/* * kernel/edf_common.c * * Common functions for EDF based scheduler. */ #include #include #include #include #include #include #include #ifdef CONFIG_EDF_TIE_BREAK_LATENESS_NORM #include #endif #ifdef CONFIG_EDF_TIE_BREAK_HASH #include static inline long edf_hash(struct task_struct *t) { /* pid is 32 bits, so normally we would shove that into the * upper 32-bits and and put the job number in the bottom * and hash the 64-bit number with hash_64(). Sadly, * in testing, hash_64() doesn't distribute keys were the * upper bits are close together (as would be the case with * pids) and job numbers are equal (as would be the case with * synchronous task sets with all relative deadlines equal). * * A 2006 Linux patch proposed the following solution * (but for some reason it wasn't accepted...). * * At least this workaround works for 32-bit systems as well. */ return hash_32(hash_32((u32)tsk_rt(t)->job_params.job_no, 32) ^ t->pid, 32); } #endif /* edf_higher_prio - returns true if first has a higher EDF priority * than second. Deadline ties are broken by PID. * * both first and second may be NULL */ int edf_higher_prio(struct task_struct* first, struct task_struct* second) { struct task_struct *first_task = first; struct task_struct *second_task = second; /* There is no point in comparing a task to itself. */ if (first && first == second) { TRACE_TASK(first, "WARNING: pointless edf priority comparison.\n"); return 0; } /* check for NULL tasks */ if (!first || !second) return first && !second; #ifdef CONFIG_LITMUS_LOCKING /* Check for inherited priorities. Change task * used for comparison in such a case. */ if (unlikely(first->rt_param.inh_task)) first_task = first->rt_param.inh_task; if (unlikely(second->rt_param.inh_task)) second_task = second->rt_param.inh_task; /* Check for priority boosting. Tie-break by start of boosting. */ if (unlikely(is_priority_boosted(first_task))) { /* first_task is boosted, how about second_task? */ if (!is_priority_boosted(second_task) || lt_before(get_boost_start(first_task), get_boost_start(second_task))) return 1; else return 0; } else if (unlikely(is_priority_boosted(second_task))) /* second_task is boosted, first is not*/ return 0; #endif if (earlier_deadline(first_task, second_task)) { return 1; } else if (get_deadline(first_task) == get_deadline(second_task)) { /* Need to tie break. All methods must set pid_break to 0/1 if * first_task does not have priority over second_task. */ int pid_break; #if defined(CONFIG_EDF_TIE_BREAK_LATENESS) /* Tie break by lateness. Jobs with greater lateness get * priority. This should spread tardiness across all tasks, * especially in task sets where all tasks have the same * period and relative deadlines. */ if (get_lateness(first_task) > get_lateness(second_task)) { return 1; } pid_break = (get_lateness(first_task) == get_lateness(second_task)); #elif defined(CONFIG_EDF_TIE_BREAK_LATENESS_NORM) /* Tie break by lateness, normalized by relative deadline. Jobs with * greater normalized lateness get priority. * * Note: Considered using the algebraically equivalent * lateness(first)*relative_deadline(second) > lateness(second)*relative_deadline(first) * to avoid fixed-point math, but values are prone to overflow if inputs * are on the order of several seconds, even in 64-bit. */ fp_t fnorm = _frac(get_lateness(first_task), get_rt_relative_deadline(first_task)); fp_t snorm = _frac(get_lateness(second_task), get_rt_relative_deadline(second_task)); if (_gt(fnorm, snorm)) { return 1; } pid_break = _eq(fnorm, snorm); #elif defined(CONFIG_EDF_TIE_BREAK_HASH) /* Tie break by comparing hashs of (pid, job#) tuple. There should be * a 50% chance that first_task has a higher priority than second_task. */ long fhash = edf_hash(first_task); long shash = edf_hash(second_task); if (fhash < shash) { return 1; } pid_break = (fhash == shash); #else /* CONFIG_EDF_PID_TIE_BREAK */ pid_break = 1; // fall through to tie-break by pid; #endif /* Tie break by pid */ if(pid_break) { if (first_task->pid < second_task->pid) { return 1; } else if (first_task->pid == second_task->pid) { /* If the PIDs are the same then the task with the * inherited priority wins. */ if (!second->rt_param.inh_task) { return 1; } } } } return 0; /* fall-through. prio(second_task) > prio(first_task) */ } int edf_ready_order(struct bheap_node* a, struct bheap_node* b) { return edf_higher_prio(bheap2task(a), bheap2task(b)); } void edf_domain_init(rt_domain_t* rt, check_resched_needed_t resched, release_jobs_t release) { rt_domain_init(rt, edf_ready_order, resched, release); } /* need_to_preempt - check whether the task t needs to be preempted * call only with irqs disabled and with ready_lock acquired * THIS DOES NOT TAKE NON-PREEMPTIVE SECTIONS INTO ACCOUNT! */ int edf_preemption_needed(rt_domain_t* rt, struct task_struct *t) { /* we need the read lock for edf_ready_queue */ /* no need to preempt if there is nothing pending */ if (!__jobs_pending(rt)) return 0; /* we need to reschedule if t doesn't exist */ if (!t) return 1; /* NOTE: We cannot check for non-preemptibility since we * don't know what address space we're currently in. */ /* make sure to get non-rt stuff out of the way */ return !is_realtime(t) || edf_higher_prio(__next_ready(rt), t); }