/* * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR * policies) */ #ifdef CONFIG_SMP static inline int rt_overloaded(struct rq *rq) { return atomic_read(&rq->rd->rto_count); } static inline void rt_set_overload(struct rq *rq) { if (!rq->online) return; cpu_set(rq->cpu, rq->rd->rto_mask); /* * Make sure the mask is visible before we set * the overload count. That is checked to determine * if we should look at the mask. It would be a shame * if we looked at the mask, but the mask was not * updated yet. */ wmb(); atomic_inc(&rq->rd->rto_count); } static inline void rt_clear_overload(struct rq *rq) { if (!rq->online) return; /* the order here really doesn't matter */ atomic_dec(&rq->rd->rto_count); cpu_clear(rq->cpu, rq->rd->rto_mask); } static void update_rt_migration(struct rq *rq) { if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) { if (!rq->rt.overloaded) { rt_set_overload(rq); rq->rt.overloaded = 1; } } else if (rq->rt.overloaded) { rt_clear_overload(rq); rq->rt.overloaded = 0; } } #endif /* CONFIG_SMP */ static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) { return container_of(rt_se, struct task_struct, rt); } static inline int on_rt_rq(struct sched_rt_entity *rt_se) { return !list_empty(&rt_se->run_list); } #ifdef CONFIG_RT_GROUP_SCHED static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) { if (!rt_rq->tg) return RUNTIME_INF; return rt_rq->rt_runtime; } static inline u64 sched_rt_period(struct rt_rq *rt_rq) { return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); } #define for_each_leaf_rt_rq(rt_rq, rq) \ list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) { return rt_rq->rq; } static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) { return rt_se->rt_rq; } #define for_each_sched_rt_entity(rt_se) \ for (; rt_se; rt_se = rt_se->parent) static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) { return rt_se->my_q; } static void enqueue_rt_entity(struct sched_rt_entity *rt_se); static void dequeue_rt_entity(struct sched_rt_entity *rt_se); static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) { struct sched_rt_entity *rt_se = rt_rq->rt_se; if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) { struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; enqueue_rt_entity(rt_se); if (rt_rq->highest_prio < curr->prio) resched_task(curr); } } static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) { struct sched_rt_entity *rt_se = rt_rq->rt_se; if (rt_se && on_rt_rq(rt_se)) dequeue_rt_entity(rt_se); } static inline int rt_rq_throttled(struct rt_rq *rt_rq) { return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; } static int rt_se_boosted(struct sched_rt_entity *rt_se) { struct rt_rq *rt_rq = group_rt_rq(rt_se); struct task_struct *p; if (rt_rq) return !!rt_rq->rt_nr_boosted; p = rt_task_of(rt_se); return p->prio != p->normal_prio; } #ifdef CONFIG_SMP static inline cpumask_t sched_rt_period_mask(void) { return cpu_rq(smp_processor_id())->rd->span; } #else static inline cpumask_t sched_rt_period_mask(void) { return cpu_online_map; } #endif static inline struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) { return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; } static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) { return &rt_rq->tg->rt_bandwidth; } #else static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) { return rt_rq->rt_runtime; } static inline u64 sched_rt_period(struct rt_rq *rt_rq) { return ktime_to_ns(def_rt_bandwidth.rt_period); } #define for_each_leaf_rt_rq(rt_rq, rq) \ for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) { return container_of(rt_rq, struct rq, rt); } static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) { struct task_struct *p = rt_task_of(rt_se); struct rq *rq = task_rq(p); return &rq->rt; } #define for_each_sched_rt_entity(rt_se) \ for (; rt_se; rt_se = NULL) static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) { return NULL; } static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) { } static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) { } static inline int rt_rq_throttled(struct rt_rq *rt_rq) { return rt_rq->rt_throttled; } static inline cpumask_t sched_rt_period_mask(void) { return cpu_online_map; } static inline struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) { return &cpu_rq(cpu)->rt; } static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) { return &def_rt_bandwidth; } #endif static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) { int i, idle = 1; cpumask_t span; if (rt_b->rt_runtime == RUNTIME_INF) return 1; span = sched_rt_period_mask(); for_each_cpu_mask(i, span) { int enqueue = 0; struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); struct rq *rq = rq_of_rt_rq(rt_rq); spin_lock(&rq->lock); if (rt_rq->rt_time) { u64 runtime; spin_lock(&rt_rq->rt_runtime_lock); runtime = rt_rq->rt_runtime; rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { rt_rq->rt_throttled = 0; enqueue = 1; } if (rt_rq->rt_time || rt_rq->rt_nr_running) idle = 0; spin_unlock(&rt_rq->rt_runtime_lock); } if (enqueue) sched_rt_rq_enqueue(rt_rq); spin_unlock(&rq->lock); } return idle; } #ifdef CONFIG_SMP static int balance_runtime(struct rt_rq *rt_rq) { struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); struct root_domain *rd = cpu_rq(smp_processor_id())->rd; int i, weight, more = 0; u64 rt_period; weight = cpus_weight(rd->span); spin_lock(&rt_b->rt_runtime_lock); rt_period = ktime_to_ns(rt_b->rt_period); for_each_cpu_mask(i, rd->span) { struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); s64 diff; if (iter == rt_rq) continue; spin_lock(&iter->rt_runtime_lock); if (iter->rt_runtime == RUNTIME_INF) goto next; diff = iter->rt_runtime - iter->rt_time; if (diff > 0) { do_div(diff, weight); if (rt_rq->rt_runtime + diff > rt_period) diff = rt_period - rt_rq->rt_runtime; iter->rt_runtime -= diff; rt_rq->rt_runtime += diff; more = 1; if (rt_rq->rt_runtime == rt_period) { spin_unlock(&iter->rt_runtime_lock); break; } } next: spin_unlock(&iter->rt_runtime_lock); } spin_unlock(&rt_b->rt_runtime_lock); return more; } static void __disable_runtime(struct rq *rq) { struct root_domain *rd = rq->rd; struct rt_rq *rt_rq; if (unlikely(!scheduler_running)) return; for_each_leaf_rt_rq(rt_rq, rq) { struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); s64 want; int i; spin_lock(&rt_b->rt_runtime_lock); spin_lock(&rt_rq->rt_runtime_lock); if (rt_rq->rt_runtime == RUNTIME_INF || rt_rq->rt_runtime == rt_b->rt_runtime) goto balanced; spin_unlock(&rt_rq->rt_runtime_lock); want = rt_b->rt_runtime - rt_rq->rt_runtime; for_each_cpu_mask(i, rd->span) { struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); s64 diff; if (iter == rt_rq) continue; spin_lock(&iter->rt_runtime_lock); if (want > 0) { diff = min_t(s64, iter->rt_runtime, want); iter->rt_runtime -= diff; want -= diff; } else { iter->rt_runtime -= want; want -= want; } spin_unlock(&iter->rt_runtime_lock); if (!want) break; } spin_lock(&rt_rq->rt_runtime_lock); BUG_ON(want); balanced: rt_rq->rt_runtime = RUNTIME_INF; spin_unlock(&rt_rq->rt_runtime_lock); spin_unlock(&rt_b->rt_runtime_lock); } } static void disable_runtime(struct rq *rq) { unsigned long flags; spin_lock_irqsave(&rq->lock, flags); __disable_runtime(rq); spin_unlock_irqrestore(&rq->lock, flags); } static void __enable_runtime(struct rq *rq) { struct root_domain *rd = rq->rd; struct rt_rq *rt_rq; if (unlikely(!scheduler_running)) return; for_each_leaf_rt_rq(rt_rq, rq) { struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); spin_lock(&rt_b->rt_runtime_lock); spin_lock(&rt_rq->rt_runtime_lock); rt_rq->rt_runtime = rt_b->rt_runtime; rt_rq->rt_time = 0; spin_unlock(&rt_rq->rt_runtime_lock); spin_unlock(&rt_b->rt_runtime_lock); } } static void enable_runtime(struct rq *rq) { unsigned long flags; spin_lock_irqsave(&rq->lock, flags); __enable_runtime(rq); spin_unlock_irqrestore(&rq->lock, flags); } #endif static inline int rt_se_prio(struct sched_rt_entity *rt_se) { #ifdef CONFIG_RT_GROUP_SCHED struct rt_rq *rt_rq = group_rt_rq(rt_se); if (rt_rq) return rt_rq->highest_prio; #endif return rt_task_of(rt_se)->prio; } static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) { u64 runtime = sched_rt_runtime(rt_rq); if (runtime == RUNTIME_INF) return 0; if (rt_rq->rt_throttled) return rt_rq_throttled(rt_rq); if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq)) return 0; #ifdef CONFIG_SMP if (rt_rq->rt_time > runtime) { spin_unlock(&rt_rq->rt_runtime_lock); balance_runtime(rt_rq); spin_lock(&rt_rq->rt_runtime_lock); runtime = sched_rt_runtime(rt_rq); if (runtime == RUNTIME_INF) return 0; } #endif if (rt_rq->rt_time > runtime) { rt_rq->rt_throttled = 1; if (rt_rq_throttled(rt_rq)) { sched_rt_rq_dequeue(rt_rq); return 1; } } return 0; } /* * Update the current task's runtime statistics. Skip current tasks that * are not in our scheduling class. */ static void update_curr_rt(struct rq *rq) { struct task_struct *curr = rq->curr; struct sched_rt_entity *rt_se = &curr->rt; struct rt_rq *rt_rq = rt_rq_of_se(rt_se); u64 delta_exec; if (!task_has_rt_policy(curr)) return; delta_exec = rq->clock - curr->se.exec_start; if (unlikely((s64)delta_exec < 0)) delta_exec = 0; schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); curr->se.sum_exec_runtime += delta_exec; curr->se.exec_start = rq->clock; cpuacct_charge(curr, delta_exec); for_each_sched_rt_entity(rt_se) { rt_rq = rt_rq_of_se(rt_se); spin_lock(&rt_rq->rt_runtime_lock); rt_rq->rt_time += delta_exec; if (sched_rt_runtime_exceeded(rt_rq)) resched_task(curr); spin_unlock(&rt_rq->rt_runtime_lock); } } static inline void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) { WARN_ON(!rt_prio(rt_se_prio(rt_se))); rt_rq->rt_nr_running++; #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED if (rt_se_prio(rt_se) < rt_rq->highest_prio) { struct rq *rq = rq_of_rt_rq(rt_rq); rt_rq->highest_prio = rt_se_prio(rt_se); #ifdef CONFIG_SMP if (rq->online) cpupri_set(&rq->rd->cpupri, rq->cpu, rt_se_prio(rt_se)); #endif } #endif #ifdef CONFIG_SMP if (rt_se->nr_cpus_allowed > 1) { struct rq *rq = rq_of_rt_rq(rt_rq); rq->rt.rt_nr_migratory++; } update_rt_migration(rq_of_rt_rq(rt_rq)); #endif #ifdef CONFIG_RT_GROUP_SCHED if (rt_se_boosted(rt_se)) rt_rq->rt_nr_boosted++; if (rt_rq->tg) start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); #else start_rt_bandwidth(&def_rt_bandwidth); #endif } static inline void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) { #ifdef CONFIG_SMP int highest_prio = rt_rq->highest_prio; #endif WARN_ON(!rt_prio(rt_se_prio(rt_se))); WARN_ON(!rt_rq->rt_nr_running); rt_rq->rt_nr_running--; #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED if (rt_rq->rt_nr_running) { struct rt_prio_array *array; WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); if (rt_se_prio(rt_se) == rt_rq->highest_prio) { /* recalculate */ array = &rt_rq->active; rt_rq->highest_prio = sched_find_first_bit(array->bitmap); } /* otherwise leave rq->highest prio alone */ } else rt_rq->highest_prio = MAX_RT_PRIO; #endif #ifdef CONFIG_SMP if (rt_se->nr_cpus_allowed > 1) { struct rq *rq = rq_of_rt_rq(rt_rq); rq->rt.rt_nr_migratory--; } if (rt_rq->highest_prio != highest_prio) { struct rq *rq = rq_of_rt_rq(rt_rq); if (rq->online) cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio); } update_rt_migration(rq_of_rt_rq(rt_rq)); #endif /* CONFIG_SMP */ #ifdef CONFIG_RT_GROUP_SCHED if (rt_se_boosted(rt_se)) rt_rq->rt_nr_boosted--; WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); #endif } static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) { struct rt_rq *rt_rq = rt_rq_of_se(rt_se); struct rt_prio_array *array = &rt_rq->active; struct rt_rq *group_rq = group_rt_rq(rt_se); struct list_head *queue = array->queue + rt_se_prio(rt_se); /* * Don't enqueue the group if its throttled, or when empty. * The latter is a consequence of the former when a child group * get throttled and the current group doesn't have any other * active members. */ if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) return; if (rt_se->nr_cpus_allowed == 1) list_add(&rt_se->run_list, queue); else list_add_tail(&rt_se->run_list, queue); __set_bit(rt_se_prio(rt_se), array->bitmap); inc_rt_tasks(rt_se, rt_rq); } static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) { struct rt_rq *rt_rq = rt_rq_of_se(rt_se); struct rt_prio_array *array = &rt_rq->active; list_del_init(&rt_se->run_list); if (list_empty(array->queue + rt_se_prio(rt_se))) __clear_bit(rt_se_prio(rt_se), array->bitmap); dec_rt_tasks(rt_se, rt_rq); } /* * Because the prio of an upper entry depends on the lower * entries, we must remove entries top - down. */ static void dequeue_rt_stack(struct sched_rt_entity *rt_se) { struct sched_rt_entity *back = NULL; for_each_sched_rt_entity(rt_se) { rt_se->back = back; back = rt_se; } for (rt_se = back; rt_se; rt_se = rt_se->back) { if (on_rt_rq(rt_se)) __dequeue_rt_entity(rt_se); } } static void enqueue_rt_entity(struct sched_rt_entity *rt_se) { dequeue_rt_stack(rt_se); for_each_sched_rt_entity(rt_se) __enqueue_rt_entity(rt_se); } static void dequeue_rt_entity(struct sched_rt_entity *rt_se) { dequeue_rt_stack(rt_se); for_each_sched_rt_entity(rt_se) { struct rt_rq *rt_rq = group_rt_rq(rt_se); if (rt_rq && rt_rq->rt_nr_running) __enqueue_rt_entity(rt_se); } } /* * Adding/removing a task to/from a priority array: */ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) { struct sched_rt_entity *rt_se = &p->rt; if (wakeup) rt_se->timeout = 0; enqueue_rt_entity(rt_se); } static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) { struct sched_rt_entity *rt_se = &p->rt; update_curr_rt(rq); dequeue_rt_entity(rt_se); } /* * Put task to the end of the run list without the overhead of dequeue * followed by enqueue. */ static void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) { struct rt_prio_array *array = &rt_rq->active; struct list_head *queue = array->queue + rt_se_prio(rt_se); if (on_rt_rq(rt_se)) { list_del_init(&rt_se->run_list); list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se)); } } static void requeue_task_rt(struct rq *rq, struct task_struct *p) { struct sched_rt_entity *rt_se = &p->rt; struct rt_rq *rt_rq; for_each_sched_rt_entity(rt_se) { rt_rq = rt_rq_of_se(rt_se); requeue_rt_entity(rt_rq, rt_se); } } static void yield_task_rt(struct rq *rq) { requeue_task_rt(rq, rq->curr); } #ifdef CONFIG_SMP static int find_lowest_rq(struct task_struct *task); static int select_task_rq_rt(struct task_struct *p, int sync) { struct rq *rq = task_rq(p); /* * If the current task is an RT task, then * try to see if we can wake this RT task up on another * runqueue. Otherwise simply start this RT task * on its current runqueue. * * We want to avoid overloading runqueues. Even if * the RT task is of higher priority than the current RT task. * RT tasks behave differently than other tasks. If * one gets preempted, we try to push it off to another queue. * So trying to keep a preempting RT task on the same * cache hot CPU will force the running RT task to * a cold CPU. So we waste all the cache for the lower * RT task in hopes of saving some of a RT task * that is just being woken and probably will have * cold cache anyway. */ if (unlikely(rt_task(rq->curr)) && (p->rt.nr_cpus_allowed > 1)) { int cpu = find_lowest_rq(p); return (cpu == -1) ? task_cpu(p) : cpu; } /* * Otherwise, just let it ride on the affined RQ and the * post-schedule router will push the preempted task away */ return task_cpu(p); } #endif /* CONFIG_SMP */ /* * Preempt the current task with a newly woken task if needed: */ static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p) { if (p->prio < rq->curr->prio) { resched_task(rq->curr); return; } #ifdef CONFIG_SMP /* * If: * * - the newly woken task is of equal priority to the current task * - the newly woken task is non-migratable while current is migratable * - current will be preempted on the next reschedule * * we should check to see if current can readily move to a different * cpu. If so, we will reschedule to allow the push logic to try * to move current somewhere else, making room for our non-migratable * task. */ if((p->prio == rq->curr->prio) && p->rt.nr_cpus_allowed == 1 && rq->curr->rt.nr_cpus_allowed != 1) { cpumask_t mask; if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask)) /* * There appears to be other cpus that can accept * current, so lets reschedule to try and push it away */ resched_task(rq->curr); } #endif } static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, struct rt_rq *rt_rq) { struct rt_prio_array *array = &rt_rq->active; struct sched_rt_entity *next = NULL; struct list_head *queue; int idx; idx = sched_find_first_bit(array->bitmap); BUG_ON(idx >= MAX_RT_PRIO); queue = array->queue + idx; next = list_entry(queue->next, struct sched_rt_entity, run_list); return next; } static struct task_struct *pick_next_task_rt(struct rq *rq) { struct sched_rt_entity *rt_se; struct task_struct *p; struct rt_rq *rt_rq; rt_rq = &rq->rt; if (unlikely(!rt_rq->rt_nr_running)) return NULL; if (rt_rq_throttled(rt_rq)) return NULL; do { rt_se = pick_next_rt_entity(rq, rt_rq); BUG_ON(!rt_se); rt_rq = group_rt_rq(rt_se); } while (rt_rq); p = rt_task_of(rt_se); p->se.exec_start = rq->clock; return p; } static void put_prev_task_rt(struct rq *rq, struct task_struct *p) { update_curr_rt(rq); p->se.exec_start = 0; } #ifdef CONFIG_SMP /* Only try algorithms three times */ #define RT_MAX_TRIES 3 static int double_lock_balance(struct rq *this_rq, struct rq *busiest); static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep); static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) { if (!task_running(rq, p) && (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) && (p->rt.nr_cpus_allowed > 1)) return 1; return 0; } /* Return the second highest RT task, NULL otherwise */ static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) { struct task_struct *next = NULL; struct sched_rt_entity *rt_se; struct rt_prio_array *array; struct rt_rq *rt_rq; int idx; for_each_leaf_rt_rq(rt_rq, rq) { array = &rt_rq->active; idx = sched_find_first_bit(array->bitmap); next_idx: if (idx >= MAX_RT_PRIO) continue; if (next && next->prio < idx) continue; list_for_each_entry(rt_se, array->queue + idx, run_list) { struct task_struct *p = rt_task_of(rt_se); if (pick_rt_task(rq, p, cpu)) { next = p; break; } } if (!next) { idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); goto next_idx; } } return next; } static DEFINE_PER_CPU(cpumask_t, local_cpu_mask); static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask) { int first; /* "this_cpu" is cheaper to preempt than a remote processor */ if ((this_cpu != -1) && cpu_isset(this_cpu, *mask)) return this_cpu; first = first_cpu(*mask); if (first != NR_CPUS) return first; return -1; } static int find_lowest_rq(struct task_struct *task) { struct sched_domain *sd; cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask); int this_cpu = smp_processor_id(); int cpu = task_cpu(task); if (task->rt.nr_cpus_allowed == 1) return -1; /* No other targets possible */ if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) return -1; /* No targets found */ /* * At this point we have built a mask of cpus representing the * lowest priority tasks in the system. Now we want to elect * the best one based on our affinity and topology. * * We prioritize the last cpu that the task executed on since * it is most likely cache-hot in that location. */ if (cpu_isset(cpu, *lowest_mask)) return cpu; /* * Otherwise, we consult the sched_domains span maps to figure * out which cpu is logically closest to our hot cache data. */ if (this_cpu == cpu) this_cpu = -1; /* Skip this_cpu opt if the same */ for_each_domain(cpu, sd) { if (sd->flags & SD_WAKE_AFFINE) { cpumask_t domain_mask; int best_cpu; cpus_and(domain_mask, sd->span, *lowest_mask); best_cpu = pick_optimal_cpu(this_cpu, &domain_mask); if (best_cpu != -1) return best_cpu; } } /* * And finally, if there were no matches within the domains * just give the caller *something* to work with from the compatible * locations. */ return pick_optimal_cpu(this_cpu, lowest_mask); } /* Will lock the rq it finds */ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) { struct rq *lowest_rq = NULL; int tries; int cpu; for (tries = 0; tries < RT_MAX_TRIES; tries++) { cpu = find_lowest_rq(task); if ((cpu == -1) || (cpu == rq->cpu)) break; lowest_rq = cpu_rq(cpu); /* if the prio of this runqueue changed, try again */ if (double_lock_balance(rq, lowest_rq)) { /* * We had to unlock the run queue. In * the mean time, task could have * migrated already or had its affinity changed. * Also make sure that it wasn't scheduled on its rq. */ if (unlikely(task_rq(task) != rq || !cpu_isset(lowest_rq->cpu, task->cpus_allowed) || task_running(rq, task) || !task->se.on_rq)) { spin_unlock(&lowest_rq->lock); lowest_rq = NULL; break; } } /* If this rq is still suitable use it. */ if (lowest_rq->rt.highest_prio > task->prio) break; /* try again */ spin_unlock(&lowest_rq->lock); lowest_rq = NULL; } return lowest_rq; } /* * If the current CPU has more than one RT task, see if the non * running task can migrate over to a CPU that is running a task * of lesser priority. */ static int push_rt_task(struct rq *rq) { struct task_struct *next_task; struct rq *lowest_rq; int ret = 0; int paranoid = RT_MAX_TRIES; if (!rq->rt.overloaded) return 0; next_task = pick_next_highest_task_rt(rq, -1); if (!next_task) return 0; retry: if (unlikely(next_task == rq->curr)) { WARN_ON(1); return 0; } /* * It's possible that the next_task slipped in of * higher priority than current. If that's the case * just reschedule current. */ if (unlikely(next_task->prio < rq->curr->prio)) { resched_task(rq->curr); return 0; } /* We might release rq lock */ get_task_struct(next_task); /* find_lock_lowest_rq locks the rq if found */ lowest_rq = find_lock_lowest_rq(next_task, rq); if (!lowest_rq) { struct task_struct *task; /* * find lock_lowest_rq releases rq->lock * so it is possible that next_task has changed. * If it has, then try again. */ task = pick_next_highest_task_rt(rq, -1); if (unlikely(task != next_task) && task && paranoid--) { put_task_struct(next_task); next_task = task; goto retry; } goto out; } deactivate_task(rq, next_task, 0); set_task_cpu(next_task, lowest_rq->cpu); activate_task(lowest_rq, next_task, 0); resched_task(lowest_rq->curr); spin_unlock(&lowest_rq->lock); ret = 1; out: put_task_struct(next_task); return ret; } /* * TODO: Currently we just use the second highest prio task on * the queue, and stop when it can't migrate (or there's * no more RT tasks). There may be a case where a lower * priority RT task has a different affinity than the * higher RT task. In this case the lower RT task could * possibly be able to migrate where as the higher priority * RT task could not. We currently ignore this issue. * Enhancements are welcome! */ static void push_rt_tasks(struct rq *rq) { /* push_rt_task will return true if it moved an RT */ while (push_rt_task(rq)) ; } static int pull_rt_task(struct rq *this_rq) { int this_cpu = this_rq->cpu, ret = 0, cpu; struct task_struct *p, *next; struct rq *src_rq; if (likely(!rt_overloaded(this_rq))) return 0; next = pick_next_task_rt(this_rq); for_each_cpu_mask(cpu, this_rq->rd->rto_mask) { if (this_cpu == cpu) continue; src_rq = cpu_rq(cpu); /* * We can potentially drop this_rq's lock in * double_lock_balance, and another CPU could * steal our next task - hence we must cause * the caller to recalculate the next task * in that case: */ if (double_lock_balance(this_rq, src_rq)) { struct task_struct *old_next = next; next = pick_next_task_rt(this_rq); if (next != old_next) ret = 1; } /* * Are there still pullable RT tasks? */ if (src_rq->rt.rt_nr_running <= 1) goto skip; p = pick_next_highest_task_rt(src_rq, this_cpu); /* * Do we have an RT task that preempts * the to-be-scheduled task? */ if (p && (!next || (p->prio < next->prio))) { WARN_ON(p == src_rq->curr); WARN_ON(!p->se.on_rq); /* * There's a chance that p is higher in priority * than what's currently running on its cpu. * This is just that p is wakeing up and hasn't * had a chance to schedule. We only pull * p if it is lower in priority than the * current task on the run queue or * this_rq next task is lower in prio than * the current task on that rq. */ if (p->prio < src_rq->curr->prio || (next && next->prio < src_rq->curr->prio)) goto skip; ret = 1; deactivate_task(src_rq, p, 0); set_task_cpu(p, this_cpu); activate_task(this_rq, p, 0); /* * We continue with the search, just in * case there's an even higher prio task * in another runqueue. (low likelyhood * but possible) * * Update next so that we won't pick a task * on another cpu with a priority lower (or equal) * than the one we just picked. */ next = p; } skip: spin_unlock(&src_rq->lock); } return ret; } static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) { /* Try to pull RT tasks here if we lower this rq's prio */ if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio) pull_rt_task(rq); } static void post_schedule_rt(struct rq *rq) { /* * If we have more than one rt_task queued, then * see if we can push the other rt_tasks off to other CPUS. * Note we may release the rq lock, and since * the lock was owned by prev, we need to release it * first via finish_lock_switch and then reaquire it here. */ if (unlikely(rq->rt.overloaded)) { spin_lock_irq(&rq->lock); push_rt_tasks(rq); spin_unlock_irq(&rq->lock); } } /* * If we are not running and we are not going to reschedule soon, we should * try to push tasks away now */ static void task_wake_up_rt(struct rq *rq, struct task_struct *p) { if (!task_running(rq, p) && !test_tsk_need_resched(rq->curr) && rq->rt.overloaded) push_rt_tasks(rq); } static unsigned long load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, unsigned long max_load_move, struct sched_domain *sd, enum cpu_idle_type idle, int *all_pinned, int *this_best_prio) { /* don't touch RT tasks */ return 0; } static int move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest, struct sched_domain *sd, enum cpu_idle_type idle) { /* don't touch RT tasks */ return 0; } static void set_cpus_allowed_rt(struct task_struct *p, const cpumask_t *new_mask) { int weight = cpus_weight(*new_mask); BUG_ON(!rt_task(p)); /* * Update the migration status of the RQ if we have an RT task * which is running AND changing its weight value. */ if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { struct rq *rq = task_rq(p); if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { rq->rt.rt_nr_migratory++; } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { BUG_ON(!rq->rt.rt_nr_migratory); rq->rt.rt_nr_migratory--; } update_rt_migration(rq); } p->cpus_allowed = *new_mask; p->rt.nr_cpus_allowed = weight; } /* Assumes rq->lock is held */ static void rq_online_rt(struct rq *rq) { if (rq->rt.overloaded) rt_set_overload(rq); __enable_runtime(rq); cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio); } /* Assumes rq->lock is held */ static void rq_offline_rt(struct rq *rq) { if (rq->rt.overloaded) rt_clear_overload(rq); __disable_runtime(rq); cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); } /* * When switch from the rt queue, we bring ourselves to a position * that we might want to pull RT tasks from other runqueues. */ static void switched_from_rt(struct rq *rq, struct task_struct *p, int running) { /* * If there are other RT tasks then we will reschedule * and the scheduling of the other RT tasks will handle * the balancing. But if we are the last RT task * we may need to handle the pulling of RT tasks * now. */ if (!rq->rt.rt_nr_running) pull_rt_task(rq); } #endif /* CONFIG_SMP */ /* * When switching a task to RT, we may overload the runqueue * with RT tasks. In this case we try to push them off to * other runqueues. */ static void switched_to_rt(struct rq *rq, struct task_struct *p, int running) { int check_resched = 1; /* * If we are already running, then there's nothing * that needs to be done. But if we are not running * we may need to preempt the current running task. * If that current running task is also an RT task * then see if we can move to another run queue. */ if (!running) { #ifdef CONFIG_SMP if (rq->rt.overloaded && push_rt_task(rq) && /* Don't resched if we changed runqueues */ rq != task_rq(p)) check_resched = 0; #endif /* CONFIG_SMP */ if (check_resched && p->prio < rq->curr->prio) resched_task(rq->curr); } } /* * Priority of the task has changed. This may cause * us to initiate a push or pull. */ static void prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio, int running) { if (running) { #ifdef CONFIG_SMP /* * If our priority decreases while running, we * may need to pull tasks to this runqueue. */ if (oldprio < p->prio) pull_rt_task(rq); /* * If there's a higher priority task waiting to run * then reschedule. Note, the above pull_rt_task * can release the rq lock and p could migrate. * Only reschedule if p is still on the same runqueue. */ if (p->prio > rq->rt.highest_prio && rq->curr == p) resched_task(p); #else /* For UP simply resched on drop of prio */ if (oldprio < p->prio) resched_task(p); #endif /* CONFIG_SMP */ } else { /* * This task is not running, but if it is * greater than the current running task * then reschedule. */ if (p->prio < rq->curr->prio) resched_task(rq->curr); } } static void watchdog(struct rq *rq, struct task_struct *p) { unsigned long soft, hard; if (!p->signal) return; soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur; hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max; if (soft != RLIM_INFINITY) { unsigned long next; p->rt.timeout++; next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); if (p->rt.timeout > next) p->it_sched_expires = p->se.sum_exec_runtime; } } static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) { update_curr_rt(rq); watchdog(rq, p); /* * RR tasks need a special form of timeslice management. * FIFO tasks have no timeslices. */ if (p->policy != SCHED_RR) return; if (--p->rt.time_slice) return; p->rt.time_slice = DEF_TIMESLICE; /* * Requeue to the end of queue if we are not the only element * on the queue: */ if (p->rt.run_list.prev != p->rt.run_list.next) { requeue_task_rt(rq, p); set_tsk_need_resched(p); } } static void set_curr_task_rt(struct rq *rq) { struct task_struct *p = rq->curr; p->se.exec_start = rq->clock; } static const struct sched_class rt_sched_class = { .next = &fair_sched_class, .enqueue_task = enqueue_task_rt, .dequeue_task = dequeue_task_rt, .yield_task = yield_task_rt, #ifdef CONFIG_SMP .select_task_rq = select_task_rq_rt, #endif /* CONFIG_SMP */ .check_preempt_curr = check_preempt_curr_rt, .pick_next_task = pick_next_task_rt, .put_prev_task = put_prev_task_rt, #ifdef CONFIG_SMP .load_balance = load_balance_rt, .move_one_task = move_one_task_rt, .set_cpus_allowed = set_cpus_allowed_rt, .rq_online = rq_online_rt, .rq_offline = rq_offline_rt, .pre_schedule = pre_schedule_rt, .post_schedule = post_schedule_rt, .task_wake_up = task_wake_up_rt, .switched_from = switched_from_rt, #endif .set_curr_task = set_curr_task_rt, .task_tick = task_tick_rt, .prio_changed = prio_changed_rt, .switched_to = switched_to_rt, }; #ifdef CONFIG_SCHED_DEBUG extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); static void print_rt_stats(struct seq_file *m, int cpu) { struct rt_rq *rt_rq; rcu_read_lock(); for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu)) print_rt_rq(m, cpu, rt_rq); rcu_read_unlock(); } #endif