/* * Read-Copy Update mechanism for mutual exclusion (tree-based version) * Internal non-public definitions that provide either classic * or preemptable semantics. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright Red Hat, 2009 * Copyright IBM Corporation, 2009 * * Author: Ingo Molnar <mingo@elte.hu> * Paul E. McKenney <paulmck@linux.vnet.ibm.com> */ #ifdef CONFIG_TREE_PREEMPT_RCU struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state); DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data); /* * Tell them what RCU they are running. */ static inline void rcu_bootup_announce(void) { printk(KERN_INFO "Experimental preemptable hierarchical RCU implementation.\n"); } /* * Return the number of RCU-preempt batches processed thus far * for debug and statistics. */ long rcu_batches_completed_preempt(void) { return rcu_preempt_state.completed; } EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt); /* * Return the number of RCU batches processed thus far for debug & stats. */ long rcu_batches_completed(void) { return rcu_batches_completed_preempt(); } EXPORT_SYMBOL_GPL(rcu_batches_completed); /* * Record a preemptable-RCU quiescent state for the specified CPU. Note * that this just means that the task currently running on the CPU is * not in a quiescent state. There might be any number of tasks blocked * while in an RCU read-side critical section. */ static void rcu_preempt_qs_record(int cpu) { struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); rdp->passed_quiesc = 1; rdp->passed_quiesc_completed = rdp->completed; } /* * We have entered the scheduler or are between softirqs in ksoftirqd. * If we are in an RCU read-side critical section, we need to reflect * that in the state of the rcu_node structure corresponding to this CPU. * Caller must disable hardirqs. */ static void rcu_preempt_qs(int cpu) { struct task_struct *t = current; int phase; struct rcu_data *rdp; struct rcu_node *rnp; if (t->rcu_read_lock_nesting && (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) { /* Possibly blocking in an RCU read-side critical section. */ rdp = rcu_preempt_state.rda[cpu]; rnp = rdp->mynode; spin_lock(&rnp->lock); t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; t->rcu_blocked_node = rnp; /* * If this CPU has already checked in, then this task * will hold up the next grace period rather than the * current grace period. Queue the task accordingly. * If the task is queued for the current grace period * (i.e., this CPU has not yet passed through a quiescent * state for the current grace period), then as long * as that task remains queued, the current grace period * cannot end. */ phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1); list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); smp_mb(); /* Ensure later ctxt swtch seen after above. */ spin_unlock(&rnp->lock); } /* * Either we were not in an RCU read-side critical section to * begin with, or we have now recorded that critical section * globally. Either way, we can now note a quiescent state * for this CPU. Again, if we were in an RCU read-side critical * section, and if that critical section was blocking the current * grace period, then the fact that the task has been enqueued * means that we continue to block the current grace period. */ rcu_preempt_qs_record(cpu); t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS); } /* * Tree-preemptable RCU implementation for rcu_read_lock(). * Just increment ->rcu_read_lock_nesting, shared state will be updated * if we block. */ void __rcu_read_lock(void) { ACCESS_ONCE(current->rcu_read_lock_nesting)++; barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */ } EXPORT_SYMBOL_GPL(__rcu_read_lock); static void rcu_read_unlock_special(struct task_struct *t) { int empty; unsigned long flags; unsigned long mask; struct rcu_node *rnp; int special; /* NMI handlers cannot block and cannot safely manipulate state. */ if (in_nmi()) return; local_irq_save(flags); /* * If RCU core is waiting for this CPU to exit critical section, * let it know that we have done so. */ special = t->rcu_read_unlock_special; if (special & RCU_READ_UNLOCK_NEED_QS) { t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS; } /* Hardware IRQ handlers cannot block. */ if (in_irq()) { local_irq_restore(flags); return; } /* Clean up if blocked during RCU read-side critical section. */ if (special & RCU_READ_UNLOCK_BLOCKED) { t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED; /* * Remove this task from the list it blocked on. The * task can migrate while we acquire the lock, but at * most one time. So at most two passes through loop. */ for (;;) { rnp = t->rcu_blocked_node; spin_lock(&rnp->lock); if (rnp == t->rcu_blocked_node) break; spin_unlock(&rnp->lock); } empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); list_del_init(&t->rcu_node_entry); t->rcu_blocked_node = NULL; /* * If this was the last task on the current list, and if * we aren't waiting on any CPUs, report the quiescent state. * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk() * drop rnp->lock and restore irq. */ if (!empty && rnp->qsmask == 0 && list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) { t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS); if (rnp->parent == NULL) { /* Only one rcu_node in the tree. */ cpu_quiet_msk_finish(&rcu_preempt_state, flags); return; } /* Report up the rest of the hierarchy. */ mask = rnp->grpmask; spin_unlock_irqrestore(&rnp->lock, flags); rnp = rnp->parent; spin_lock_irqsave(&rnp->lock, flags); cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags); return; } spin_unlock(&rnp->lock); } local_irq_restore(flags); } /* * Tree-preemptable RCU implementation for rcu_read_unlock(). * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then * invoke rcu_read_unlock_special() to clean up after a context switch * in an RCU read-side critical section and other special cases. */ void __rcu_read_unlock(void) { struct task_struct *t = current; barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */ if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 && unlikely(ACCESS_ONCE(t->rcu_read_unlock_special))) rcu_read_unlock_special(t); } EXPORT_SYMBOL_GPL(__rcu_read_unlock); #ifdef CONFIG_RCU_CPU_STALL_DETECTOR /* * Scan the current list of tasks blocked within RCU read-side critical * sections, printing out the tid of each. */ static void rcu_print_task_stall(struct rcu_node *rnp) { unsigned long flags; struct list_head *lp; int phase = rnp->gpnum & 0x1; struct task_struct *t; if (!list_empty(&rnp->blocked_tasks[phase])) { spin_lock_irqsave(&rnp->lock, flags); phase = rnp->gpnum & 0x1; /* re-read under lock. */ lp = &rnp->blocked_tasks[phase]; list_for_each_entry(t, lp, rcu_node_entry) printk(" P%d", t->pid); spin_unlock_irqrestore(&rnp->lock, flags); } } #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ /* * Check for preempted RCU readers for the specified rcu_node structure. * If the caller needs a reliable answer, it must hold the rcu_node's * >lock. */ static int rcu_preempted_readers(struct rcu_node *rnp) { return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); } #ifdef CONFIG_HOTPLUG_CPU /* * Handle tasklist migration for case in which all CPUs covered by the * specified rcu_node have gone offline. Move them up to the root * rcu_node. The reason for not just moving them to the immediate * parent is to remove the need for rcu_read_unlock_special() to * make more than two attempts to acquire the target rcu_node's lock. * * The caller must hold rnp->lock with irqs disabled. */ static void rcu_preempt_offline_tasks(struct rcu_state *rsp, struct rcu_node *rnp) { int i; struct list_head *lp; struct list_head *lp_root; struct rcu_node *rnp_root = rcu_get_root(rsp); struct task_struct *tp; if (rnp == rnp_root) { WARN_ONCE(1, "Last CPU thought to be offlined?"); return; /* Shouldn't happen: at least one CPU online. */ } /* * Move tasks up to root rcu_node. Rely on the fact that the * root rcu_node can be at most one ahead of the rest of the * rcu_nodes in terms of gp_num value. This fact allows us to * move the blocked_tasks[] array directly, element by element. */ for (i = 0; i < 2; i++) { lp = &rnp->blocked_tasks[i]; lp_root = &rnp_root->blocked_tasks[i]; while (!list_empty(lp)) { tp = list_entry(lp->next, typeof(*tp), rcu_node_entry); spin_lock(&rnp_root->lock); /* irqs already disabled */ list_del(&tp->rcu_node_entry); tp->rcu_blocked_node = rnp_root; list_add(&tp->rcu_node_entry, lp_root); spin_unlock(&rnp_root->lock); /* irqs remain disabled */ } } } /* * Do CPU-offline processing for preemptable RCU. */ static void rcu_preempt_offline_cpu(int cpu) { __rcu_offline_cpu(cpu, &rcu_preempt_state); } #endif /* #ifdef CONFIG_HOTPLUG_CPU */ /* * Check for a quiescent state from the current CPU. When a task blocks, * the task is recorded in the corresponding CPU's rcu_node structure, * which is checked elsewhere. * * Caller must disable hard irqs. */ static void rcu_preempt_check_callbacks(int cpu) { struct task_struct *t = current; if (t->rcu_read_lock_nesting == 0) { t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS); rcu_preempt_qs_record(cpu); return; } if (per_cpu(rcu_preempt_data, cpu).qs_pending) { if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) { rcu_preempt_qs_record(cpu); t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS; } else if (!(t->rcu_read_unlock_special & RCU_READ_UNLOCK_NEED_QS)) { t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; } } } /* * Process callbacks for preemptable RCU. */ static void rcu_preempt_process_callbacks(void) { __rcu_process_callbacks(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data)); } /* * Queue a preemptable-RCU callback for invocation after a grace period. */ void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) { __call_rcu(head, func, &rcu_preempt_state); } EXPORT_SYMBOL_GPL(call_rcu); /* * Check to see if there is any immediate preemptable-RCU-related work * to be done. */ static int rcu_preempt_pending(int cpu) { return __rcu_pending(&rcu_preempt_state, &per_cpu(rcu_preempt_data, cpu)); } /* * Does preemptable RCU need the CPU to stay out of dynticks mode? */ static int rcu_preempt_needs_cpu(int cpu) { return !!per_cpu(rcu_preempt_data, cpu).nxtlist; } /* * Initialize preemptable RCU's per-CPU data. */ static void __cpuinit rcu_preempt_init_percpu_data(int cpu) { rcu_init_percpu_data(cpu, &rcu_preempt_state, 1); } /* * Check for a task exiting while in a preemptable-RCU read-side * critical section, clean up if so. No need to issue warnings, * as debug_check_no_locks_held() already does this if lockdep * is enabled. */ void exit_rcu(void) { struct task_struct *t = current; if (t->rcu_read_lock_nesting == 0) return; t->rcu_read_lock_nesting = 1; rcu_read_unlock(); } #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ /* * Tell them what RCU they are running. */ static inline void rcu_bootup_announce(void) { printk(KERN_INFO "Hierarchical RCU implementation.\n"); } /* * Return the number of RCU batches processed thus far for debug & stats. */ long rcu_batches_completed(void) { return rcu_batches_completed_sched(); } EXPORT_SYMBOL_GPL(rcu_batches_completed); /* * Because preemptable RCU does not exist, we never have to check for * CPUs being in quiescent states. */ static void rcu_preempt_qs(int cpu) { } #ifdef CONFIG_RCU_CPU_STALL_DETECTOR /* * Because preemptable RCU does not exist, we never have to check for * tasks blocked within RCU read-side critical sections. */ static void rcu_print_task_stall(struct rcu_node *rnp) { } #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ /* * Because preemptable RCU does not exist, there are never any preempted * RCU readers. */ static int rcu_preempted_readers(struct rcu_node *rnp) { return 0; } #ifdef CONFIG_HOTPLUG_CPU /* * Because preemptable RCU does not exist, it never needs to migrate * tasks that were blocked within RCU read-side critical sections. */ static void rcu_preempt_offline_tasks(struct rcu_state *rsp, struct rcu_node *rnp) { } /* * Because preemptable RCU does not exist, it never needs CPU-offline * processing. */ static void rcu_preempt_offline_cpu(int cpu) { } #endif /* #ifdef CONFIG_HOTPLUG_CPU */ /* * Because preemptable RCU does not exist, it never has any callbacks * to check. */ void rcu_preempt_check_callbacks(int cpu) { } /* * Because preemptable RCU does not exist, it never has any callbacks * to process. */ void rcu_preempt_process_callbacks(void) { } /* * In classic RCU, call_rcu() is just call_rcu_sched(). */ void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) { call_rcu_sched(head, func); } EXPORT_SYMBOL_GPL(call_rcu); /* * Because preemptable RCU does not exist, it never has any work to do. */ static int rcu_preempt_pending(int cpu) { return 0; } /* * Because preemptable RCU does not exist, it never needs any CPU. */ static int rcu_preempt_needs_cpu(int cpu) { return 0; } /* * Because preemptable RCU does not exist, there is no per-CPU * data to initialize. */ static void __cpuinit rcu_preempt_init_percpu_data(int cpu) { } #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */