/* * linux/kernel/hrtimer.c * * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar * * High-resolution kernel timers * * In contrast to the low-resolution timeout API implemented in * kernel/timer.c, hrtimers provide finer resolution and accuracy * depending on system configuration and capabilities. * * These timers are currently used for: * - itimers * - POSIX timers * - nanosleep * - precise in-kernel timing * * Started by: Thomas Gleixner and Ingo Molnar * * Credits: * based on kernel/timer.c * * For licencing details see kernel-base/COPYING */ #include <linux/cpu.h> #include <linux/module.h> #include <linux/percpu.h> #include <linux/hrtimer.h> #include <linux/notifier.h> #include <linux/syscalls.h> #include <linux/interrupt.h> #include <asm/uaccess.h> /** * ktime_get - get the monotonic time in ktime_t format * * returns the time in ktime_t format */ static ktime_t ktime_get(void) { struct timespec now; ktime_get_ts(&now); return timespec_to_ktime(now); } /** * ktime_get_real - get the real (wall-) time in ktime_t format * * returns the time in ktime_t format */ static ktime_t ktime_get_real(void) { struct timespec now; getnstimeofday(&now); return timespec_to_ktime(now); } EXPORT_SYMBOL_GPL(ktime_get_real); /* * The timer bases: */ #define MAX_HRTIMER_BASES 2 static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) = { { .index = CLOCK_REALTIME, .get_time = &ktime_get_real, .resolution = KTIME_REALTIME_RES, }, { .index = CLOCK_MONOTONIC, .get_time = &ktime_get, .resolution = KTIME_MONOTONIC_RES, }, }; /** * ktime_get_ts - get the monotonic clock in timespec format * * @ts: pointer to timespec variable * * The function calculates the monotonic clock from the realtime * clock and the wall_to_monotonic offset and stores the result * in normalized timespec format in the variable pointed to by ts. */ void ktime_get_ts(struct timespec *ts) { struct timespec tomono; unsigned long seq; do { seq = read_seqbegin(&xtime_lock); getnstimeofday(ts); tomono = wall_to_monotonic; } while (read_seqretry(&xtime_lock, seq)); set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, ts->tv_nsec + tomono.tv_nsec); } EXPORT_SYMBOL_GPL(ktime_get_ts); /* * Functions and macros which are different for UP/SMP systems are kept in a * single place */ #ifdef CONFIG_SMP #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0) /* * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock * means that all timers which are tied to this base via timer->base are * locked, and the base itself is locked too. * * So __run_timers/migrate_timers can safely modify all timers which could * be found on the lists/queues. * * When the timer's base is locked, and the timer removed from list, it is * possible to set timer->base = NULL and drop the lock: the timer remains * locked. */ static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) { struct hrtimer_base *base; for (;;) { base = timer->base; if (likely(base != NULL)) { spin_lock_irqsave(&base->lock, *flags); if (likely(base == timer->base)) return base; /* The timer has migrated to another CPU: */ spin_unlock_irqrestore(&base->lock, *flags); } cpu_relax(); } } /* * Switch the timer base to the current CPU when possible. */ static inline struct hrtimer_base * switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base) { struct hrtimer_base *new_base; new_base = &__get_cpu_var(hrtimer_bases[base->index]); if (base != new_base) { /* * We are trying to schedule the timer on the local CPU. * However we can't change timer's base while it is running, * so we keep it on the same CPU. No hassle vs. reprogramming * the event source in the high resolution case. The softirq * code will take care of this when the timer function has * completed. There is no conflict as we hold the lock until * the timer is enqueued. */ if (unlikely(base->curr_timer == timer)) return base; /* See the comment in lock_timer_base() */ timer->base = NULL; spin_unlock(&base->lock); spin_lock(&new_base->lock); timer->base = new_base; } return new_base; } #else /* CONFIG_SMP */ #define set_curr_timer(b, t) do { } while (0) static inline struct hrtimer_base * lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) { struct hrtimer_base *base = timer->base; spin_lock_irqsave(&base->lock, *flags); return base; } #define switch_hrtimer_base(t, b) (b) #endif /* !CONFIG_SMP */ /* * Functions for the union type storage format of ktime_t which are * too large for inlining: */ #if BITS_PER_LONG < 64 # ifndef CONFIG_KTIME_SCALAR /** * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable * * @kt: addend * @nsec: the scalar nsec value to add * * Returns the sum of kt and nsec in ktime_t format */ ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) { ktime_t tmp; if (likely(nsec < NSEC_PER_SEC)) { tmp.tv64 = nsec; } else { unsigned long rem = do_div(nsec, NSEC_PER_SEC); tmp = ktime_set((long)nsec, rem); } return ktime_add(kt, tmp); } #else /* CONFIG_KTIME_SCALAR */ # endif /* !CONFIG_KTIME_SCALAR */ /* * Divide a ktime value by a nanosecond value */ static unsigned long ktime_divns(const ktime_t kt, nsec_t div) { u64 dclc, inc, dns; int sft = 0; dclc = dns = ktime_to_ns(kt); inc = div; /* Make sure the divisor is less than 2^32: */ while (div >> 32) { sft++; div >>= 1; } dclc >>= sft; do_div(dclc, (unsigned long) div); return (unsigned long) dclc; } #else /* BITS_PER_LONG < 64 */ # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div)) #endif /* BITS_PER_LONG >= 64 */ /* * Counterpart to lock_timer_base above: */ static inline void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) { spin_unlock_irqrestore(&timer->base->lock, *flags); } /** * hrtimer_forward - forward the timer expiry * * @timer: hrtimer to forward * @interval: the interval to forward * * Forward the timer expiry so it will expire in the future. * The number of overruns is added to the overrun field. */ unsigned long hrtimer_forward(struct hrtimer *timer, const ktime_t interval) { unsigned long orun = 1; ktime_t delta, now; now = timer->base->get_time(); delta = ktime_sub(now, timer->expires); if (delta.tv64 < 0) return 0; if (unlikely(delta.tv64 >= interval.tv64)) { nsec_t incr = ktime_to_ns(interval); orun = ktime_divns(delta, incr); timer->expires = ktime_add_ns(timer->expires, incr * orun); if (timer->expires.tv64 > now.tv64) return orun; /* * This (and the ktime_add() below) is the * correction for exact: */ orun++; } timer->expires = ktime_add(timer->expires, interval); return orun; } /* * enqueue_hrtimer - internal function to (re)start a timer * * The timer is inserted in expiry order. Insertion into the * red black tree is O(log(n)). Must hold the base lock. */ static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) { struct rb_node **link = &base->active.rb_node; struct rb_node *parent = NULL; struct hrtimer *entry; /* * Find the right place in the rbtree: */ while (*link) { parent = *link; entry = rb_entry(parent, struct hrtimer, node); /* * We dont care about collisions. Nodes with * the same expiry time stay together. */ if (timer->expires.tv64 < entry->expires.tv64) link = &(*link)->rb_left; else link = &(*link)->rb_right; } /* * Insert the timer to the rbtree and check whether it * replaces the first pending timer */ rb_link_node(&timer->node, parent, link); rb_insert_color(&timer->node, &base->active); timer->state = HRTIMER_PENDING; if (!base->first || timer->expires.tv64 < rb_entry(base->first, struct hrtimer, node)->expires.tv64) base->first = &timer->node; } /* * __remove_hrtimer - internal function to remove a timer * * Caller must hold the base lock. */ static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) { /* * Remove the timer from the rbtree and replace the * first entry pointer if necessary. */ if (base->first == &timer->node) base->first = rb_next(&timer->node); rb_erase(&timer->node, &base->active); } /* * remove hrtimer, called with base lock held */ static inline int remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) { if (hrtimer_active(timer)) { __remove_hrtimer(timer, base); timer->state = HRTIMER_INACTIVE; return 1; } return 0; } /** * hrtimer_start - (re)start an relative timer on the current CPU * * @timer: the timer to be added * @tim: expiry time * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) * * Returns: * 0 on success * 1 when the timer was active */ int hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) { struct hrtimer_base *base, *new_base; unsigned long flags; int ret; base = lock_hrtimer_base(timer, &flags); /* Remove an active timer from the queue: */ ret = remove_hrtimer(timer, base); /* Switch the timer base, if necessary: */ new_base = switch_hrtimer_base(timer, base); if (mode == HRTIMER_REL) tim = ktime_add(tim, new_base->get_time()); timer->expires = tim; enqueue_hrtimer(timer, new_base); unlock_hrtimer_base(timer, &flags); return ret; } /** * hrtimer_try_to_cancel - try to deactivate a timer * * @timer: hrtimer to stop * * Returns: * 0 when the timer was not active * 1 when the timer was active * -1 when the timer is currently excuting the callback function and * can not be stopped */ int hrtimer_try_to_cancel(struct hrtimer *timer) { struct hrtimer_base *base; unsigned long flags; int ret = -1; base = lock_hrtimer_base(timer, &flags); if (base->curr_timer != timer) ret = remove_hrtimer(timer, base); unlock_hrtimer_base(timer, &flags); return ret; } /** * hrtimer_cancel - cancel a timer and wait for the handler to finish. * * @timer: the timer to be cancelled * * Returns: * 0 when the timer was not active * 1 when the timer was active */ int hrtimer_cancel(struct hrtimer *timer) { for (;;) { int ret = hrtimer_try_to_cancel(timer); if (ret >= 0) return ret; } } /** * hrtimer_get_remaining - get remaining time for the timer * * @timer: the timer to read */ ktime_t hrtimer_get_remaining(const struct hrtimer *timer) { struct hrtimer_base *base; unsigned long flags; ktime_t rem; base = lock_hrtimer_base(timer, &flags); rem = ktime_sub(timer->expires, timer->base->get_time()); unlock_hrtimer_base(timer, &flags); return rem; } /** * hrtimer_rebase - rebase an initialized hrtimer to a different base * * @timer: the timer to be rebased * @clock_id: the clock to be used */ void hrtimer_rebase(struct hrtimer *timer, const clockid_t clock_id) { struct hrtimer_base *bases; bases = per_cpu(hrtimer_bases, raw_smp_processor_id()); timer->base = &bases[clock_id]; } /** * hrtimer_init - initialize a timer to the given clock * * @timer: the timer to be initialized * @clock_id: the clock to be used */ void hrtimer_init(struct hrtimer *timer, const clockid_t clock_id) { memset(timer, 0, sizeof(struct hrtimer)); hrtimer_rebase(timer, clock_id); } /** * hrtimer_get_res - get the timer resolution for a clock * * @which_clock: which clock to query * @tp: pointer to timespec variable to store the resolution * * Store the resolution of the clock selected by which_clock in the * variable pointed to by tp. */ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) { struct hrtimer_base *bases; bases = per_cpu(hrtimer_bases, raw_smp_processor_id()); *tp = ktime_to_timespec(bases[which_clock].resolution); return 0; } /* * Expire the per base hrtimer-queue: */ static inline void run_hrtimer_queue(struct hrtimer_base *base) { ktime_t now = base->get_time(); struct rb_node *node; spin_lock_irq(&base->lock); while ((node = base->first)) { struct hrtimer *timer; int (*fn)(void *); int restart; void *data; timer = rb_entry(node, struct hrtimer, node); if (now.tv64 <= timer->expires.tv64) break; fn = timer->function; data = timer->data; set_curr_timer(base, timer); __remove_hrtimer(timer, base); spin_unlock_irq(&base->lock); /* * fn == NULL is special case for the simplest timer * variant - wake up process and do not restart: */ if (!fn) { wake_up_process(data); restart = HRTIMER_NORESTART; } else restart = fn(data); spin_lock_irq(&base->lock); if (restart == HRTIMER_RESTART) enqueue_hrtimer(timer, base); else timer->state = HRTIMER_EXPIRED; } set_curr_timer(base, NULL); spin_unlock_irq(&base->lock); } /* * Called from timer softirq every jiffy, expire hrtimers: */ void hrtimer_run_queues(void) { struct hrtimer_base *base = __get_cpu_var(hrtimer_bases); int i; for (i = 0; i < MAX_HRTIMER_BASES; i++) run_hrtimer_queue(&base[i]); } /* * Sleep related functions: */ /** * schedule_hrtimer - sleep until timeout * * @timer: hrtimer variable initialized with the correct clock base * @mode: timeout value is abs/rel * * Make the current task sleep until @timeout is * elapsed. * * You can set the task state as follows - * * %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to * pass before the routine returns. The routine will return 0 * * %TASK_INTERRUPTIBLE - the routine may return early if a signal is * delivered to the current task. In this case the remaining time * will be returned * * The current task state is guaranteed to be TASK_RUNNING when this * routine returns. */ static ktime_t __sched schedule_hrtimer(struct hrtimer *timer, const enum hrtimer_mode mode) { /* fn stays NULL, meaning single-shot wakeup: */ timer->data = current; hrtimer_start(timer, timer->expires, mode); schedule(); hrtimer_cancel(timer); /* Return the remaining time: */ if (timer->state != HRTIMER_EXPIRED) return ktime_sub(timer->expires, timer->base->get_time()); else return (ktime_t) {.tv64 = 0 }; } static inline ktime_t __sched schedule_hrtimer_interruptible(struct hrtimer *timer, const enum hrtimer_mode mode) { set_current_state(TASK_INTERRUPTIBLE); return schedule_hrtimer(timer, mode); } static long __sched nanosleep_restart(struct restart_block *restart, clockid_t clockid) { struct timespec __user *rmtp, tu; void *rfn_save = restart->fn; struct hrtimer timer; ktime_t rem; restart->fn = do_no_restart_syscall; hrtimer_init(&timer, clockid); timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0; rem = schedule_hrtimer_interruptible(&timer, HRTIMER_ABS); if (rem.tv64 <= 0) return 0; rmtp = (struct timespec __user *) restart->arg2; tu = ktime_to_timespec(rem); if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu))) return -EFAULT; restart->fn = rfn_save; /* The other values in restart are already filled in */ return -ERESTART_RESTARTBLOCK; } static long __sched nanosleep_restart_mono(struct restart_block *restart) { return nanosleep_restart(restart, CLOCK_MONOTONIC); } static long __sched nanosleep_restart_real(struct restart_block *restart) { return nanosleep_restart(restart, CLOCK_REALTIME); } long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, const enum hrtimer_mode mode, const clockid_t clockid) { struct restart_block *restart; struct hrtimer timer; struct timespec tu; ktime_t rem; hrtimer_init(&timer, clockid); timer.expires = timespec_to_ktime(*rqtp); rem = schedule_hrtimer_interruptible(&timer, mode); if (rem.tv64 <= 0) return 0; /* Absolute timers do not update the rmtp value: */ if (mode == HRTIMER_ABS) return -ERESTARTNOHAND; tu = ktime_to_timespec(rem); if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu))) return -EFAULT; restart = ¤t_thread_info()->restart_block; restart->fn = (clockid == CLOCK_MONOTONIC) ? nanosleep_restart_mono : nanosleep_restart_real; restart->arg0 = timer.expires.tv64 & 0xFFFFFFFF; restart->arg1 = timer.expires.tv64 >> 32; restart->arg2 = (unsigned long) rmtp; return -ERESTART_RESTARTBLOCK; } asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) { struct timespec tu; if (copy_from_user(&tu, rqtp, sizeof(tu))) return -EFAULT; if (!timespec_valid(&tu)) return -EINVAL; return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC); } /* * Functions related to boot-time initialization: */ static void __devinit init_hrtimers_cpu(int cpu) { struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu); int i; for (i = 0; i < MAX_HRTIMER_BASES; i++) { spin_lock_init(&base->lock); base++; } } #ifdef CONFIG_HOTPLUG_CPU static void migrate_hrtimer_list(struct hrtimer_base *old_base, struct hrtimer_base *new_base) { struct hrtimer *timer; struct rb_node *node; while ((node = rb_first(&old_base->active))) { timer = rb_entry(node, struct hrtimer, node); __remove_hrtimer(timer, old_base); timer->base = new_base; enqueue_hrtimer(timer, new_base); } } static void migrate_hrtimers(int cpu) { struct hrtimer_base *old_base, *new_base; int i; BUG_ON(cpu_online(cpu)); old_base = per_cpu(hrtimer_bases, cpu); new_base = get_cpu_var(hrtimer_bases); local_irq_disable(); for (i = 0; i < MAX_HRTIMER_BASES; i++) { spin_lock(&new_base->lock); spin_lock(&old_base->lock); BUG_ON(old_base->curr_timer); migrate_hrtimer_list(old_base, new_base); spin_unlock(&old_base->lock); spin_unlock(&new_base->lock); old_base++; new_base++; } local_irq_enable(); put_cpu_var(hrtimer_bases); } #endif /* CONFIG_HOTPLUG_CPU */ static int __devinit hrtimer_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { long cpu = (long)hcpu; switch (action) { case CPU_UP_PREPARE: init_hrtimers_cpu(cpu); break; #ifdef CONFIG_HOTPLUG_CPU case CPU_DEAD: migrate_hrtimers(cpu); break; #endif default: break; } return NOTIFY_OK; } static struct notifier_block __devinitdata hrtimers_nb = { .notifier_call = hrtimer_cpu_notify, }; void __init hrtimers_init(void) { hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, (void *)(long)smp_processor_id()); register_cpu_notifier(&hrtimers_nb); }