prev); BUG_ON(entry->scheduled && !is_realtime(prev)); BUG_ON(is_realtime(prev) && !entry->scheduled); /* (0) Determine state */ exists = entry->scheduled != NULL; blocks = exists && !is_running(entry->scheduled); out_of_time = exists && budget_enforced(entry->scheduled) && budget_exhausted(entry->scheduled); np = exists && is_np(entry->scheduled); sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP; preempt = entry->scheduled != entry->linked; #ifdef WANT_ALL_SCHED_EVENTS TRACE_TASK(prev, "invoked cedf_schedule.\n"); #endif if (exists) TRACE_TASK(prev, "blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d " "state:%d sig:%d\n", blocks, out_of_time, np, sleep, preempt, prev->state, signal_pending(prev)); if (entry->linked && preempt) TRACE_TASK(prev, "will be preempted by %s/%d\n", entry->linked->comm, entry->linked->pid); /* If a task blocks we have no choice but to reschedule. */ if (blocks) unlink(entry->scheduled); /* Request a sys_exit_np() call if we would like to preempt but cannot. * We need to make sure to update the link structure anyway in case * that we are still linked. Multiple calls to request_exit_np() don't * hurt. */ if (np && (out_of_time || preempt || sleep)) { unlink(entry->scheduled); request_exit_np(entry->scheduled); } /* Any task that is preemptable and either exhausts its execution * budget or wants to sleep completes. We may have to reschedule after * this. Don't do a job completion if we block (can't have timers running * for blocked jobs). Preemption go first for the same reason. */ if (!np && (out_of_time || sleep) && !blocks && !preempt) job_completion(entry->scheduled, !sleep); /* Link pending task if we became unlinked. */ if (!entry->linked) link_task_to_cpu(__take_ready(&cluster->domain), entry); /* The final scheduling decision. Do we need to switch for some reason? * If linked is different from scheduled, then select linked as next. */ if ((!np || blocks) && entry->linked != entry->scheduled) { /* Schedule a linked job? */ if (entry->linked) { entry->linked->rt_param.scheduled_on = entry->cpu; next = entry->linked; } if (entry->scheduled) { /* not gonna be scheduled soon */ entry->scheduled->rt_param.scheduled_on = NO_CPU; TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n"); } } else /* Only override Linux scheduler if we have a real-time task * scheduled that needs to continue. */ if (exists) next = prev; sched_state_task_picked(); raw_spin_unlock(&cluster->cluster_lock); #ifdef WANT_ALL_SCHED_EVENTS TRACE("cluster_lock released, next=0x%p\n", next); if (next) TRACE_TASK(next, "scheduled at %llu\n", litmus_clock()); else if (exists && !next) TRACE("becomes idle at %llu.\n", litmus_clock()); #endif return next; } /* _finish_switch - we just finished the switch away from prev */ static void cedf_finish_switch(struct task_struct *prev) { cpu_entry_t* entry = &__get_cpu_var(cedf_cpu_entries); entry->scheduled = is_realtime(current) ? current : NULL; #ifdef WANT_ALL_SCHED_EVENTS TRACE_TASK(prev, "switched away from\n"); #endif } /* Prepare a task for running in RT mode */ static void cedf_task_new(struct task_struct * t, int on_rq, int running) { unsigned long flags; cpu_entry_t* entry; cedf_domain_t* cluster; TRACE("gsn edf: task new %d\n", t->pid); /* the cluster doesn't change even if t is running */ cluster = task_cpu_cluster(t); raw_spin_lock_irqsave(&cluster->cluster_lock, flags); /* setup job params */ release_at(t, litmus_clock()); if (running) { entry = &per_cpu(cedf_cpu_entries, task_cpu(t)); BUG_ON(entry->scheduled); #ifdef CONFIG_RELEASE_MASTER if (entry->cpu != cluster->domain.release_master) { #endif entry->scheduled = t; tsk_rt(t)->scheduled_on = task_cpu(t); #ifdef CONFIG_RELEASE_MASTER } else { /* do not schedule on release master */ preempt(entry); /* force resched */ tsk_rt(t)->scheduled_on = NO_CPU; } #endif } else { t->rt_param.scheduled_on = NO_CPU; } t->rt_param.linked_on = NO_CPU; cedf_job_arrival(t); raw_spin_unlock_irqrestore(&(cluster->cluster_lock), flags); } static void cedf_task_wake_up(struct task_struct *task) { unsigned long flags; //lt_t now; cedf_domain_t *cluster; TRACE_TASK(task, "wake_up at %llu\n", litmus_clock()); cluster = task_cpu_cluster(task); raw_spin_lock_irqsave(&cluster->cluster_lock, flags); #if 0 // sproadic task model /* We need to take suspensions because of semaphores into * account! If a job resumes after being suspended due to acquiring * a semaphore, it should never be treated as a new job release. */ if (get_rt_flags(task) == RT_F_EXIT_SEM) { set_rt_flags(task, RT_F_RUNNING); } else { now = litmus_clock(); if (is_tardy(task, now)) { /* new sporadic release */ release_at(task, now); sched_trace_task_release(task); } else { if (task->rt.time_slice) { /* came back in time before deadline */ set_rt_flags(task, RT_F_RUNNING); } } } #endif set_rt_flags(task, RT_F_RUNNING); // periodic model if(tsk_rt(task)->linked_on == NO_CPU) cedf_job_arrival(task); raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); } static void cedf_task_block(struct task_struct *t) { unsigned long flags; cedf_domain_t *cluster; TRACE_TASK(t, "block at %llu\n", litmus_clock()); cluster = task_cpu_cluster(t); /* unlink if necessary */ raw_spin_lock_irqsave(&cluster->cluster_lock, flags); unlink(t); raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); BUG_ON(!is_realtime(t)); } static void cedf_task_exit(struct task_struct * t) { unsigned long flags; cedf_domain_t *cluster = task_cpu_cluster(t); #ifdef CONFIG_LITMUS_PAI_SOFTIRQD flush_tasklets(cluster, t); #endif /* unlink if necessary */ raw_spin_lock_irqsave(&cluster->cluster_lock, flags); unlink(t); if (tsk_rt(t)->scheduled_on != NO_CPU) { cpu_entry_t *cpu; cpu = &per_cpu(cedf_cpu_entries, tsk_rt(t)->scheduled_on); cpu->scheduled = NULL; tsk_rt(t)->scheduled_on = NO_CPU; } raw_spin_unlock_irqrestore(&cluster->cluster_lock, flags); BUG_ON(!is_realtime(t)); TRACE_TASK(t, "RIP\n"); } static long cedf_admit_task(struct task_struct* tsk) { return task_cpu(tsk) == tsk->rt_param.task_params.cpu ? 0 : -EINVAL; } #ifdef CONFIG_LITMUS_LOCKING #include static void __set_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh) { int linked_on; int check_preempt = 0; cedf_domain_t* cluster = task_cpu_cluster(t); if(prio_inh != NULL) TRACE_TASK(t, "inherits priority from %s/%d\n", prio_inh->comm, prio_inh->pid); else TRACE_TASK(t, "inherits priority from %p\n", prio_inh); sched_trace_eff_prio_change(t, prio_inh); tsk_rt(t)->inh_task = prio_inh; linked_on = tsk_rt(t)->linked_on; /* If it is scheduled, then we need to reorder the CPU heap. */ if (linked_on != NO_CPU) { TRACE_TASK(t, "%s: linked on %d\n", __FUNCTION__, linked_on); /* Holder is scheduled; need to re-order CPUs. * We can't use heap_decrease() here since * the cpu_heap is ordered in reverse direction, so * it is actually an increase. */ bheap_delete(cpu_lower_prio, &cluster->cpu_heap, per_cpu(cedf_cpu_entries, linked_on).hn); bheap_insert(cpu_lower_prio, &cluster->cpu_heap, per_cpu(cedf_cpu_entries, linked_on).hn); } else { /* holder may be queued: first stop queue changes */ raw_spin_lock(&cluster->domain.release_lock); if (is_queued(t)) { TRACE_TASK(t, "%s: is queued\n", __FUNCTION__); /* We need to update the position of holder in some * heap. Note that this could be a release heap if we * budget enforcement is used and this job overran. */ check_preempt = !bheap_decrease(edf_ready_order, tsk_rt(t)->heap_node); } else { /* Nothing to do: if it is not queued and not linked * then it is either sleeping or currently being moved * by other code (e.g., a timer interrupt handler) that * will use the correct priority when enqueuing the * task. */ TRACE_TASK(t, "%s: is NOT queued => Done.\n", __FUNCTION__); } raw_spin_unlock(&cluster->domain.release_lock); /* If holder was enqueued in a release heap, then the following * preemption check is pointless, but we can't easily detect * that case. If you want to fix this, then consider that * simply adding a state flag requires O(n) time to update when * releasing n tasks, which conflicts with the goal to have * O(log n) merges. */ if (check_preempt) { /* heap_decrease() hit the top level of the heap: make * sure preemption checks get the right task, not the * potentially stale cache. */ bheap_uncache_min(edf_ready_order, &cluster->domain.ready_queue); check_for_preemptions(cluster); } } } /* called with IRQs off */ static void set_priority_inheritance(struct task_struct* t, struct task_struct* prio_inh) { cedf_domain_t* cluster = task_cpu_cluster(t); raw_spin_lock(&cluster->cluster_lock); __set_priority_inheritance(t, prio_inh); #ifdef CONFIG_LITMUS_SOFTIRQD if(tsk_rt(t)->cur_klitirqd != NULL) { TRACE_TASK(t, "%s/%d inherits a new priority!\n", tsk_rt(t)->cur_klitirqd->comm, tsk_rt(t)->cur_klitirqd->pid); __set_priority_inheritance(tsk_rt(t)->cur_klitirqd, prio_inh); } #endif raw_spin_unlock(&cluster->cluster_lock); } /* called with IRQs off */ static void __clear_priority_inheritance(struct task_struct* t) { TRACE_TASK(t, "priority restored\n"); if(tsk_rt(t)->scheduled_on != NO_CPU) { sched_trace_eff_prio_change(t, NULL); tsk_rt(t)->inh_task = NULL; /* Check if rescheduling is necessary. We can't use heap_decrease() * since the priority was effectively lowered. */ unlink(t); cedf_job_arrival(t); } else { __set_priority_inheritance(t, NULL); } #ifdef CONFIG_LITMUS_SOFTIRQD if(tsk_rt(t)->cur_klitirqd != NULL) { TRACE_TASK(t, "%s/%d inheritance set back to owner.\n", tsk_rt(t)->cur_klitirqd->comm, tsk_rt(t)->cur_klitirqd->pid); if(tsk_rt(tsk_rt(t)->cur_klitirqd)->scheduled_on != NO_CPU) { sched_trace_eff_prio_change(tsk_rt(t)->cur_klitirqd, t); tsk_rt(tsk_rt(t)->cur_klitirqd)->inh_task = t; /* Check if rescheduling is necessary. We can't use heap_decrease() * since the priority was effectively lowered. */ unlink(tsk_rt(t)->cur_klitirqd); cedf_job_arrival(tsk_rt(t)->cur_klitirqd); } else { __set_priority_inheritance(tsk_rt(t)->cur_klitirqd, t); } } #endif } /* called with IRQs off */ static void clear_priority_inheritance(struct task_struct* t) { cedf_domain_t* cluster = task_cpu_cluster(t); raw_spin_lock(&cluster->cluster_lock); __clear_priority_inheritance(t); raw_spin_unlock(&cluster->cluster_lock); } #ifdef CONFIG_LITMUS_SOFTIRQD /* called with IRQs off */ static void set_priority_inheritance_klitirqd(struct task_struct* klitirqd, struct task_struct* old_owner, struct task_struct* new_owner) { cedf_domain_t* cluster = task_cpu_cluster(klitirqd); BUG_ON(!(tsk_rt(klitirqd)->is_proxy_thread)); raw_spin_lock(&cluster->cluster_lock); if(old_owner != new_owner) { if(old_owner) { // unreachable? tsk_rt(old_owner)->cur_klitirqd = NULL; } TRACE_TASK(klitirqd, "giving ownership to %s/%d.\n", new_owner->comm, new_owner->pid); tsk_rt(new_owner)->cur_klitirqd = klitirqd; } __set_priority_inheritance(klitirqd, (tsk_rt(new_owner)->inh_task == NULL) ? new_owner : tsk_rt(new_owner)->inh_task); raw_spin_unlock(&cluster->cluster_lock); } /* called with IRQs off */ static void clear_priority_inheritance_klitirqd(struct task_struct* klitirqd, struct task_struct* old_owner) { cedf_domain_t* cluster = task_cpu_cluster(klitirqd); BUG_ON(!(tsk_rt(klitirqd)->is_proxy_thread)); raw_spin_lock(&cluster->cluster_lock); TRACE_TASK(klitirqd, "priority restored\n"); if(tsk_rt(klitirqd)->scheduled_on != NO_CPU) { tsk_rt(klitirqd)->inh_task = NULL; /* Check if rescheduling is necessary. We can't use heap_decrease() * since the priority was effectively lowered. */ unlink(klitirqd); cedf_job_arrival(klitirqd); } else { __set_priority_inheritance(klitirqd, NULL); } tsk_rt(old_owner)->cur_klitirqd = NULL; raw_spin_unlock(&cluster->cluster_lock); } #endif // CONFIG_LITMUS_SOFTIRQD /* ******************** KFMLP support ********************** */ /* struct for semaphore with priority inheritance */ struct kfmlp_queue { wait_queue_head_t wait; struct task_struct* owner; struct task_struct* hp_waiter; int count; /* number of waiters + holder */ }; struct kfmlp_semaphore { struct litmus_lock litmus_lock; spinlock_t lock; int num_resources; /* aka k */ struct kfmlp_queue *queues; /* array */ struct kfmlp_queue *shortest_queue; /* pointer to shortest queue */ }; static inline struct kfmlp_semaphore* kfmlp_from_lock(struct litmus_lock* lock) { return container_of(lock, struct kfmlp_semaphore, litmus_lock); } static inline int kfmlp_get_idx(struct kfmlp_semaphore* sem, struct kfmlp_queue* queue) { return (queue - &sem->queues[0]); } static inline struct kfmlp_queue* kfmlp_get_queue(struct kfmlp_semaphore* sem, struct task_struct* holder) { int i; for(i = 0; i < sem->num_resources; ++i) if(sem->queues[i].owner == holder) return(&sem->queues[i]); return(NULL); } /* caller is responsible for locking */ static struct task_struct* kfmlp_find_hp_waiter(struct kfmlp_queue *kqueue, struct task_struct *skip) { struct list_head *pos; struct task_struct *queued, *found = NULL; list_for_each(pos, &kqueue->wait.task_list) { queued = (struct task_struct*) list_entry(pos, wait_queue_t, task_list)->private; /* Compare task prios, find high prio task. */ if (queued != skip && edf_higher_prio(queued, found)) found = queued; } return found; } static inline struct kfmlp_queue* kfmlp_find_shortest( struct kfmlp_semaphore* sem, struct kfmlp_queue* search_start) { // we start our search at search_start instead of at the beginning of the // queue list to load-balance across all resources. struct kfmlp_queue* step = search_start; struct kfmlp_queue* shortest = sem->shortest_queue; do { step = (step+1 != &sem->queues[sem->num_resources]) ? step+1 : &sem->queues[0]; if(step->count < shortest->count) { shortest = step; if(step->count == 0) break; /* can't get any shorter */ } }while(step != search_start); return(shortest); } static struct task_struct* kfmlp_remove_hp_waiter(struct kfmlp_semaphore* sem) { /* must hold sem->lock */ struct kfmlp_queue *my_queue = NULL; struct task_struct *max_hp = NULL; struct list_head *pos; struct task_struct *queued; int i; for(i = 0; i < sem->num_resources; ++i) { if( (sem->queues[i].count > 1) && ((my_queue == NULL) || (edf_higher_prio(sem->queues[i].hp_waiter, my_queue->hp_waiter))) ) { my_queue = &sem->queues[i]; } } if(my_queue) { cedf_domain_t* cluster; max_hp = my_queue->hp_waiter; BUG_ON(!max_hp); TRACE_CUR("queue %d: stealing %s/%d from queue %d\n", kfmlp_get_idx(sem, my_queue), max_hp->comm, max_hp->pid, kfmlp_get_idx(sem, my_queue)); my_queue->hp_waiter = kfmlp_find_hp_waiter(my_queue, max_hp); /* if(my_queue->hp_waiter) TRACE_CUR("queue %d: new hp_waiter is %s/%d\n", kfmlp_get_idx(sem, my_queue), my_queue->hp_waiter->comm, my_queue->hp_waiter->pid); else TRACE_CUR("queue %d: new hp_waiter is %p\n", kfmlp_get_idx(sem, my_queue), NULL); */ cluster = task_cpu_cluster(max_hp); raw_spin_lock(&cluster->cluster_lock); /* if(my_queue->owner) TRACE_CUR("queue %d: owner is %s/%d\n", kfmlp_get_idx(sem, my_queue), my_queue->owner->comm, my_queue->owner->pid); else TRACE_CUR("queue %d: owner is %p\n", kfmlp_get_idx(sem, my_queue), NULL); */ if(tsk_rt(my_queue->owner)->inh_task == max_hp) { __clear_priority_inheritance(my_queue->owner); if(my_queue->hp_waiter != NULL) { __set_priority_inheritance(my_queue->owner, my_queue->hp_waiter); } } raw_spin_unlock(&cluster->cluster_lock); list_for_each(pos, &my_queue->wait.task_list) { queued = (struct task_struct*) list_entry(pos, wait_queue_t, task_list)->private; /* Compare task prios, find high prio task. */ if (queued == max_hp) { /* TRACE_CUR("queue %d: found entry in wait queue. REMOVING!\n", kfmlp_get_idx(sem, my_queue)); */ __remove_wait_queue(&my_queue->wait, list_entry(pos, wait_queue_t, task_list)); break; } } --(my_queue->count); } return(max_hp); } int cedf_kfmlp_lock(struct litmus_lock* l) { struct task_struct* t = current; struct kfmlp_semaphore *sem = kfmlp_from_lock(l); struct kfmlp_queue* my_queue; wait_queue_t wait; unsigned long flags; if (!is_realtime(t)) return -EPERM; spin_lock_irqsave(&sem->lock, flags); my_queue = sem->shortest_queue; if (my_queue->owner) { /* resource is not free => must suspend and wait */ TRACE_CUR("queue %d: Resource is not free => must suspend and wait.\n", kfmlp_get_idx(sem, my_queue)); init_waitqueue_entry(&wait, t); /* FIXME: interruptible would be nice some day */ set_task_state(t, TASK_UNINTERRUPTIBLE); __add_wait_queue_tail_exclusive(&my_queue->wait, &wait); /* check if we need to activate priority inheritance */ if (edf_higher_prio(t, my_queue->hp_waiter)) { my_queue->hp_waiter = t; if (edf_higher_prio(t, my_queue->owner)) { set_priority_inheritance(my_queue->owner, my_queue->hp_waiter); } } ++(my_queue->count); sem->shortest_queue = kfmlp_find_shortest(sem, my_queue); /* release lock before sleeping */ spin_unlock_irqrestore(&sem->lock, flags); /* We depend on the FIFO order. Thus, we don't need to recheck * when we wake up; we are guaranteed to have the lock since * there is only one wake up per release (or steal). */ schedule(); if(my_queue->owner == t) { TRACE_CUR("queue %d: acquired through waiting\n", kfmlp_get_idx(sem, my_queue)); } else { /* this case may happen if our wait entry was stolen between queues. record where we went.*/ my_queue = kfmlp_get_queue(sem, t); BUG_ON(!my_queue); TRACE_CUR("queue %d: acquired through stealing\n", kfmlp_get_idx(sem, my_queue)); } } else { TRACE_CUR("queue %d: acquired immediately\n", kfmlp_get_idx(sem, my_queue)); my_queue->owner = t; ++(my_queue->count); sem->shortest_queue = kfmlp_find_shortest(sem, my_queue); spin_unlock_irqrestore(&sem->lock, flags); } return kfmlp_get_idx(sem, my_queue); } int cedf_kfmlp_unlock(struct litmus_lock* l) { struct task_struct *t = current, *next; struct kfmlp_semaphore *sem = kfmlp_from_lock(l); struct kfmlp_queue *my_queue; unsigned long flags; int err = 0; spin_lock_irqsave(&sem->lock, flags); my_queue = kfmlp_get_queue(sem, t); if (!my_queue) { err = -EINVAL; goto out; } /* check if there are jobs waiting for this resource */ next = __waitqueue_remove_first(&my_queue->wait); if (next) { /* TRACE_CUR("queue %d: ASSIGNING %s/%d as owner - next\n", kfmlp_get_idx(sem, my_queue), next->comm, next->pid); */ /* next becomes the resouce holder */ my_queue->owner = next; --(my_queue->count); if(my_queue->count < sem->shortest_queue->count) { sem->shortest_queue = my_queue; } TRACE_CUR("queue %d: lock ownership passed to %s/%d\n", kfmlp_get_idx(sem, my_queue), next->comm, next->pid); /* determine new hp_waiter if necessary */ if (next == my_queue->hp_waiter) { TRACE_TASK(next, "was highest-prio waiter\n"); /* next has the highest priority --- it doesn't need to * inherit. However, we need to make sure that the * next-highest priority in the queue is reflected in * hp_waiter. */ my_queue->hp_waiter = kfmlp_find_hp_waiter(my_queue, next); if (my_queue->hp_waiter) TRACE_TASK(my_queue->hp_waiter, "queue %d: is new highest-prio waiter\n", kfmlp_get_idx(sem, my_queue)); else TRACE("queue %d: no further waiters\n", kfmlp_get_idx(sem, my_queue)); } else { /* Well, if next is not the highest-priority waiter, * then it ought to inherit the highest-priority * waiter's priority. */ set_priority_inheritance(next, my_queue->hp_waiter); } /* wake up next */ wake_up_process(next); } else { TRACE_CUR("queue %d: looking to steal someone...\n", kfmlp_get_idx(sem, my_queue)); next = kfmlp_remove_hp_waiter(sem); /* returns NULL if nothing to steal */ /* if(next) TRACE_CUR("queue %d: ASSIGNING %s/%d as owner - steal\n", kfmlp_get_idx(sem, my_queue), next->comm, next->pid); */ my_queue->owner = next; if(next) { TRACE_CUR("queue %d: lock ownership passed to %s/%d (which was stolen)\n", kfmlp_get_idx(sem, my_queue), next->comm, next->pid); /* wake up next */ wake_up_process(next); } else { TRACE_CUR("queue %d: no one to steal.\n", kfmlp_get_idx(sem, my_queue)); --(my_queue->count); if(my_queue->count < sem->shortest_queue->count) { sem->shortest_queue = my_queue; } } } /* we lose the benefit of priority inheritance (if any) */ if (tsk_rt(t)->inh_task) clear_priority_inheritance(t); out: spin_unlock_irqrestore(&sem->lock, flags); return err; } int cedf_kfmlp_close(struct litmus_lock* l) { struct task_struct *t = current; struct kfmlp_semaphore *sem = kfmlp_from_lock(l); struct kfmlp_queue *my_queue; unsigned long flags; int owner; spin_lock_irqsave(&sem->lock, flags); my_queue = kfmlp_get_queue(sem, t); owner = (my_queue) ? (my_queue->owner == t) : 0; spin_unlock_irqrestore(&sem->lock, flags); if (owner) cedf_kfmlp_unlock(l); return 0; } void cedf_kfmlp_free(struct litmus_lock* l) { struct kfmlp_semaphore *sem = kfmlp_from_lock(l); kfree(sem->queues); kfree(sem); } static struct litmus_lock_ops cedf_kfmlp_lock_ops = { .close = cedf_kfmlp_close, .lock = cedf_kfmlp_lock, .unlock = cedf_kfmlp_unlock, .deallocate = cedf_kfmlp_free, }; static struct litmus_lock* cedf_new_kfmlp(void* __user arg, int* ret_code) { struct kfmlp_semaphore* sem; int num_resources = 0; int i; if(!access_ok(VERIFY_READ, arg, sizeof(num_resources))) { *ret_code = -EINVAL; return(NULL); } if(__copy_from_user(&num_resources, arg, sizeof(num_resources))) { *ret_code = -EINVAL; return(NULL); } if(num_resources < 1) { *ret_code = -EINVAL; return(NULL); } sem = kmalloc(sizeof(*sem), GFP_KERNEL); if(!sem) { *ret_code = -ENOMEM; return NULL; } sem->queues = kmalloc(sizeof(struct kfmlp_queue)*num_resources, GFP_KERNEL); if(!sem->queues) { kfree(sem); *ret_code = -ENOMEM; return NULL; } sem->litmus_lock.ops = &cedf_kfmlp_lock_ops; spin_lock_init(&sem->lock); sem->num_resources = num_resources; for(i = 0; i < num_resources; ++i) { sem->queues[i].owner = NULL; sem->queues[i].hp_waiter = NULL; init_waitqueue_head(&sem->queues[i].wait); sem->queues[i].count = 0; } sem->shortest_queue = &sem->queues[0]; *ret_code = 0; return &sem->litmus_lock; } /* **** lock constructor **** */ static long cedf_allocate_lock(struct litmus_lock **lock, int type, void* __user arg) { int err = -ENXIO; /* C-EDF currently only supports the FMLP for global resources WITHIN a given cluster. DO NOT USE CROSS-CLUSTER! */ switch (type) { case KFMLP_SEM: *lock = cedf_new_kfmlp(arg, &err); break; }; return err; } #endif // CONFIG_LITMUS_LOCKING /* total number of cluster */ static int num_clusters; /* we do not support cluster of different sizes */ static unsigned int cluster_size; #ifdef VERBOSE_INIT static void print_cluster_topology(cpumask_var_t mask, int cpu) { int chk; char buf[255]; chk = cpulist_scnprintf(buf, 254, mask); buf[chk] = '\0'; printk(KERN_INFO "CPU = %d, shared cpu(s) = %s\n", cpu, buf); } #endif static int clusters_allocated = 0; static void cleanup_cedf(void) { int i; if (clusters_allocated) { for (i = 0; i < num_clusters; i++) { kfree(cedf[i].cpus); kfree(cedf[i].heap_node); free_cpumask_var(cedf[i].cpu_map); } kfree(cedf); } } static long cedf_activate_plugin(void) { int i, j, cpu, ccpu, cpu_count; cpu_entry_t *entry; cpumask_var_t mask; int chk = 0; /* de-allocate old clusters, if any */ cleanup_cedf(); printk(KERN_INFO "C-EDF: Activate Plugin, cluster configuration = %d\n", cluster_config); /* need to get cluster_size first */ if(!zalloc_cpumask_var(&mask, GFP_ATOMIC)) return -ENOMEM; if (unlikely(cluster_config == GLOBAL_CLUSTER)) { cluster_size = num_online_cpus(); } else { chk = get_shared_cpu_map(mask, 0, cluster_config); if (chk) { /* if chk != 0 then it is the max allowed index */ printk(KERN_INFO "C-EDF: Cluster configuration = %d " "is not supported on this hardware.\n", cluster_config); /* User should notice that the configuration failed, so * let's bail out. */ return -EINVAL; } cluster_size = cpumask_weight(mask); } if ((num_online_cpus() % cluster_size) != 0) { /* this can't be right, some cpus are left out */ printk(KERN_ERR "C-EDF: Trying to group %d cpus in %d!\n", num_online_cpus(), cluster_size); return -1; } num_clusters = num_online_cpus() / cluster_size; printk(KERN_INFO "C-EDF: %d cluster(s) of size = %d\n", num_clusters, cluster_size); /* initialize clusters */ cedf = kmalloc(num_clusters * sizeof(cedf_domain_t), GFP_ATOMIC); for (i = 0; i < num_clusters; i++) { cedf[i].cpus = kmalloc(cluster_size * sizeof(cpu_entry_t), GFP_ATOMIC); cedf[i].heap_node = kmalloc( cluster_size * sizeof(struct bheap_node), GFP_ATOMIC); bheap_init(&(cedf[i].cpu_heap)); edf_domain_init(&(cedf[i].domain), NULL, cedf_release_jobs); #ifdef CONFIG_LITMUS_PAI_SOFTIRQD cedf[i].pending_tasklets.head = NULL; cedf[i].pending_tasklets.tail = &(cedf[i].pending_tasklets.head); #endif if(!zalloc_cpumask_var(&cedf[i].cpu_map, GFP_ATOMIC)) return -ENOMEM; #ifdef CONFIG_RELEASE_MASTER cedf[i].domain.release_master = atomic_read(&release_master_cpu); #endif } /* cycle through cluster and add cpus to them */ for (i = 0; i < num_clusters; i++) { for_each_online_cpu(cpu) { /* check if the cpu is already in a cluster */ for (j = 0; j < num_clusters; j++) if (cpumask_test_cpu(cpu, cedf[j].cpu_map)) break; /* if it is in a cluster go to next cpu */ if (j < num_clusters && cpumask_test_cpu(cpu, cedf[j].cpu_map)) continue; /* this cpu isn't in any cluster */ /* get the shared cpus */ if (unlikely(cluster_config == GLOBAL_CLUSTER)) cpumask_copy(mask, cpu_online_mask); else get_shared_cpu_map(mask, cpu, cluster_config); cpumask_copy(cedf[i].cpu_map, mask); #ifdef VERBOSE_INIT print_cluster_topology(mask, cpu); #endif /* add cpus to current cluster and init cpu_entry_t */ cpu_count = 0; for_each_cpu(ccpu, cedf[i].cpu_map) { entry = &per_cpu(cedf_cpu_entries, ccpu); cedf[i].cpus[cpu_count] = entry; atomic_set(&entry->will_schedule, 0); entry->cpu = ccpu; entry->cluster = &cedf[i]; entry->hn = &(cedf[i].heap_node[cpu_count]); bheap_node_init(&entry->hn, entry); cpu_count++; entry->linked = NULL; entry->scheduled = NULL; #ifdef CONFIG_RELEASE_MASTER /* only add CPUs that should schedule jobs */ if (entry->cpu != entry->cluster->domain.release_master) #endif update_cpu_position(entry); } /* done with this cluster */ break; } } #ifdef CONFIG_LITMUS_SOFTIRQD { /* distribute the daemons evenly across the clusters. */ int* affinity = kmalloc(NR_LITMUS_SOFTIRQD * sizeof(int), GFP_ATOMIC); int num_daemons_per_cluster = NR_LITMUS_SOFTIRQD / num_clusters; int left_over = NR_LITMUS_SOFTIRQD % num_clusters; int daemon = 0; for(i = 0; i < num_clusters; ++i) { int num_on_this_cluster = num_daemons_per_cluster; if(left_over) { ++num_on_this_cluster; --left_over; } for(j = 0; j < num_on_this_cluster; ++j) { // first CPU of this cluster affinity[daemon++] = i*cluster_size; } } spawn_klitirqd(affinity); kfree(affinity); } #endif #ifdef CONFIG_LITMUS_NVIDIA init_nvidia_info(); #endif free_cpumask_var(mask); clusters_allocated = 1; return 0; } /* Plugin object */ static struct sched_plugin cedf_plugin __cacheline_aligned_in_smp = { .plugin_name = "C-EDF", .finish_switch = cedf_finish_switch, .tick = cedf_tick, .task_new = cedf_task_new, .complete_job = complete_job, .task_exit = cedf_task_exit, .schedule = cedf_schedule, .task_wake_up = cedf_task_wake_up, .task_block = cedf_task_block, .admit_task = cedf_admit_task, .activate_plugin = cedf_activate_plugin, #ifdef CONFIG_LITMUS_LOCKING .allocate_lock = cedf_allocate_lock, .set_prio_inh = set_priority_inheritance, .clear_prio_inh = clear_priority_inheritance, #endif #ifdef CONFIG_LITMUS_SOFTIRQD .set_prio_inh_klitirqd = set_priority_inheritance_klitirqd, .clear_prio_inh_klitirqd = clear_priority_inheritance_klitirqd, #endif #ifdef CONFIG_LITMUS_PAI_SOFTIRQD .enqueue_pai_tasklet = enqueue_pai_tasklet, .run_tasklets = run_tasklets, #endif }; static struct proc_dir_entry *cluster_file = NULL, *cedf_dir = NULL; static int __init init_cedf(void) { int err, fs; err = register_sched_plugin(&cedf_plugin); if (!err) { fs = make_plugin_proc_dir(&cedf_plugin, &cedf_dir); if (!fs) cluster_file = create_cluster_file(cedf_dir, &cluster_config); else printk(KERN_ERR "Could not allocate C-EDF procfs dir.\n"); } return err; } static void clean_cedf(void) { cleanup_cedf(); if (cluster_file) remove_proc_entry("cluster", cedf_dir); if (cedf_dir) remove_plugin_proc_dir(&cedf_plugin); } module_init(init_cedf); module_exit(clean_cedf);