/* * sched_clock for unstable cpu clocks * * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> * * Updates and enhancements: * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> * * Based on code by: * Ingo Molnar <mingo@redhat.com> * Guillaume Chazarain <guichaz@gmail.com> * * Create a semi stable clock from a mixture of other events, including: * - gtod * - sched_clock() * - explicit idle events * * We use gtod as base and the unstable clock deltas. The deltas are filtered, * making it monotonic and keeping it within an expected window. * * Furthermore, explicit sleep and wakeup hooks allow us to account for time * that is otherwise invisible (TSC gets stopped). * * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat * consistent between cpus (never more than 2 jiffies difference). */ #include <linux/sched.h> #include <linux/percpu.h> #include <linux/spinlock.h> #include <linux/ktime.h> #include <linux/module.h> /* * Scheduler clock - returns current time in nanosec units. * This is default implementation. * Architectures and sub-architectures can override this. */ unsigned long long __attribute__((weak)) sched_clock(void) { return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ); } static __read_mostly int sched_clock_running; #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK struct sched_clock_data { /* * Raw spinlock - this is a special case: this might be called * from within instrumentation code so we dont want to do any * instrumentation ourselves. */ raw_spinlock_t lock; u64 tick_raw; u64 tick_gtod; u64 clock; }; static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); static inline struct sched_clock_data *this_scd(void) { return &__get_cpu_var(sched_clock_data); } static inline struct sched_clock_data *cpu_sdc(int cpu) { return &per_cpu(sched_clock_data, cpu); } void sched_clock_init(void) { u64 ktime_now = ktime_to_ns(ktime_get()); int cpu; for_each_possible_cpu(cpu) { struct sched_clock_data *scd = cpu_sdc(cpu); scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; scd->tick_raw = 0; scd->tick_gtod = ktime_now; scd->clock = ktime_now; } sched_clock_running = 1; } /* * min,max except they take wrapping into account */ static inline u64 wrap_min(u64 x, u64 y) { return (s64)(x - y) < 0 ? x : y; } static inline u64 wrap_max(u64 x, u64 y) { return (s64)(x - y) > 0 ? x : y; } /* * update the percpu scd from the raw @now value * * - filter out backward motion * - use the GTOD tick value to create a window to filter crazy TSC values */ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) { s64 delta = now - scd->tick_raw; u64 clock, min_clock, max_clock; WARN_ON_ONCE(!irqs_disabled()); if (unlikely(delta < 0)) delta = 0; /* * scd->clock = clamp(scd->tick_gtod + delta, * max(scd->tick_gtod, scd->clock), * scd->tick_gtod + TICK_NSEC); */ clock = scd->tick_gtod + delta; min_clock = wrap_max(scd->tick_gtod, scd->clock); max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC); clock = wrap_max(clock, min_clock); clock = wrap_min(clock, max_clock); scd->clock = clock; return scd->clock; } static void lock_double_clock(struct sched_clock_data *data1, struct sched_clock_data *data2) { if (data1 < data2) { __raw_spin_lock(&data1->lock); __raw_spin_lock(&data2->lock); } else { __raw_spin_lock(&data2->lock); __raw_spin_lock(&data1->lock); } } u64 sched_clock_cpu(int cpu) { struct sched_clock_data *scd = cpu_sdc(cpu); u64 now, clock, this_clock, remote_clock; if (unlikely(!sched_clock_running)) return 0ull; WARN_ON_ONCE(!irqs_disabled()); now = sched_clock(); if (cpu != raw_smp_processor_id()) { struct sched_clock_data *my_scd = this_scd(); lock_double_clock(scd, my_scd); this_clock = __update_sched_clock(my_scd, now); remote_clock = scd->clock; /* * Use the opportunity that we have both locks * taken to couple the two clocks: we take the * larger time as the latest time for both * runqueues. (this creates monotonic movement) */ if (likely((s64)(remote_clock - this_clock) < 0)) { clock = this_clock; scd->clock = clock; } else { /* * Should be rare, but possible: */ clock = remote_clock; my_scd->clock = remote_clock; } __raw_spin_unlock(&my_scd->lock); } else { __raw_spin_lock(&scd->lock); clock = __update_sched_clock(scd, now); } __raw_spin_unlock(&scd->lock); return clock; } void sched_clock_tick(void) { struct sched_clock_data *scd = this_scd(); u64 now, now_gtod; if (unlikely(!sched_clock_running)) return; WARN_ON_ONCE(!irqs_disabled()); now_gtod = ktime_to_ns(ktime_get()); now = sched_clock(); __raw_spin_lock(&scd->lock); scd->tick_raw = now; scd->tick_gtod = now_gtod; __update_sched_clock(scd, now); __raw_spin_unlock(&scd->lock); } /* * We are going deep-idle (irqs are disabled): */ void sched_clock_idle_sleep_event(void) { sched_clock_cpu(smp_processor_id()); } EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); /* * We just idled delta nanoseconds (called with irqs disabled): */ void sched_clock_idle_wakeup_event(u64 delta_ns) { if (timekeeping_suspended) return; sched_clock_tick(); touch_softlockup_watchdog(); } EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ void sched_clock_init(void) { sched_clock_running = 1; } u64 sched_clock_cpu(int cpu) { if (unlikely(!sched_clock_running)) return 0; return sched_clock(); } #endif unsigned long long cpu_clock(int cpu) { unsigned long long clock; unsigned long flags; local_irq_save(flags); clock = sched_clock_cpu(cpu); local_irq_restore(flags); return clock; } EXPORT_SYMBOL_GPL(cpu_clock);