/* Kernel thread helper functions. * Copyright (C) 2004 IBM Corporation, Rusty Russell. * * Creation is done via kthreadd, so that we get a clean environment * even if we're invoked from userspace (think modprobe, hotplug cpu, * etc.). */ #include <linux/sched.h> #include <linux/kthread.h> #include <linux/completion.h> #include <linux/err.h> #include <linux/cpuset.h> #include <linux/unistd.h> #include <linux/file.h> #include <linux/export.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/freezer.h> #include <linux/ptrace.h> #include <linux/uaccess.h> #include <trace/events/sched.h> static DEFINE_SPINLOCK(kthread_create_lock); static LIST_HEAD(kthread_create_list); struct task_struct *kthreadd_task; struct kthread_create_info { /* Information passed to kthread() from kthreadd. */ int (*threadfn)(void *data); void *data; int node; /* Result passed back to kthread_create() from kthreadd. */ struct task_struct *result; struct completion *done; struct list_head list; }; struct kthread { unsigned long flags; unsigned int cpu; void *data; struct completion parked; struct completion exited; }; enum KTHREAD_BITS { KTHREAD_IS_PER_CPU = 0, KTHREAD_SHOULD_STOP, KTHREAD_SHOULD_PARK, KTHREAD_IS_PARKED, }; #define __to_kthread(vfork) \ container_of(vfork, struct kthread, exited) static inline struct kthread *to_kthread(struct task_struct *k) { return __to_kthread(k->vfork_done); } static struct kthread *to_live_kthread(struct task_struct *k) { struct completion *vfork = ACCESS_ONCE(k->vfork_done); if (likely(vfork)) return __to_kthread(vfork); return NULL; } /** * kthread_should_stop - should this kthread return now? * * When someone calls kthread_stop() on your kthread, it will be woken * and this will return true. You should then return, and your return * value will be passed through to kthread_stop(). */ bool kthread_should_stop(void) { return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); } EXPORT_SYMBOL(kthread_should_stop); /** * kthread_should_park - should this kthread park now? * * When someone calls kthread_park() on your kthread, it will be woken * and this will return true. You should then do the necessary * cleanup and call kthread_parkme() * * Similar to kthread_should_stop(), but this keeps the thread alive * and in a park position. kthread_unpark() "restarts" the thread and * calls the thread function again. */ bool kthread_should_park(void) { return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(current)->flags); } /** * kthread_freezable_should_stop - should this freezable kthread return now? * @was_frozen: optional out parameter, indicates whether %current was frozen * * kthread_should_stop() for freezable kthreads, which will enter * refrigerator if necessary. This function is safe from kthread_stop() / * freezer deadlock and freezable kthreads should use this function instead * of calling try_to_freeze() directly. */ bool kthread_freezable_should_stop(bool *was_frozen) { bool frozen = false; might_sleep(); if (unlikely(freezing(current))) frozen = __refrigerator(true); if (was_frozen) *was_frozen = frozen; return kthread_should_stop(); } EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); /** * kthread_data - return data value specified on kthread creation * @task: kthread task in question * * Return the data value specified when kthread @task was created. * The caller is responsible for ensuring the validity of @task when * calling this function. */ void *kthread_data(struct task_struct *task) { return to_kthread(task)->data; } /** * probe_kthread_data - speculative version of kthread_data() * @task: possible kthread task in question * * @task could be a kthread task. Return the data value specified when it * was created if accessible. If @task isn't a kthread task or its data is * inaccessible for any reason, %NULL is returned. This function requires * that @task itself is safe to dereference. */ void *probe_kthread_data(struct task_struct *task) { struct kthread *kthread = to_kthread(task); void *data = NULL; probe_kernel_read(&data, &kthread->data, sizeof(data)); return data; } static void __kthread_parkme(struct kthread *self) { __set_current_state(TASK_PARKED); while (test_bit(KTHREAD_SHOULD_PARK, &self->flags)) { if (!test_and_set_bit(KTHREAD_IS_PARKED, &self->flags)) complete(&self->parked); schedule(); __set_current_state(TASK_PARKED); } clear_bit(KTHREAD_IS_PARKED, &self->flags); __set_current_state(TASK_RUNNING); } void kthread_parkme(void) { __kthread_parkme(to_kthread(current)); } static int kthread(void *_create) { /* Copy data: it's on kthread's stack */ struct kthread_create_info *create = _create; int (*threadfn)(void *data) = create->threadfn; void *data = create->data; struct completion *done; struct kthread self; int ret; self.flags = 0; self.data = data; init_completion(&self.exited); init_completion(&self.parked); current->vfork_done = &self.exited; /* If user was SIGKILLed, I release the structure. */ done = xchg(&create->done, NULL); if (!done) { kfree(create); do_exit(-EINTR); } /* OK, tell user we're spawned, wait for stop or wakeup */ __set_current_state(TASK_UNINTERRUPTIBLE); create->result = current; complete(done); schedule(); ret = -EINTR; if (!test_bit(KTHREAD_SHOULD_STOP, &self.flags)) { __kthread_parkme(&self); ret = threadfn(data); } /* we can't just return, we must preserve "self" on stack */ do_exit(ret); } /* called from do_fork() to get node information for about to be created task */ int tsk_fork_get_node(struct task_struct *tsk) { #ifdef CONFIG_NUMA if (tsk == kthreadd_task) return tsk->pref_node_fork; #endif return numa_node_id(); } static void create_kthread(struct kthread_create_info *create) { int pid; #ifdef CONFIG_NUMA current->pref_node_fork = create->node; #endif /* We want our own signal handler (we take no signals by default). */ pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD); if (pid < 0) { /* If user was SIGKILLed, I release the structure. */ struct completion *done = xchg(&create->done, NULL); if (!done) { kfree(create); return; } create->result = ERR_PTR(pid); complete(done); } } /** * kthread_create_on_node - create a kthread. * @threadfn: the function to run until signal_pending(current). * @data: data ptr for @threadfn. * @node: memory node number. * @namefmt: printf-style name for the thread. * * Description: This helper function creates and names a kernel * thread. The thread will be stopped: use wake_up_process() to start * it. See also kthread_run(). * * If thread is going to be bound on a particular cpu, give its node * in @node, to get NUMA affinity for kthread stack, or else give -1. * When woken, the thread will run @threadfn() with @data as its * argument. @threadfn() can either call do_exit() directly if it is a * standalone thread for which no one will call kthread_stop(), or * return when 'kthread_should_stop()' is true (which means * kthread_stop() has been called). The return value should be zero * or a negative error number; it will be passed to kthread_stop(). * * Returns a task_struct or ERR_PTR(-ENOMEM). */ struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), void *data, int node, const char namefmt[], ...) { DECLARE_COMPLETION_ONSTACK(done); struct task_struct *task; struct kthread_create_info *create = kmalloc(sizeof(*create), GFP_KERNEL); if (!create) return ERR_PTR(-ENOMEM); create->threadfn = threadfn; create->data = data; create->node = node; create->done = &done; spin_lock(&kthread_create_lock); list_add_tail(&create->list, &kthread_create_list); spin_unlock(&kthread_create_lock); wake_up_process(kthreadd_task); /* * Wait for completion in killable state, for I might be chosen by * the OOM killer while kthreadd is trying to allocate memory for * new kernel thread. */ if (unlikely(wait_for_completion_killable(&done))) { /* * If I was SIGKILLed before kthreadd (or new kernel thread) * calls complete(), leave the cleanup of this structure to * that thread. */ if (xchg(&create->done, NULL)) return ERR_PTR(-ENOMEM); /* * kthreadd (or new kernel thread) will call complete() * shortly. */ wait_for_completion(&done); } task = create->result; if (!IS_ERR(task)) { static const struct sched_param param = { .sched_priority = 0 }; va_list args; va_start(args, namefmt); vsnprintf(task->comm, sizeof(task->comm), namefmt, args); va_end(args); /* * root may have changed our (kthreadd's) priority or CPU mask. * The kernel thread should not inherit these properties. */ sched_setscheduler_nocheck(task, SCHED_NORMAL, ¶m); set_cpus_allowed_ptr(task, cpu_all_mask); } kfree(create); return task; } EXPORT_SYMBOL(kthread_create_on_node); static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state) { /* Must have done schedule() in kthread() before we set_task_cpu */ if (!wait_task_inactive(p, state)) { WARN_ON(1); return; } /* It's safe because the task is inactive. */ do_set_cpus_allowed(p, cpumask_of(cpu)); p->flags |= PF_NO_SETAFFINITY; } /** * kthread_bind - bind a just-created kthread to a cpu. * @p: thread created by kthread_create(). * @cpu: cpu (might not be online, must be possible) for @k to run on. * * Description: This function is equivalent to set_cpus_allowed(), * except that @cpu doesn't need to be online, and the thread must be * stopped (i.e., just returned from kthread_create()). */ void kthread_bind(struct task_struct *p, unsigned int cpu) { __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); } EXPORT_SYMBOL(kthread_bind); /** * kthread_create_on_cpu - Create a cpu bound kthread * @threadfn: the function to run until signal_pending(current). * @data: data ptr for @threadfn. * @cpu: The cpu on which the thread should be bound, * @namefmt: printf-style name for the thread. Format is restricted * to "name.*%u". Code fills in cpu number. * * Description: This helper function creates and names a kernel thread * The thread will be woken and put into park mode. */ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), void *data, unsigned int cpu, const char *namefmt) { struct task_struct *p; p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, cpu); if (IS_ERR(p)) return p; set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags); to_kthread(p)->cpu = cpu; /* Park the thread to get it out of TASK_UNINTERRUPTIBLE state */ kthread_park(p); return p; } static void __kthread_unpark(struct task_struct *k, struct kthread *kthread) { clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); /* * We clear the IS_PARKED bit here as we don't wait * until the task has left the park code. So if we'd * park before that happens we'd see the IS_PARKED bit * which might be about to be cleared. */ if (test_and_clear_bit(KTHREAD_IS_PARKED, &kthread->flags)) { if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) __kthread_bind(k, kthread->cpu, TASK_PARKED); wake_up_state(k, TASK_PARKED); } } /** * kthread_unpark - unpark a thread created by kthread_create(). * @k: thread created by kthread_create(). * * Sets kthread_should_park() for @k to return false, wakes it, and * waits for it to return. If the thread is marked percpu then its * bound to the cpu again. */ void kthread_unpark(struct task_struct *k) { struct kthread *kthread = to_live_kthread(k); if (kthread) __kthread_unpark(k, kthread); } /** * kthread_park - park a thread created by kthread_create(). * @k: thread created by kthread_create(). * * Sets kthread_should_park() for @k to return true, wakes it, and * waits for it to return. This can also be called after kthread_create() * instead of calling wake_up_process(): the thread will park without * calling threadfn(). * * Returns 0 if the thread is parked, -ENOSYS if the thread exited. * If called by the kthread itself just the park bit is set. */ int kthread_park(struct task_struct *k) { struct kthread *kthread = to_live_kthread(k); int ret = -ENOSYS; if (kthread) { if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) { set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); if (k != current) { wake_up_process(k); wait_for_completion(&kthread->parked); } } ret = 0; } return ret; } /** * kthread_stop - stop a thread created by kthread_create(). * @k: thread created by kthread_create(). * * Sets kthread_should_stop() for @k to return true, wakes it, and * waits for it to exit. This can also be called after kthread_create() * instead of calling wake_up_process(): the thread will exit without * calling threadfn(). * * If threadfn() may call do_exit() itself, the caller must ensure * task_struct can't go away. * * Returns the result of threadfn(), or %-EINTR if wake_up_process() * was never called. */ int kthread_stop(struct task_struct *k) { struct kthread *kthread; int ret; trace_sched_kthread_stop(k); get_task_struct(k); kthread = to_live_kthread(k); if (kthread) { set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); __kthread_unpark(k, kthread); wake_up_process(k); wait_for_completion(&kthread->exited); } ret = k->exit_code; put_task_struct(k); trace_sched_kthread_stop_ret(ret); return ret; } EXPORT_SYMBOL(kthread_stop); int kthreadd(void *unused) { struct task_struct *tsk = current; /* Setup a clean context for our children to inherit. */ set_task_comm(tsk, "kthreadd"); ignore_signals(tsk); set_cpus_allowed_ptr(tsk, cpu_all_mask); set_mems_allowed(node_states[N_MEMORY]); current->flags |= PF_NOFREEZE; for (;;) { set_current_state(TASK_INTERRUPTIBLE); if (list_empty(&kthread_create_list)) schedule(); __set_current_state(TASK_RUNNING); spin_lock(&kthread_create_lock); while (!list_empty(&kthread_create_list)) { struct kthread_create_info *create; create = list_entry(kthread_create_list.next, struct kthread_create_info, list); list_del_init(&create->list); spin_unlock(&kthread_create_lock); create_kthread(create); spin_lock(&kthread_create_lock); } spin_unlock(&kthread_create_lock); } return 0; } void __init_kthread_worker(struct kthread_worker *worker, const char *name, struct lock_class_key *key) { spin_lock_init(&worker->lock); lockdep_set_class_and_name(&worker->lock, key, name); INIT_LIST_HEAD(&worker->work_list); worker->task = NULL; } EXPORT_SYMBOL_GPL(__init_kthread_worker); /** * kthread_worker_fn - kthread function to process kthread_worker * @worker_ptr: pointer to initialized kthread_worker * * This function can be used as @threadfn to kthread_create() or * kthread_run() with @worker_ptr argument pointing to an initialized * kthread_worker. The started kthread will process work_list until * the it is stopped with kthread_stop(). A kthread can also call * this function directly after extra initialization. * * Different kthreads can be used for the same kthread_worker as long * as there's only one kthread attached to it at any given time. A * kthread_worker without an attached kthread simply collects queued * kthread_works. */ int kthread_worker_fn(void *worker_ptr) { struct kthread_worker *worker = worker_ptr; struct kthread_work *work; WARN_ON(worker->task); worker->task = current; repeat: set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ if (kthread_should_stop()) { __set_current_state(TASK_RUNNING); spin_lock_irq(&worker->lock); worker->task = NULL; spin_unlock_irq(&worker->lock); return 0; } work = NULL; spin_lock_irq(&worker->lock); if (!list_empty(&worker->work_list)) { work = list_first_entry(&worker->work_list, struct kthread_work, node); list_del_init(&work->node); } worker->current_work = work; spin_unlock_irq(&worker->lock); if (work) { __set_current_state(TASK_RUNNING); work->func(work); } else if (!freezing(current)) schedule(); try_to_freeze(); goto repeat; } EXPORT_SYMBOL_GPL(kthread_worker_fn); /* insert @work before @pos in @worker */ static void insert_kthread_work(struct kthread_worker *worker, struct kthread_work *work, struct list_head *pos) { lockdep_assert_held(&worker->lock); list_add_tail(&work->node, pos); work->worker = worker; if (likely(worker->task)) wake_up_process(worker->task); } /** * queue_kthread_work - queue a kthread_work * @worker: target kthread_worker * @work: kthread_work to queue * * Queue @work to work processor @task for async execution. @task * must have been created with kthread_worker_create(). Returns %true * if @work was successfully queued, %false if it was already pending. */ bool queue_kthread_work(struct kthread_worker *worker, struct kthread_work *work) { bool ret = false; unsigned long flags; spin_lock_irqsave(&worker->lock, flags); if (list_empty(&work->node)) { insert_kthread_work(worker, work, &worker->work_list); ret = true; } spin_unlock_irqrestore(&worker->lock, flags); return ret; } EXPORT_SYMBOL_GPL(queue_kthread_work); struct kthread_flush_work { struct kthread_work work; struct completion done; }; static void kthread_flush_work_fn(struct kthread_work *work) { struct kthread_flush_work *fwork = container_of(work, struct kthread_flush_work, work); complete(&fwork->done); } /** * flush_kthread_work - flush a kthread_work * @work: work to flush * * If @work is queued or executing, wait for it to finish execution. */ void flush_kthread_work(struct kthread_work *work) { struct kthread_flush_work fwork = { KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), COMPLETION_INITIALIZER_ONSTACK(fwork.done), }; struct kthread_worker *worker; bool noop = false; retry: worker = work->worker; if (!worker) return; spin_lock_irq(&worker->lock); if (work->worker != worker) { spin_unlock_irq(&worker->lock); goto retry; } if (!list_empty(&work->node)) insert_kthread_work(worker, &fwork.work, work->node.next); else if (worker->current_work == work) insert_kthread_work(worker, &fwork.work, worker->work_list.next); else noop = true; spin_unlock_irq(&worker->lock); if (!noop) wait_for_completion(&fwork.done); } EXPORT_SYMBOL_GPL(flush_kthread_work); /** * flush_kthread_worker - flush all current works on a kthread_worker * @worker: worker to flush * * Wait until all currently executing or pending works on @worker are * finished. */ void flush_kthread_worker(struct kthread_worker *worker) { struct kthread_flush_work fwork = { KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), COMPLETION_INITIALIZER_ONSTACK(fwork.done), }; queue_kthread_work(worker, &fwork.work); wait_for_completion(&fwork.done); } EXPORT_SYMBOL_GPL(flush_kthread_worker);