#ifndef _LINUX_SCHED_H #define _LINUX_SCHED_H #include /* For AT_VECTOR_SIZE */ /* * cloning flags: */ #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ #define CLONE_VM 0x00000100 /* set if VM shared between processes */ #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ #define CLONE_THREAD 0x00010000 /* Same thread group? */ #define CLONE_NEWNS 0x00020000 /* New namespace group? */ #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ #define CLONE_NEWIPC 0x08000000 /* New ipcs */ /* * Scheduling policies */ #define SCHED_NORMAL 0 #define SCHED_FIFO 1 #define SCHED_RR 2 #define SCHED_BATCH 3 #ifdef __KERNEL__ struct sched_param { int sched_priority; }; #include /* for HZ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct exec_domain; struct futex_pi_state; struct bio; /* * List of flags we want to share for kernel threads, * if only because they are not used by them anyway. */ #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) /* * These are the constant used to fake the fixed-point load-average * counting. Some notes: * - 11 bit fractions expand to 22 bits by the multiplies: this gives * a load-average precision of 10 bits integer + 11 bits fractional * - if you want to count load-averages more often, you need more * precision, or rounding will get you. With 2-second counting freq, * the EXP_n values would be 1981, 2034 and 2043 if still using only * 11 bit fractions. */ extern unsigned long avenrun[]; /* Load averages */ #define FSHIFT 11 /* nr of bits of precision */ #define FIXED_1 (1<>= FSHIFT; extern unsigned long total_forks; extern int nr_threads; DECLARE_PER_CPU(unsigned long, process_counts); extern int nr_processes(void); extern unsigned long nr_running(void); extern unsigned long nr_uninterruptible(void); extern unsigned long nr_active(void); extern unsigned long nr_iowait(void); extern unsigned long weighted_cpuload(const int cpu); /* * Task state bitmask. NOTE! These bits are also * encoded in fs/proc/array.c: get_task_state(). * * We have two separate sets of flags: task->state * is about runnability, while task->exit_state are * about the task exiting. Confusing, but this way * modifying one set can't modify the other one by * mistake. */ #define TASK_RUNNING 0 #define TASK_INTERRUPTIBLE 1 #define TASK_UNINTERRUPTIBLE 2 #define TASK_STOPPED 4 #define TASK_TRACED 8 /* in tsk->exit_state */ #define EXIT_ZOMBIE 16 #define EXIT_DEAD 32 /* in tsk->state again */ #define TASK_NONINTERACTIVE 64 #define TASK_DEAD 128 #define __set_task_state(tsk, state_value) \ do { (tsk)->state = (state_value); } while (0) #define set_task_state(tsk, state_value) \ set_mb((tsk)->state, (state_value)) /* * set_current_state() includes a barrier so that the write of current->state * is correctly serialised wrt the caller's subsequent test of whether to * actually sleep: * * set_current_state(TASK_UNINTERRUPTIBLE); * if (do_i_need_to_sleep()) * schedule(); * * If the caller does not need such serialisation then use __set_current_state() */ #define __set_current_state(state_value) \ do { current->state = (state_value); } while (0) #define set_current_state(state_value) \ set_mb(current->state, (state_value)) /* Task command name length */ #define TASK_COMM_LEN 16 #include /* * This serializes "schedule()" and also protects * the run-queue from deletions/modifications (but * _adding_ to the beginning of the run-queue has * a separate lock). */ extern rwlock_t tasklist_lock; extern spinlock_t mmlist_lock; struct task_struct; extern void sched_init(void); extern void sched_init_smp(void); extern void init_idle(struct task_struct *idle, int cpu); extern cpumask_t nohz_cpu_mask; #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) extern int select_nohz_load_balancer(int cpu); #else static inline int select_nohz_load_balancer(int cpu) { return 0; } #endif /* * Only dump TASK_* tasks. (0 for all tasks) */ extern void show_state_filter(unsigned long state_filter); static inline void show_state(void) { show_state_filter(0); } extern void show_regs(struct pt_regs *); /* * TASK is a pointer to the task whose backtrace we want to see (or NULL for current * task), SP is the stack pointer of the first frame that should be shown in the back * trace (or NULL if the entire call-chain of the task should be shown). */ extern void show_stack(struct task_struct *task, unsigned long *sp); void io_schedule(void); long io_schedule_timeout(long timeout); extern void cpu_init (void); extern void trap_init(void); extern void update_process_times(int user); extern void scheduler_tick(void); #ifdef CONFIG_DETECT_SOFTLOCKUP extern void softlockup_tick(void); extern void spawn_softlockup_task(void); extern void touch_softlockup_watchdog(void); extern void touch_all_softlockup_watchdogs(void); #else static inline void softlockup_tick(void) { } static inline void spawn_softlockup_task(void) { } static inline void touch_softlockup_watchdog(void) { } static inline void touch_all_softlockup_watchdogs(void) { } #endif /* Attach to any functions which should be ignored in wchan output. */ #define __sched __attribute__((__section__(".sched.text"))) /* Is this address in the __sched functions? */ extern int in_sched_functions(unsigned long addr); #define MAX_SCHEDULE_TIMEOUT LONG_MAX extern signed long FASTCALL(schedule_timeout(signed long timeout)); extern signed long schedule_timeout_interruptible(signed long timeout); extern signed long schedule_timeout_uninterruptible(signed long timeout); asmlinkage void schedule(void); struct nsproxy; /* Maximum number of active map areas.. This is a random (large) number */ #define DEFAULT_MAX_MAP_COUNT 65536 extern int sysctl_max_map_count; #include extern unsigned long arch_get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); extern void arch_unmap_area(struct mm_struct *, unsigned long); extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS /* * The mm counters are not protected by its page_table_lock, * so must be incremented atomically. */ #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) typedef atomic_long_t mm_counter_t; #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ /* * The mm counters are protected by its page_table_lock, * so can be incremented directly. */ #define set_mm_counter(mm, member, value) (mm)->_##member = (value) #define get_mm_counter(mm, member) ((mm)->_##member) #define add_mm_counter(mm, member, value) (mm)->_##member += (value) #define inc_mm_counter(mm, member) (mm)->_##member++ #define dec_mm_counter(mm, member) (mm)->_##member-- typedef unsigned long mm_counter_t; #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ #define get_mm_rss(mm) \ (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) #define update_hiwater_rss(mm) do { \ unsigned long _rss = get_mm_rss(mm); \ if ((mm)->hiwater_rss < _rss) \ (mm)->hiwater_rss = _rss; \ } while (0) #define update_hiwater_vm(mm) do { \ if ((mm)->hiwater_vm < (mm)->total_vm) \ (mm)->hiwater_vm = (mm)->total_vm; \ } while (0) struct mm_struct { struct vm_area_struct * mmap; /* list of VMAs */ struct rb_root mm_rb; struct vm_area_struct * mmap_cache; /* last find_vma result */ unsigned long (*get_unmapped_area) (struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); void (*unmap_area) (struct mm_struct *mm, unsigned long addr); unsigned long mmap_base; /* base of mmap area */ unsigned long task_size; /* size of task vm space */ unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ pgd_t * pgd; atomic_t mm_users; /* How many users with user space? */ atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ int map_count; /* number of VMAs */ struct rw_semaphore mmap_sem; spinlock_t page_table_lock; /* Protects page tables and some counters */ struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung * together off init_mm.mmlist, and are protected * by mmlist_lock */ /* Special counters, in some configurations protected by the * page_table_lock, in other configurations by being atomic. */ mm_counter_t _file_rss; mm_counter_t _anon_rss; unsigned long hiwater_rss; /* High-watermark of RSS usage */ unsigned long hiwater_vm; /* High-water virtual memory usage */ unsigned long total_vm, locked_vm, shared_vm, exec_vm; unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; unsigned long start_code, end_code, start_data, end_data; unsigned long start_brk, brk, start_stack; unsigned long arg_start, arg_end, env_start, env_end; unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ cpumask_t cpu_vm_mask; /* Architecture-specific MM context */ mm_context_t context; /* Swap token stuff */ /* * Last value of global fault stamp as seen by this process. * In other words, this value gives an indication of how long * it has been since this task got the token. * Look at mm/thrash.c */ unsigned int faultstamp; unsigned int token_priority; unsigned int last_interval; unsigned char dumpable:2; /* coredumping support */ int core_waiters; struct completion *core_startup_done, core_done; /* aio bits */ rwlock_t ioctx_list_lock; struct kioctx *ioctx_list; }; struct sighand_struct { atomic_t count; struct k_sigaction action[_NSIG]; spinlock_t siglock; struct list_head signalfd_list; }; struct pacct_struct { int ac_flag; long ac_exitcode; unsigned long ac_mem; cputime_t ac_utime, ac_stime; unsigned long ac_minflt, ac_majflt; }; /* * NOTE! "signal_struct" does not have it's own * locking, because a shared signal_struct always * implies a shared sighand_struct, so locking * sighand_struct is always a proper superset of * the locking of signal_struct. */ struct signal_struct { atomic_t count; atomic_t live; wait_queue_head_t wait_chldexit; /* for wait4() */ /* current thread group signal load-balancing target: */ struct task_struct *curr_target; /* shared signal handling: */ struct sigpending shared_pending; /* thread group exit support */ int group_exit_code; /* overloaded: * - notify group_exit_task when ->count is equal to notify_count * - everyone except group_exit_task is stopped during signal delivery * of fatal signals, group_exit_task processes the signal. */ struct task_struct *group_exit_task; int notify_count; /* thread group stop support, overloads group_exit_code too */ int group_stop_count; unsigned int flags; /* see SIGNAL_* flags below */ /* POSIX.1b Interval Timers */ struct list_head posix_timers; /* ITIMER_REAL timer for the process */ struct hrtimer real_timer; struct task_struct *tsk; ktime_t it_real_incr; /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ cputime_t it_prof_expires, it_virt_expires; cputime_t it_prof_incr, it_virt_incr; /* job control IDs */ pid_t pgrp; struct pid *tty_old_pgrp; union { pid_t session __deprecated; pid_t __session; }; /* boolean value for session group leader */ int leader; struct tty_struct *tty; /* NULL if no tty */ /* * Cumulative resource counters for dead threads in the group, * and for reaped dead child processes forked by this group. * Live threads maintain their own counters and add to these * in __exit_signal, except for the group leader. */ cputime_t utime, stime, cutime, cstime; unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; unsigned long inblock, oublock, cinblock, coublock; /* * Cumulative ns of scheduled CPU time for dead threads in the * group, not including a zombie group leader. (This only differs * from jiffies_to_ns(utime + stime) if sched_clock uses something * other than jiffies.) */ unsigned long long sched_time; /* * We don't bother to synchronize most readers of this at all, * because there is no reader checking a limit that actually needs * to get both rlim_cur and rlim_max atomically, and either one * alone is a single word that can safely be read normally. * getrlimit/setrlimit use task_lock(current->group_leader) to * protect this instead of the siglock, because they really * have no need to disable irqs. */ struct rlimit rlim[RLIM_NLIMITS]; struct list_head cpu_timers[3]; /* keep the process-shared keyrings here so that they do the right * thing in threads created with CLONE_THREAD */ #ifdef CONFIG_KEYS struct key *session_keyring; /* keyring inherited over fork */ struct key *process_keyring; /* keyring private to this process */ #endif #ifdef CONFIG_BSD_PROCESS_ACCT struct pacct_struct pacct; /* per-process accounting information */ #endif #ifdef CONFIG_TASKSTATS struct taskstats *stats; #endif }; /* Context switch must be unlocked if interrupts are to be enabled */ #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW # define __ARCH_WANT_UNLOCKED_CTXSW #endif /* * Bits in flags field of signal_struct. */ #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ /* * Priority of a process goes from 0..MAX_PRIO-1, valid RT * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority * values are inverted: lower p->prio value means higher priority. * * The MAX_USER_RT_PRIO value allows the actual maximum * RT priority to be separate from the value exported to * user-space. This allows kernel threads to set their * priority to a value higher than any user task. Note: * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. */ #define MAX_USER_RT_PRIO 100 #define MAX_RT_PRIO MAX_USER_RT_PRIO #define MAX_PRIO (MAX_RT_PRIO + 40) #define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO) #define rt_task(p) rt_prio((p)->prio) #define batch_task(p) (unlikely((p)->policy == SCHED_BATCH)) #define is_rt_policy(p) ((p) != SCHED_NORMAL && (p) != SCHED_BATCH) #define has_rt_policy(p) unlikely(is_rt_policy((p)->policy)) /* * Some day this will be a full-fledged user tracking system.. */ struct user_struct { atomic_t __count; /* reference count */ atomic_t processes; /* How many processes does this user have? */ atomic_t files; /* How many open files does this user have? */ atomic_t sigpending; /* How many pending signals does this user have? */ #ifdef CONFIG_INOTIFY_USER atomic_t inotify_watches; /* How many inotify watches does this user have? */ atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ #endif /* protected by mq_lock */ unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ unsigned long locked_shm; /* How many pages of mlocked shm ? */ #ifdef CONFIG_KEYS struct key *uid_keyring; /* UID specific keyring */ struct key *session_keyring; /* UID's default session keyring */ #endif /* Hash table maintenance information */ struct list_head uidhash_list; uid_t uid; }; extern struct user_struct *find_user(uid_t); extern struct user_struct root_user; #define INIT_USER (&root_user) struct backing_dev_info; struct reclaim_state; #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) struct sched_info { /* cumulative counters */ unsigned long cpu_time, /* time spent on the cpu */ run_delay, /* time spent waiting on a runqueue */ pcnt; /* # of timeslices run on this cpu */ /* timestamps */ unsigned long last_arrival, /* when we last ran on a cpu */ last_queued; /* when we were last queued to run */ }; #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ #ifdef CONFIG_SCHEDSTATS extern const struct file_operations proc_schedstat_operations; #endif /* CONFIG_SCHEDSTATS */ #ifdef CONFIG_TASK_DELAY_ACCT struct task_delay_info { spinlock_t lock; unsigned int flags; /* Private per-task flags */ /* For each stat XXX, add following, aligned appropriately * * struct timespec XXX_start, XXX_end; * u64 XXX_delay; * u32 XXX_count; * * Atomicity of updates to XXX_delay, XXX_count protected by * single lock above (split into XXX_lock if contention is an issue). */ /* * XXX_count is incremented on every XXX operation, the delay * associated with the operation is added to XXX_delay. * XXX_delay contains the accumulated delay time in nanoseconds. */ struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ u64 blkio_delay; /* wait for sync block io completion */ u64 swapin_delay; /* wait for swapin block io completion */ u32 blkio_count; /* total count of the number of sync block */ /* io operations performed */ u32 swapin_count; /* total count of the number of swapin block */ /* io operations performed */ }; #endif /* CONFIG_TASK_DELAY_ACCT */ static inline int sched_info_on(void) { #ifdef CONFIG_SCHEDSTATS return 1; #elif defined(CONFIG_TASK_DELAY_ACCT) extern int delayacct_on; return delayacct_on; #else return 0; #endif } enum cpu_idle_type { CPU_IDLE, CPU_NOT_IDLE, CPU_NEWLY_IDLE, CPU_MAX_IDLE_TYPES }; /* * sched-domains (multiprocessor balancing) declarations: */ #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ #ifdef CONFIG_SMP #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ #define SD_BALANCE_EXEC 4 /* Balance on exec */ #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ #define SD_SERIALIZE 1024 /* Only a single load balancing instance */ #define BALANCE_FOR_MC_POWER \ (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) #define BALANCE_FOR_PKG_POWER \ ((sched_mc_power_savings || sched_smt_power_savings) ? \ SD_POWERSAVINGS_BALANCE : 0) #define test_sd_parent(sd, flag) ((sd->parent && \ (sd->parent->flags & flag)) ? 1 : 0) struct sched_group { struct sched_group *next; /* Must be a circular list */ cpumask_t cpumask; /* * CPU power of this group, SCHED_LOAD_SCALE being max power for a * single CPU. This is read only (except for setup, hotplug CPU). * Note : Never change cpu_power without recompute its reciprocal */ unsigned int __cpu_power; /* * reciprocal value of cpu_power to avoid expensive divides * (see include/linux/reciprocal_div.h) */ u32 reciprocal_cpu_power; }; struct sched_domain { /* These fields must be setup */ struct sched_domain *parent; /* top domain must be null terminated */ struct sched_domain *child; /* bottom domain must be null terminated */ struct sched_group *groups; /* the balancing groups of the domain */ cpumask_t span; /* span of all CPUs in this domain */ unsigned long min_interval; /* Minimum balance interval ms */ unsigned long max_interval; /* Maximum balance interval ms */ unsigned int busy_factor; /* less balancing by factor if busy */ unsigned int imbalance_pct; /* No balance until over watermark */ unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ unsigned int busy_idx; unsigned int idle_idx; unsigned int newidle_idx; unsigned int wake_idx; unsigned int forkexec_idx; int flags; /* See SD_* */ /* Runtime fields. */ unsigned long last_balance; /* init to jiffies. units in jiffies */ unsigned int balance_interval; /* initialise to 1. units in ms. */ unsigned int nr_balance_failed; /* initialise to 0 */ #ifdef CONFIG_SCHEDSTATS /* load_balance() stats */ unsigned long lb_cnt[CPU_MAX_IDLE_TYPES]; unsigned long lb_failed[CPU_MAX_IDLE_TYPES]; unsigned long lb_balanced[CPU_MAX_IDLE_TYPES]; unsigned long lb_imbalance[CPU_MAX_IDLE_TYPES]; unsigned long lb_gained[CPU_MAX_IDLE_TYPES]; unsigned long lb_hot_gained[CPU_MAX_IDLE_TYPES]; unsigned long lb_nobusyg[CPU_MAX_IDLE_TYPES]; unsigned long lb_nobusyq[CPU_MAX_IDLE_TYPES]; /* Active load balancing */ unsigned long alb_cnt; unsigned long alb_failed; unsigned long alb_pushed; /* SD_BALANCE_EXEC stats */ unsigned long sbe_cnt; unsigned long sbe_balanced; unsigned long sbe_pushed; /* SD_BALANCE_FORK stats */ unsigned long sbf_cnt; unsigned long sbf_balanced; unsigned long sbf_pushed; /* try_to_wake_up() stats */ unsigned long ttwu_wake_remote; unsigned long ttwu_move_affine; unsigned long ttwu_move_balance; #endif }; extern int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2); /* * Maximum cache size the migration-costs auto-tuning code will * search from: */ extern unsigned int max_cache_size; #endif /* CONFIG_SMP */ struct io_context; /* See blkdev.h */ struct cpuset; #define NGROUPS_SMALL 32 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) struct group_info { int ngroups; atomic_t usage; gid_t small_block[NGROUPS_SMALL]; int nblocks; gid_t *blocks[0]; }; /* * get_group_info() must be called with the owning task locked (via task_lock()) * when task != current. The reason being that the vast majority of callers are * looking at current->group_info, which can not be changed except by the * current task. Changing current->group_info requires the task lock, too. */ #define get_group_info(group_info) do { \ atomic_inc(&(group_info)->usage); \ } while (0) #define put_group_info(group_info) do { \ if (atomic_dec_and_test(&(group_info)->usage)) \ groups_free(group_info); \ } while (0) extern struct group_info *groups_alloc(int gidsetsize); extern void groups_free(struct group_info *group_info); extern int set_current_groups(struct group_info *group_info); extern int groups_search(struct group_info *group_info, gid_t grp); /* access the groups "array" with this macro */ #define GROUP_AT(gi, i) \ ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK extern void prefetch_stack(struct task_struct *t); #else static inline void prefetch_stack(struct task_struct *t) { } #endif struct audit_context; /* See audit.c */ struct mempolicy; struct pipe_inode_info; struct uts_namespace; enum sleep_type { SLEEP_NORMAL, SLEEP_NONINTERACTIVE, SLEEP_INTERACTIVE, SLEEP_INTERRUPTED, }; struct prio_array; struct task_struct { volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ void *stack; atomic_t usage; unsigned int flags; /* per process flags, defined below */ unsigned int ptrace; int lock_depth; /* BKL lock depth */ #ifdef CONFIG_SMP #ifdef __ARCH_WANT_UNLOCKED_CTXSW int oncpu; #endif #endif int load_weight; /* for niceness load balancing purposes */ int prio, static_prio, normal_prio; struct list_head run_list; struct prio_array *array; unsigned short ioprio; #ifdef CONFIG_BLK_DEV_IO_TRACE unsigned int btrace_seq; #endif unsigned long sleep_avg; unsigned long long timestamp, last_ran; unsigned long long sched_time; /* sched_clock time spent running */ enum sleep_type sleep_type; unsigned int policy; cpumask_t cpus_allowed; unsigned int time_slice, first_time_slice; #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) struct sched_info sched_info; #endif struct list_head tasks; /* * ptrace_list/ptrace_children forms the list of my children * that were stolen by a ptracer. */ struct list_head ptrace_children; struct list_head ptrace_list; struct mm_struct *mm, *active_mm; /* task state */ struct linux_binfmt *binfmt; int exit_state; int exit_code, exit_signal; int pdeath_signal; /* The signal sent when the parent dies */ /* ??? */ unsigned int personality; unsigned did_exec:1; pid_t pid; pid_t tgid; #ifdef CONFIG_CC_STACKPROTECTOR /* Canary value for the -fstack-protector gcc feature */ unsigned long stack_canary; #endif /* * pointers to (original) parent process, youngest child, younger sibling, * older sibling, respectively. (p->father can be replaced with * p->parent->pid) */ struct task_struct *real_parent; /* real parent process (when being debugged) */ struct task_struct *parent; /* parent process */ /* * children/sibling forms the list of my children plus the * tasks I'm ptracing. */ struct list_head children; /* list of my children */ struct list_head sibling; /* linkage in my parent's children list */ struct task_struct *group_leader; /* threadgroup leader */ /* PID/PID hash table linkage. */ struct pid_link pids[PIDTYPE_MAX]; struct list_head thread_group; struct completion *vfork_done; /* for vfork() */ int __user *set_child_tid; /* CLONE_CHILD_SETTID */ int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ unsigned int rt_priority; cputime_t utime, stime; unsigned long nvcsw, nivcsw; /* context switch counts */ struct timespec start_time; /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ unsigned long min_flt, maj_flt; cputime_t it_prof_expires, it_virt_expires; unsigned long long it_sched_expires; struct list_head cpu_timers[3]; /* process credentials */ uid_t uid,euid,suid,fsuid; gid_t gid,egid,sgid,fsgid; struct group_info *group_info; kernel_cap_t cap_effective, cap_inheritable, cap_permitted; unsigned keep_capabilities:1; struct user_struct *user; #ifdef CONFIG_KEYS struct key *request_key_auth; /* assumed request_key authority */ struct key *thread_keyring; /* keyring private to this thread */ unsigned char jit_keyring; /* default keyring to attach requested keys to */ #endif /* * fpu_counter contains the number of consecutive context switches * that the FPU is used. If this is over a threshold, the lazy fpu * saving becomes unlazy to save the trap. This is an unsigned char * so that after 256 times the counter wraps and the behavior turns * lazy again; this to deal with bursty apps that only use FPU for * a short time */ unsigned char fpu_counter; int oomkilladj; /* OOM kill score adjustment (bit shift). */ char comm[TASK_COMM_LEN]; /* executable name excluding path - access with [gs]et_task_comm (which lock it with task_lock()) - initialized normally by flush_old_exec */ /* file system info */ int link_count, total_link_count; #ifdef CONFIG_SYSVIPC /* ipc stuff */ struct sysv_sem sysvsem; #endif /* CPU-specific state of this task */ struct thread_struct thread; /* filesystem information */ struct fs_struct *fs; /* open file information */ struct files_struct *files; /* namespaces */ struct nsproxy *nsproxy; /* signal handlers */ struct signal_struct *signal; struct sighand_struct *sighand; sigset_t blocked, real_blocked; sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ struct sigpending pending; unsigned long sas_ss_sp; size_t sas_ss_size; int (*notifier)(void *priv); void *notifier_data; sigset_t *notifier_mask; void *security; struct audit_context *audit_context; seccomp_t seccomp; /* Thread group tracking */ u32 parent_exec_id; u32 self_exec_id; /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ spinlock_t alloc_lock; /* Protection of the PI data structures: */ spinlock_t pi_lock; #ifdef CONFIG_RT_MUTEXES /* PI waiters blocked on a rt_mutex held by this task */ struct plist_head pi_waiters; /* Deadlock detection and priority inheritance handling */ struct rt_mutex_waiter *pi_blocked_on; #endif #ifdef CONFIG_DEBUG_MUTEXES /* mutex deadlock detection */ struct mutex_waiter *blocked_on; #endif #ifdef CONFIG_TRACE_IRQFLAGS unsigned int irq_events; int hardirqs_enabled; unsigned long hardirq_enable_ip; unsigned int hardirq_enable_event; unsigned long hardirq_disable_ip; unsigned int hardirq_disable_event; int softirqs_enabled; unsigned long softirq_disable_ip; unsigned int softirq_disable_event; unsigned long softirq_enable_ip; unsigned int softirq_enable_event; int hardirq_context; int softirq_context; #endif #ifdef CONFIG_LOCKDEP # define MAX_LOCK_DEPTH 30UL u64 curr_chain_key; int lockdep_depth; struct held_lock held_locks[MAX_LOCK_DEPTH]; unsigned int lockdep_recursion; #endif /* journalling filesystem info */ void *journal_info; /* stacked block device info */ struct bio *bio_list, **bio_tail; /* VM state */ struct reclaim_state *reclaim_state; struct backing_dev_info *backing_dev_info; struct io_context *io_context; unsigned long ptrace_message; siginfo_t *last_siginfo; /* For ptrace use. */ /* * current io wait handle: wait queue entry to use for io waits * If this thread is processing aio, this points at the waitqueue * inside the currently handled kiocb. It may be NULL (i.e. default * to a stack based synchronous wait) if its doing sync IO. */ wait_queue_t *io_wait; #ifdef CONFIG_TASK_XACCT /* i/o counters(bytes read/written, #syscalls */ u64 rchar, wchar, syscr, syscw; #endif struct task_io_accounting ioac; #if defined(CONFIG_TASK_XACCT) u64 acct_rss_mem1; /* accumulated rss usage */ u64 acct_vm_mem1; /* accumulated virtual memory usage */ cputime_t acct_stimexpd;/* stime since last update */ #endif #ifdef CONFIG_NUMA struct mempolicy *mempolicy; short il_next; #endif #ifdef CONFIG_CPUSETS struct cpuset *cpuset; nodemask_t mems_allowed; int cpuset_mems_generation; int cpuset_mem_spread_rotor; #endif struct robust_list_head __user *robust_list; #ifdef CONFIG_COMPAT struct compat_robust_list_head __user *compat_robust_list; #endif struct list_head pi_state_list; struct futex_pi_state *pi_state_cache; atomic_t fs_excl; /* holding fs exclusive resources */ struct rcu_head rcu; /* * cache last used pipe for splice */ struct pipe_inode_info *splice_pipe; #ifdef CONFIG_TASK_DELAY_ACCT struct task_delay_info *delays; #endif #ifdef CONFIG_FAULT_INJECTION int make_it_fail; #endif }; static inline pid_t process_group(struct task_struct *tsk) { return tsk->signal->pgrp; } static inline pid_t signal_session(struct signal_struct *sig) { return sig->__session; } static inline pid_t process_session(struct task_struct *tsk) { return signal_session(tsk->signal); } static inline void set_signal_session(struct signal_struct *sig, pid_t session) { sig->__session = session; } static inline struct pid *task_pid(struct task_struct *task) { return task->pids[PIDTYPE_PID].pid; } static inline struct pid *task_tgid(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_PID].pid; } static inline struct pid *task_pgrp(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_PGID].pid; } static inline struct pid *task_session(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_SID].pid; } /** * pid_alive - check that a task structure is not stale * @p: Task structure to be checked. * * Test if a process is not yet dead (at most zombie state) * If pid_alive fails, then pointers within the task structure * can be stale and must not be dereferenced. */ static inline int pid_alive(struct task_struct *p) { return p->pids[PIDTYPE_PID].pid != NULL; } /** * is_init - check if a task structure is init * @tsk: Task structure to be checked. * * Check if a task structure is the first user space task the kernel created. */ static inline int is_init(struct task_struct *tsk) { return tsk->pid == 1; } extern struct pid *cad_pid; extern void free_task(struct task_struct *tsk); #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) extern void __put_task_struct(struct task_struct *t); static inline void put_task_struct(struct task_struct *t) { if (atomic_dec_and_test(&t->usage)) __put_task_struct(t); } /* * Per process flags */ #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ /* Not implemented yet, only for 486*/ #define PF_STARTING 0x00000002 /* being created */ #define PF_EXITING 0x00000004 /* getting shut down */ #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ #define PF_DUMPCORE 0x00000200 /* dumped core */ #define PF_SIGNALED 0x00000400 /* killed by a signal */ #define PF_MEMALLOC 0x00000800 /* Allocating memory */ #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ #define PF_FROZEN 0x00010000 /* frozen for system suspend */ #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ #define PF_KSWAPD 0x00040000 /* I am kswapd */ #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */ #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ /* * Only the _current_ task can read/write to tsk->flags, but other * tasks can access tsk->flags in readonly mode for example * with tsk_used_math (like during threaded core dumping). * There is however an exception to this rule during ptrace * or during fork: the ptracer task is allowed to write to the * child->flags of its traced child (same goes for fork, the parent * can write to the child->flags), because we're guaranteed the * child is not running and in turn not changing child->flags * at the same time the parent does it. */ #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) #define clear_used_math() clear_stopped_child_used_math(current) #define set_used_math() set_stopped_child_used_math(current) #define conditional_stopped_child_used_math(condition, child) \ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) #define conditional_used_math(condition) \ conditional_stopped_child_used_math(condition, current) #define copy_to_stopped_child_used_math(child) \ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) #define used_math() tsk_used_math(current) #ifdef CONFIG_SMP extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask); #else static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) { if (!cpu_isset(0, new_mask)) return -EINVAL; return 0; } #endif extern unsigned long long sched_clock(void); extern unsigned long long current_sched_time(const struct task_struct *current_task); /* sched_exec is called by processes performing an exec */ #ifdef CONFIG_SMP extern void sched_exec(void); #else #define sched_exec() {} #endif #ifdef CONFIG_HOTPLUG_CPU extern void idle_task_exit(void); #else static inline void idle_task_exit(void) {} #endif extern void sched_idle_next(void); #ifdef CONFIG_RT_MUTEXES extern int rt_mutex_getprio(struct task_struct *p); extern void rt_mutex_setprio(struct task_struct *p, int prio); extern void rt_mutex_adjust_pi(struct task_struct *p); #else static inline int rt_mutex_getprio(struct task_struct *p) { return p->normal_prio; } # define rt_mutex_adjust_pi(p) do { } while (0) #endif extern void set_user_nice(struct task_struct *p, long nice); extern int task_prio(const struct task_struct *p); extern int task_nice(const struct task_struct *p); extern int can_nice(const struct task_struct *p, const int nice); extern int task_curr(const struct task_struct *p); extern int idle_cpu(int cpu); extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); extern struct task_struct *idle_task(int cpu); extern struct task_struct *curr_task(int cpu); extern void set_curr_task(int cpu, struct task_struct *p); void yield(void); /* * The default (Linux) execution domain. */ extern struct exec_domain default_exec_domain; union thread_union { struct thread_info thread_info; unsigned long stack[THREAD_SIZE/sizeof(long)]; }; #ifndef __HAVE_ARCH_KSTACK_END static inline int kstack_end(void *addr) { /* Reliable end of stack detection: * Some APM bios versions misalign the stack */ return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); } #endif extern union thread_union init_thread_union; extern struct task_struct init_task; extern struct mm_struct init_mm; #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) extern struct task_struct *find_task_by_pid_type(int type, int pid); extern void __set_special_pids(pid_t session, pid_t pgrp); /* per-UID process charging. */ extern struct user_struct * alloc_uid(uid_t); static inline struct user_struct *get_uid(struct user_struct *u) { atomic_inc(&u->__count); return u; } extern void free_uid(struct user_struct *); extern void switch_uid(struct user_struct *); #include extern void do_timer(unsigned long ticks); extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); extern int FASTCALL(wake_up_process(struct task_struct * tsk)); extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, unsigned long clone_flags)); #ifdef CONFIG_SMP extern void kick_process(struct task_struct *tsk); #else static inline void kick_process(struct task_struct *tsk) { } #endif extern void FASTCALL(sched_fork(struct task_struct * p, int clone_flags)); extern void FASTCALL(sched_exit(struct task_struct * p)); extern int in_group_p(gid_t); extern int in_egroup_p(gid_t); extern void proc_caches_init(void); extern void flush_signals(struct task_struct *); extern void ignore_signals(struct task_struct *); extern void flush_signal_handlers(struct task_struct *, int force_default); extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) { unsigned long flags; int ret; spin_lock_irqsave(&tsk->sighand->siglock, flags); ret = dequeue_signal(tsk, mask, info); spin_unlock_irqrestore(&tsk->sighand->siglock, flags); return ret; } extern void block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask); extern void unblock_all_signals(void); extern void release_task(struct task_struct * p); extern int send_sig_info(int, struct siginfo *, struct task_struct *); extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); extern int force_sigsegv(int, struct task_struct *); extern int force_sig_info(int, struct siginfo *, struct task_struct *); extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); extern int kill_pgrp(struct pid *pid, int sig, int priv); extern int kill_pid(struct pid *pid, int sig, int priv); extern int kill_proc_info(int, struct siginfo *, pid_t); extern void do_notify_parent(struct task_struct *, int); extern void force_sig(int, struct task_struct *); extern void force_sig_specific(int, struct task_struct *); extern int send_sig(int, struct task_struct *, int); extern void zap_other_threads(struct task_struct *p); extern int kill_proc(pid_t, int, int); extern struct sigqueue *sigqueue_alloc(void); extern void sigqueue_free(struct sigqueue *); extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); static inline int kill_cad_pid(int sig, int priv) { return kill_pid(cad_pid, sig, priv); } /* These can be the second arg to send_sig_info/send_group_sig_info. */ #define SEND_SIG_NOINFO ((struct siginfo *) 0) #define SEND_SIG_PRIV ((struct siginfo *) 1) #define SEND_SIG_FORCED ((struct siginfo *) 2) static inline int is_si_special(const struct siginfo *info) { return info <= SEND_SIG_FORCED; } /* True if we are on the alternate signal stack. */ static inline int on_sig_stack(unsigned long sp) { return (sp - current->sas_ss_sp < current->sas_ss_size); } static inline int sas_ss_flags(unsigned long sp) { return (current->sas_ss_size == 0 ? SS_DISABLE : on_sig_stack(sp) ? SS_ONSTACK : 0); } /* * Routines for handling mm_structs */ extern struct mm_struct * mm_alloc(void); /* mmdrop drops the mm and the page tables */ extern void FASTCALL(__mmdrop(struct mm_struct *)); static inline void mmdrop(struct mm_struct * mm) { if (atomic_dec_and_test(&mm->mm_count)) __mmdrop(mm); } /* mmput gets rid of the mappings and all user-space */ extern void mmput(struct mm_struct *); /* Grab a reference to a task's mm, if it is not already going away */ extern struct mm_struct *get_task_mm(struct task_struct *task); /* Remove the current tasks stale references to the old mm_struct */ extern void mm_release(struct task_struct *, struct mm_struct *); extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); extern void flush_thread(void); extern void exit_thread(void); extern void exit_files(struct task_struct *); extern void __cleanup_signal(struct signal_struct *); extern void __cleanup_sighand(struct sighand_struct *); extern void exit_itimers(struct signal_struct *); extern NORET_TYPE void do_group_exit(int); extern void daemonize(const char *, ...); extern int allow_signal(int); extern int disallow_signal(int); extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); struct task_struct *fork_idle(int); extern void set_task_comm(struct task_struct *tsk, char *from); extern void get_task_comm(char *to, struct task_struct *tsk); #ifdef CONFIG_SMP extern void wait_task_inactive(struct task_struct * p); #else #define wait_task_inactive(p) do { } while (0) #endif #define remove_parent(p) list_del_init(&(p)->sibling) #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) #define for_each_process(p) \ for (p = &init_task ; (p = next_task(p)) != &init_task ; ) /* * Careful: do_each_thread/while_each_thread is a double loop so * 'break' will not work as expected - use goto instead. */ #define do_each_thread(g, t) \ for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do #define while_each_thread(g, t) \ while ((t = next_thread(t)) != g) /* de_thread depends on thread_group_leader not being a pid based check */ #define thread_group_leader(p) (p == p->group_leader) /* Do to the insanities of de_thread it is possible for a process * to have the pid of the thread group leader without actually being * the thread group leader. For iteration through the pids in proc * all we care about is that we have a task with the appropriate * pid, we don't actually care if we have the right task. */ static inline int has_group_leader_pid(struct task_struct *p) { return p->pid == p->tgid; } static inline struct task_struct *next_thread(const struct task_struct *p) { return list_entry(rcu_dereference(p->thread_group.next), struct task_struct, thread_group); } static inline int thread_group_empty(struct task_struct *p) { return list_empty(&p->thread_group); } #define delay_group_leader(p) \ (thread_group_leader(p) && !thread_group_empty(p)) /* * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring * subscriptions and synchronises with wait4(). Also used in procfs. Also * pins the final release of task.io_context. Also protects ->cpuset. * * Nests both inside and outside of read_lock(&tasklist_lock). * It must not be nested with write_lock_irq(&tasklist_lock), * neither inside nor outside. */ static inline void task_lock(struct task_struct *p) { spin_lock(&p->alloc_lock); } static inline void task_unlock(struct task_struct *p) { spin_unlock(&p->alloc_lock); } extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags); static inline void unlock_task_sighand(struct task_struct *tsk, unsigned long *flags) { spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); } #ifndef __HAVE_THREAD_FUNCTIONS #define task_thread_info(task) ((struct thread_info *)(task)->stack) #define task_stack_page(task) ((task)->stack) static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) { *task_thread_info(p) = *task_thread_info(org); task_thread_info(p)->task = p; } static inline unsigned long *end_of_stack(struct task_struct *p) { return (unsigned long *)(task_thread_info(p) + 1); } #endif /* set thread flags in other task's structures * - see asm/thread_info.h for TIF_xxxx flags available */ static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) { set_ti_thread_flag(task_thread_info(tsk), flag); } static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) { clear_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_ti_thread_flag(task_thread_info(tsk), flag); } static inline void set_tsk_need_resched(struct task_struct *tsk) { set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline void clear_tsk_need_resched(struct task_struct *tsk) { clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline int signal_pending(struct task_struct *p) { return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); } static inline int need_resched(void) { return unlikely(test_thread_flag(TIF_NEED_RESCHED)); } /* * cond_resched() and cond_resched_lock(): latency reduction via * explicit rescheduling in places that are safe. The return * value indicates whether a reschedule was done in fact. * cond_resched_lock() will drop the spinlock before scheduling, * cond_resched_softirq() will enable bhs before scheduling. */ extern int cond_resched(void); extern int cond_resched_lock(spinlock_t * lock); extern int cond_resched_softirq(void); /* * Does a critical section need to be broken due to another * task waiting?: */ #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) # define need_lockbreak(lock) ((lock)->break_lock) #else # define need_lockbreak(lock) 0 #endif /* * Does a critical section need to be broken due to another * task waiting or preemption being signalled: */ static inline int lock_need_resched(spinlock_t *lock) { if (need_lockbreak(lock) || need_resched()) return 1; return 0; } /* * Reevaluate whether the task has signals pending delivery. * Wake the task if so. * This is required every time the blocked sigset_t changes. * callers must hold sighand->siglock. */ extern void recalc_sigpending_and_wake(struct task_struct *t); extern void recalc_sigpending(void); extern void signal_wake_up(struct task_struct *t, int resume_stopped); /* * Wrappers for p->thread_info->cpu access. No-op on UP. */ #ifdef CONFIG_SMP static inline unsigned int task_cpu(const struct task_struct *p) { return task_thread_info(p)->cpu; } static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) { task_thread_info(p)->cpu = cpu; } #else static inline unsigned int task_cpu(const struct task_struct *p) { return 0; } static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) { } #endif /* CONFIG_SMP */ #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT extern void arch_pick_mmap_layout(struct mm_struct *mm); #else static inline void arch_pick_mmap_layout(struct mm_struct *mm) { mm->mmap_base = TASK_UNMAPPED_BASE; mm->get_unmapped_area = arch_get_unmapped_area; mm->unmap_area = arch_unmap_area; } #endif extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); extern long sched_getaffinity(pid_t pid, cpumask_t *mask); extern int sched_mc_power_savings, sched_smt_power_savings; extern void normalize_rt_tasks(void); #ifdef CONFIG_TASK_XACCT static inline void add_rchar(struct task_struct *tsk, ssize_t amt) { tsk->rchar += amt; } static inline void add_wchar(struct task_struct *tsk, ssize_t amt) { tsk->wchar += amt; } static inline void inc_syscr(struct task_struct *tsk) { tsk->syscr++; } static inline void inc_syscw(struct task_struct *tsk) { tsk->syscw++; } #else static inline void add_rchar(struct task_struct *tsk, ssize_t amt) { } static inline void add_wchar(struct task_struct *tsk, ssize_t amt) { } static inline void inc_syscr(struct task_struct *tsk) { } static inline void inc_syscw(struct task_struct *tsk) { } #endif #endif /* __KERNEL__ */ #endif