/* * I2O kernel space accessible structures/APIs * * (c) Copyright 1999, 2000 Red Hat Software * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * ************************************************************************* * * This header file defined the I2O APIs/structures for use by * the I2O kernel modules. * */ #ifndef _I2O_H #define _I2O_H #ifdef __KERNEL__ /* This file to be included by kernel only */ #include <linux/i2o-dev.h> /* How many different OSM's are we allowing */ #define I2O_MAX_DRIVERS 8 #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/workqueue.h> /* work_struct */ #include <linux/mempool.h> #include <asm/io.h> #include <asm/semaphore.h> /* Needed for MUTEX init macros */ /* message queue empty */ #define I2O_QUEUE_EMPTY 0xffffffff /* * Cache strategies */ /* The NULL strategy leaves everything up to the controller. This tends to be a * pessimal but functional choice. */ #define CACHE_NULL 0 /* Prefetch data when reading. We continually attempt to load the next 32 sectors * into the controller cache. */ #define CACHE_PREFETCH 1 /* Prefetch data when reading. We sometimes attempt to load the next 32 sectors * into the controller cache. When an I/O is less <= 8K we assume its probably * not sequential and don't prefetch (default) */ #define CACHE_SMARTFETCH 2 /* Data is written to the cache and then out on to the disk. The I/O must be * physically on the medium before the write is acknowledged (default without * NVRAM) */ #define CACHE_WRITETHROUGH 17 /* Data is written to the cache and then out on to the disk. The controller * is permitted to write back the cache any way it wants. (default if battery * backed NVRAM is present). It can be useful to set this for swap regardless of * battery state. */ #define CACHE_WRITEBACK 18 /* Optimise for under powered controllers, especially on RAID1 and RAID0. We * write large I/O's directly to disk bypassing the cache to avoid the extra * memory copy hits. Small writes are writeback cached */ #define CACHE_SMARTBACK 19 /* Optimise for under powered controllers, especially on RAID1 and RAID0. We * write large I/O's directly to disk bypassing the cache to avoid the extra * memory copy hits. Small writes are writethrough cached. Suitable for devices * lacking battery backup */ #define CACHE_SMARTTHROUGH 20 /* * Ioctl structures */ #define BLKI2OGRSTRAT _IOR('2', 1, int) #define BLKI2OGWSTRAT _IOR('2', 2, int) #define BLKI2OSRSTRAT _IOW('2', 3, int) #define BLKI2OSWSTRAT _IOW('2', 4, int) /* * I2O Function codes */ /* * Executive Class */ #define I2O_CMD_ADAPTER_ASSIGN 0xB3 #define I2O_CMD_ADAPTER_READ 0xB2 #define I2O_CMD_ADAPTER_RELEASE 0xB5 #define I2O_CMD_BIOS_INFO_SET 0xA5 #define I2O_CMD_BOOT_DEVICE_SET 0xA7 #define I2O_CMD_CONFIG_VALIDATE 0xBB #define I2O_CMD_CONN_SETUP 0xCA #define I2O_CMD_DDM_DESTROY 0xB1 #define I2O_CMD_DDM_ENABLE 0xD5 #define I2O_CMD_DDM_QUIESCE 0xC7 #define I2O_CMD_DDM_RESET 0xD9 #define I2O_CMD_DDM_SUSPEND 0xAF #define I2O_CMD_DEVICE_ASSIGN 0xB7 #define I2O_CMD_DEVICE_RELEASE 0xB9 #define I2O_CMD_HRT_GET 0xA8 #define I2O_CMD_ADAPTER_CLEAR 0xBE #define I2O_CMD_ADAPTER_CONNECT 0xC9 #define I2O_CMD_ADAPTER_RESET 0xBD #define I2O_CMD_LCT_NOTIFY 0xA2 #define I2O_CMD_OUTBOUND_INIT 0xA1 #define I2O_CMD_PATH_ENABLE 0xD3 #define I2O_CMD_PATH_QUIESCE 0xC5 #define I2O_CMD_PATH_RESET 0xD7 #define I2O_CMD_STATIC_MF_CREATE 0xDD #define I2O_CMD_STATIC_MF_RELEASE 0xDF #define I2O_CMD_STATUS_GET 0xA0 #define I2O_CMD_SW_DOWNLOAD 0xA9 #define I2O_CMD_SW_UPLOAD 0xAB #define I2O_CMD_SW_REMOVE 0xAD #define I2O_CMD_SYS_ENABLE 0xD1 #define I2O_CMD_SYS_MODIFY 0xC1 #define I2O_CMD_SYS_QUIESCE 0xC3 #define I2O_CMD_SYS_TAB_SET 0xA3 /* * Utility Class */ #define I2O_CMD_UTIL_NOP 0x00 #define I2O_CMD_UTIL_ABORT 0x01 #define I2O_CMD_UTIL_CLAIM 0x09 #define I2O_CMD_UTIL_RELEASE 0x0B #define I2O_CMD_UTIL_PARAMS_GET 0x06 #define I2O_CMD_UTIL_PARAMS_SET 0x05 #define I2O_CMD_UTIL_EVT_REGISTER 0x13 #define I2O_CMD_UTIL_EVT_ACK 0x14 #define I2O_CMD_UTIL_CONFIG_DIALOG 0x10 #define I2O_CMD_UTIL_DEVICE_RESERVE 0x0D #define I2O_CMD_UTIL_DEVICE_RELEASE 0x0F #define I2O_CMD_UTIL_LOCK 0x17 #define I2O_CMD_UTIL_LOCK_RELEASE 0x19 #define I2O_CMD_UTIL_REPLY_FAULT_NOTIFY 0x15 /* * SCSI Host Bus Adapter Class */ #define I2O_CMD_SCSI_EXEC 0x81 #define I2O_CMD_SCSI_ABORT 0x83 #define I2O_CMD_SCSI_BUSRESET 0x27 /* * Bus Adapter Class */ #define I2O_CMD_BUS_ADAPTER_RESET 0x85 #define I2O_CMD_BUS_RESET 0x87 #define I2O_CMD_BUS_SCAN 0x89 #define I2O_CMD_BUS_QUIESCE 0x8b /* * Random Block Storage Class */ #define I2O_CMD_BLOCK_READ 0x30 #define I2O_CMD_BLOCK_WRITE 0x31 #define I2O_CMD_BLOCK_CFLUSH 0x37 #define I2O_CMD_BLOCK_MLOCK 0x49 #define I2O_CMD_BLOCK_MUNLOCK 0x4B #define I2O_CMD_BLOCK_MMOUNT 0x41 #define I2O_CMD_BLOCK_MEJECT 0x43 #define I2O_CMD_BLOCK_POWER 0x70 #define I2O_CMD_PRIVATE 0xFF /* Command status values */ #define I2O_CMD_IN_PROGRESS 0x01 #define I2O_CMD_REJECTED 0x02 #define I2O_CMD_FAILED 0x03 #define I2O_CMD_COMPLETED 0x04 /* I2O API function return values */ #define I2O_RTN_NO_ERROR 0 #define I2O_RTN_NOT_INIT 1 #define I2O_RTN_FREE_Q_EMPTY 2 #define I2O_RTN_TCB_ERROR 3 #define I2O_RTN_TRANSACTION_ERROR 4 #define I2O_RTN_ADAPTER_ALREADY_INIT 5 #define I2O_RTN_MALLOC_ERROR 6 #define I2O_RTN_ADPTR_NOT_REGISTERED 7 #define I2O_RTN_MSG_REPLY_TIMEOUT 8 #define I2O_RTN_NO_STATUS 9 #define I2O_RTN_NO_FIRM_VER 10 #define I2O_RTN_NO_LINK_SPEED 11 /* Reply message status defines for all messages */ #define I2O_REPLY_STATUS_SUCCESS 0x00 #define I2O_REPLY_STATUS_ABORT_DIRTY 0x01 #define I2O_REPLY_STATUS_ABORT_NO_DATA_TRANSFER 0x02 #define I2O_REPLY_STATUS_ABORT_PARTIAL_TRANSFER 0x03 #define I2O_REPLY_STATUS_ERROR_DIRTY 0x04 #define I2O_REPLY_STATUS_ERROR_NO_DATA_TRANSFER 0x05 #define I2O_REPLY_STATUS_ERROR_PARTIAL_TRANSFER 0x06 #define I2O_REPLY_STATUS_PROCESS_ABORT_DIRTY 0x08 #define I2O_REPLY_STATUS_PROCESS_ABORT_NO_DATA_TRANSFER 0x09 #define I2O_REPLY_STATUS_PROCESS_ABORT_PARTIAL_TRANSFER 0x0A #define I2O_REPLY_STATUS_TRANSACTION_ERROR 0x0B #define I2O_REPLY_STATUS_PROGRESS_REPORT 0x80 /* Status codes and Error Information for Parameter functions */ #define I2O_PARAMS_STATUS_SUCCESS 0x00 #define I2O_PARAMS_STATUS_BAD_KEY_ABORT 0x01 #define I2O_PARAMS_STATUS_BAD_KEY_CONTINUE 0x02 #define I2O_PARAMS_STATUS_BUFFER_FULL 0x03 #define I2O_PARAMS_STATUS_BUFFER_TOO_SMALL 0x04 #define I2O_PARAMS_STATUS_FIELD_UNREADABLE 0x05 #define I2O_PARAMS_STATUS_FIELD_UNWRITEABLE 0x06 #define I2O_PARAMS_STATUS_INSUFFICIENT_FIELDS 0x07 #define I2O_PARAMS_STATUS_INVALID_GROUP_ID 0x08 #define I2O_PARAMS_STATUS_INVALID_OPERATION 0x09 #define I2O_PARAMS_STATUS_NO_KEY_FIELD 0x0A #define I2O_PARAMS_STATUS_NO_SUCH_FIELD 0x0B #define I2O_PARAMS_STATUS_NON_DYNAMIC_GROUP 0x0C #define I2O_PARAMS_STATUS_OPERATION_ERROR 0x0D #define I2O_PARAMS_STATUS_SCALAR_ERROR 0x0E #define I2O_PARAMS_STATUS_TABLE_ERROR 0x0F #define I2O_PARAMS_STATUS_WRONG_GROUP_TYPE 0x10 /* DetailedStatusCode defines for Executive, DDM, Util and Transaction error * messages: Table 3-2 Detailed Status Codes.*/ #define I2O_DSC_SUCCESS 0x0000 #define I2O_DSC_BAD_KEY 0x0002 #define I2O_DSC_TCL_ERROR 0x0003 #define I2O_DSC_REPLY_BUFFER_FULL 0x0004 #define I2O_DSC_NO_SUCH_PAGE 0x0005 #define I2O_DSC_INSUFFICIENT_RESOURCE_SOFT 0x0006 #define I2O_DSC_INSUFFICIENT_RESOURCE_HARD 0x0007 #define I2O_DSC_CHAIN_BUFFER_TOO_LARGE 0x0009 #define I2O_DSC_UNSUPPORTED_FUNCTION 0x000A #define I2O_DSC_DEVICE_LOCKED 0x000B #define I2O_DSC_DEVICE_RESET 0x000C #define I2O_DSC_INAPPROPRIATE_FUNCTION 0x000D #define I2O_DSC_INVALID_INITIATOR_ADDRESS 0x000E #define I2O_DSC_INVALID_MESSAGE_FLAGS 0x000F #define I2O_DSC_INVALID_OFFSET 0x0010 #define I2O_DSC_INVALID_PARAMETER 0x0011 #define I2O_DSC_INVALID_REQUEST 0x0012 #define I2O_DSC_INVALID_TARGET_ADDRESS 0x0013 #define I2O_DSC_MESSAGE_TOO_LARGE 0x0014 #define I2O_DSC_MESSAGE_TOO_SMALL 0x0015 #define I2O_DSC_MISSING_PARAMETER 0x0016 #define I2O_DSC_TIMEOUT 0x0017 #define I2O_DSC_UNKNOWN_ERROR 0x0018 #define I2O_DSC_UNKNOWN_FUNCTION 0x0019 #define I2O_DSC_UNSUPPORTED_VERSION 0x001A #define I2O_DSC_DEVICE_BUSY 0x001B #define I2O_DSC_DEVICE_NOT_AVAILABLE 0x001C /* DetailedStatusCode defines for Block Storage Operation: Table 6-7 Detailed Status Codes.*/ #define I2O_BSA_DSC_SUCCESS 0x0000 #define I2O_BSA_DSC_MEDIA_ERROR 0x0001 #define I2O_BSA_DSC_ACCESS_ERROR 0x0002 #define I2O_BSA_DSC_DEVICE_FAILURE 0x0003 #define I2O_BSA_DSC_DEVICE_NOT_READY 0x0004 #define I2O_BSA_DSC_MEDIA_NOT_PRESENT 0x0005 #define I2O_BSA_DSC_MEDIA_LOCKED 0x0006 #define I2O_BSA_DSC_MEDIA_FAILURE 0x0007 #define I2O_BSA_DSC_PROTOCOL_FAILURE 0x0008 #define I2O_BSA_DSC_BUS_FAILURE 0x0009 #define I2O_BSA_DSC_ACCESS_VIOLATION 0x000A #define I2O_BSA_DSC_WRITE_PROTECTED 0x000B #define I2O_BSA_DSC_DEVICE_RESET 0x000C #define I2O_BSA_DSC_VOLUME_CHANGED 0x000D #define I2O_BSA_DSC_TIMEOUT 0x000E /* FailureStatusCodes, Table 3-3 Message Failure Codes */ #define I2O_FSC_TRANSPORT_SERVICE_SUSPENDED 0x81 #define I2O_FSC_TRANSPORT_SERVICE_TERMINATED 0x82 #define I2O_FSC_TRANSPORT_CONGESTION 0x83 #define I2O_FSC_TRANSPORT_FAILURE 0x84 #define I2O_FSC_TRANSPORT_STATE_ERROR 0x85 #define I2O_FSC_TRANSPORT_TIME_OUT 0x86 #define I2O_FSC_TRANSPORT_ROUTING_FAILURE 0x87 #define I2O_FSC_TRANSPORT_INVALID_VERSION 0x88 #define I2O_FSC_TRANSPORT_INVALID_OFFSET 0x89 #define I2O_FSC_TRANSPORT_INVALID_MSG_FLAGS 0x8A #define I2O_FSC_TRANSPORT_FRAME_TOO_SMALL 0x8B #define I2O_FSC_TRANSPORT_FRAME_TOO_LARGE 0x8C #define I2O_FSC_TRANSPORT_INVALID_TARGET_ID 0x8D #define I2O_FSC_TRANSPORT_INVALID_INITIATOR_ID 0x8E #define I2O_FSC_TRANSPORT_INVALID_INITIATOR_CONTEXT 0x8F #define I2O_FSC_TRANSPORT_UNKNOWN_FAILURE 0xFF /* Device Claim Types */ #define I2O_CLAIM_PRIMARY 0x01000000 #define I2O_CLAIM_MANAGEMENT 0x02000000 #define I2O_CLAIM_AUTHORIZED 0x03000000 #define I2O_CLAIM_SECONDARY 0x04000000 /* Message header defines for VersionOffset */ #define I2OVER15 0x0001 #define I2OVER20 0x0002 /* Default is 1.5 */ #define I2OVERSION I2OVER15 #define SGL_OFFSET_0 I2OVERSION #define SGL_OFFSET_4 (0x0040 | I2OVERSION) #define SGL_OFFSET_5 (0x0050 | I2OVERSION) #define SGL_OFFSET_6 (0x0060 | I2OVERSION) #define SGL_OFFSET_7 (0x0070 | I2OVERSION) #define SGL_OFFSET_8 (0x0080 | I2OVERSION) #define SGL_OFFSET_9 (0x0090 | I2OVERSION) #define SGL_OFFSET_10 (0x00A0 | I2OVERSION) #define SGL_OFFSET_11 (0x00B0 | I2OVERSION) #define SGL_OFFSET_12 (0x00C0 | I2OVERSION) #define SGL_OFFSET(x) (((x)<<4) | I2OVERSION) /* Transaction Reply Lists (TRL) Control Word structure */ #define TRL_SINGLE_FIXED_LENGTH 0x00 #define TRL_SINGLE_VARIABLE_LENGTH 0x40 #define TRL_MULTIPLE_FIXED_LENGTH 0x80 /* msg header defines for MsgFlags */ #define MSG_STATIC 0x0100 #define MSG_64BIT_CNTXT 0x0200 #define MSG_MULTI_TRANS 0x1000 #define MSG_FAIL 0x2000 #define MSG_FINAL 0x4000 #define MSG_REPLY 0x8000 /* minimum size msg */ #define THREE_WORD_MSG_SIZE 0x00030000 #define FOUR_WORD_MSG_SIZE 0x00040000 #define FIVE_WORD_MSG_SIZE 0x00050000 #define SIX_WORD_MSG_SIZE 0x00060000 #define SEVEN_WORD_MSG_SIZE 0x00070000 #define EIGHT_WORD_MSG_SIZE 0x00080000 #define NINE_WORD_MSG_SIZE 0x00090000 #define TEN_WORD_MSG_SIZE 0x000A0000 #define ELEVEN_WORD_MSG_SIZE 0x000B0000 #define I2O_MESSAGE_SIZE(x) ((x)<<16) /* special TID assignments */ #define ADAPTER_TID 0 #define HOST_TID 1 /* outbound queue defines */ #define I2O_MAX_OUTBOUND_MSG_FRAMES 128 #define I2O_OUTBOUND_MSG_FRAME_SIZE 128 /* in 32-bit words */ /* inbound queue definitions */ #define I2O_MSG_INPOOL_MIN 32 #define I2O_INBOUND_MSG_FRAME_SIZE 128 /* in 32-bit words */ #define I2O_POST_WAIT_OK 0 #define I2O_POST_WAIT_TIMEOUT -ETIMEDOUT #define I2O_CONTEXT_LIST_MIN_LENGTH 15 #define I2O_CONTEXT_LIST_USED 0x01 #define I2O_CONTEXT_LIST_DELETED 0x02 /* timeouts */ #define I2O_TIMEOUT_INIT_OUTBOUND_QUEUE 15 #define I2O_TIMEOUT_MESSAGE_GET 5 #define I2O_TIMEOUT_RESET 30 #define I2O_TIMEOUT_STATUS_GET 5 #define I2O_TIMEOUT_LCT_GET 360 #define I2O_TIMEOUT_SCSI_SCB_ABORT 240 /* retries */ #define I2O_HRT_GET_TRIES 3 #define I2O_LCT_GET_TRIES 3 /* defines for max_sectors and max_phys_segments */ #define I2O_MAX_SECTORS 1024 #define I2O_MAX_SECTORS_LIMITED 128 #define I2O_MAX_PHYS_SEGMENTS MAX_PHYS_SEGMENTS /* * Message structures */ struct i2o_message { union { struct { u8 version_offset; u8 flags; u16 size; u32 target_tid:12; u32 init_tid:12; u32 function:8; u32 icntxt; /* initiator context */ u32 tcntxt; /* transaction context */ } s; u32 head[4]; } u; /* List follows */ u32 body[0]; }; /* MFA and I2O message used by mempool */ struct i2o_msg_mfa { u32 mfa; /* MFA returned by the controller */ struct i2o_message msg; /* I2O message */ }; /* * Each I2O device entity has one of these. There is one per device. */ struct i2o_device { i2o_lct_entry lct_data; /* Device LCT information */ struct i2o_controller *iop; /* Controlling IOP */ struct list_head list; /* node in IOP devices list */ struct device device; struct semaphore lock; /* device lock */ }; /* * Event structure provided to the event handling function */ struct i2o_event { struct work_struct work; struct i2o_device *i2o_dev; /* I2O device pointer from which the event reply was initiated */ u16 size; /* Size of data in 32-bit words */ u32 tcntxt; /* Transaction context used at registration */ u32 event_indicator; /* Event indicator from reply */ u32 data[0]; /* Event data from reply */ }; /* * I2O classes which could be handled by the OSM */ struct i2o_class_id { u16 class_id:12; }; /* * I2O driver structure for OSMs */ struct i2o_driver { char *name; /* OSM name */ int context; /* Low 8 bits of the transaction info */ struct i2o_class_id *classes; /* I2O classes that this OSM handles */ /* Message reply handler */ int (*reply) (struct i2o_controller *, u32, struct i2o_message *); /* Event handler */ void (*event) (struct i2o_event *); struct workqueue_struct *event_queue; /* Event queue */ struct device_driver driver; /* notification of changes */ void (*notify_controller_add) (struct i2o_controller *); void (*notify_controller_remove) (struct i2o_controller *); void (*notify_device_add) (struct i2o_device *); void (*notify_device_remove) (struct i2o_device *); struct semaphore lock; }; /* * Contains DMA mapped address information */ struct i2o_dma { void *virt; dma_addr_t phys; size_t len; }; /* * Contains slab cache and mempool information */ struct i2o_pool { char *name; kmem_cache_t *slab; mempool_t *mempool; }; /* * Contains IO mapped address information */ struct i2o_io { void __iomem *virt; unsigned long phys; unsigned long len; }; /* * Context queue entry, used for 32-bit context on 64-bit systems */ struct i2o_context_list_element { struct list_head list; u32 context; void *ptr; unsigned long timestamp; }; /* * Each I2O controller has one of these objects */ struct i2o_controller { char name[16]; int unit; int type; struct pci_dev *pdev; /* PCI device */ unsigned int promise:1; /* Promise controller */ unsigned int adaptec:1; /* DPT / Adaptec controller */ unsigned int raptor:1; /* split bar */ unsigned int no_quiesce:1; /* dont quiesce before reset */ unsigned int short_req:1; /* use small block sizes */ unsigned int limit_sectors:1; /* limit number of sectors / request */ unsigned int pae_support:1; /* controller has 64-bit SGL support */ struct list_head devices; /* list of I2O devices */ struct list_head list; /* Controller list */ void __iomem *in_port; /* Inbout port address */ void __iomem *out_port; /* Outbound port address */ void __iomem *irq_status; /* Interrupt status register address */ void __iomem *irq_mask; /* Interrupt mask register address */ struct i2o_dma status; /* IOP status block */ struct i2o_dma hrt; /* HW Resource Table */ i2o_lct *lct; /* Logical Config Table */ struct i2o_dma dlct; /* Temp LCT */ struct semaphore lct_lock; /* Lock for LCT updates */ struct i2o_dma status_block; /* IOP status block */ struct i2o_io base; /* controller messaging unit */ struct i2o_io in_queue; /* inbound message queue Host->IOP */ struct i2o_dma out_queue; /* outbound message queue IOP->Host */ struct i2o_pool in_msg; /* mempool for inbound messages */ unsigned int battery:1; /* Has a battery backup */ unsigned int io_alloc:1; /* An I/O resource was allocated */ unsigned int mem_alloc:1; /* A memory resource was allocated */ struct resource io_resource; /* I/O resource allocated to the IOP */ struct resource mem_resource; /* Mem resource allocated to the IOP */ struct device device; struct i2o_device *exec; /* Executive */ #if BITS_PER_LONG == 64 spinlock_t context_list_lock; /* lock for context_list */ atomic_t context_list_counter; /* needed for unique contexts */ struct list_head context_list; /* list of context id's and pointers */ #endif spinlock_t lock; /* lock for controller configuration */ void *driver_data[I2O_MAX_DRIVERS]; /* storage for drivers */ }; /* * I2O System table entry * * The system table contains information about all the IOPs in the * system. It is sent to all IOPs so that they can create peer2peer * connections between them. */ struct i2o_sys_tbl_entry { u16 org_id; u16 reserved1; u32 iop_id:12; u32 reserved2:20; u16 seg_num:12; u16 i2o_version:4; u8 iop_state; u8 msg_type; u16 frame_size; u16 reserved3; u32 last_changed; u32 iop_capabilities; u32 inbound_low; u32 inbound_high; }; struct i2o_sys_tbl { u8 num_entries; u8 version; u16 reserved1; u32 change_ind; u32 reserved2; u32 reserved3; struct i2o_sys_tbl_entry iops[0]; }; extern struct list_head i2o_controllers; /* Message functions */ static inline struct i2o_message *i2o_msg_get(struct i2o_controller *); extern struct i2o_message *i2o_msg_get_wait(struct i2o_controller *, int); static inline void i2o_msg_post(struct i2o_controller *, struct i2o_message *); static inline int i2o_msg_post_wait(struct i2o_controller *, struct i2o_message *, unsigned long); extern int i2o_msg_post_wait_mem(struct i2o_controller *, struct i2o_message *, unsigned long, struct i2o_dma *); static inline void i2o_flush_reply(struct i2o_controller *, u32); /* IOP functions */ extern int i2o_status_get(struct i2o_controller *); extern int i2o_event_register(struct i2o_device *, struct i2o_driver *, int, u32); extern struct i2o_device *i2o_iop_find_device(struct i2o_controller *, u16); extern struct i2o_controller *i2o_find_iop(int); /* Functions needed for handling 64-bit pointers in 32-bit context */ #if BITS_PER_LONG == 64 extern u32 i2o_cntxt_list_add(struct i2o_controller *, void *); extern void *i2o_cntxt_list_get(struct i2o_controller *, u32); extern u32 i2o_cntxt_list_remove(struct i2o_controller *, void *); extern u32 i2o_cntxt_list_get_ptr(struct i2o_controller *, void *); static inline u32 i2o_ptr_low(void *ptr) { return (u32) (u64) ptr; }; static inline u32 i2o_ptr_high(void *ptr) { return (u32) ((u64) ptr >> 32); }; static inline u32 i2o_dma_low(dma_addr_t dma_addr) { return (u32) (u64) dma_addr; }; static inline u32 i2o_dma_high(dma_addr_t dma_addr) { return (u32) ((u64) dma_addr >> 32); }; #else static inline u32 i2o_cntxt_list_add(struct i2o_controller *c, void *ptr) { return (u32) ptr; }; static inline void *i2o_cntxt_list_get(struct i2o_controller *c, u32 context) { return (void *)context; }; static inline u32 i2o_cntxt_list_remove(struct i2o_controller *c, void *ptr) { return (u32) ptr; }; static inline u32 i2o_cntxt_list_get_ptr(struct i2o_controller *c, void *ptr) { return (u32) ptr; }; static inline u32 i2o_ptr_low(void *ptr) { return (u32) ptr; }; static inline u32 i2o_ptr_high(void *ptr) { return 0; }; static inline u32 i2o_dma_low(dma_addr_t dma_addr) { return (u32) dma_addr; }; static inline u32 i2o_dma_high(dma_addr_t dma_addr) { return 0; }; #endif /** * i2o_sg_tablesize - Calculate the maximum number of elements in a SGL * @c: I2O controller for which the calculation should be done * @body_size: maximum body size used for message in 32-bit words. * * Return the maximum number of SG elements in a SG list. */ static inline u16 i2o_sg_tablesize(struct i2o_controller *c, u16 body_size) { i2o_status_block *sb = c->status_block.virt; u16 sg_count = (sb->inbound_frame_size - sizeof(struct i2o_message) / 4) - body_size; if (c->pae_support) { /* * for 64-bit a SG attribute element must be added and each * SG element needs 12 bytes instead of 8. */ sg_count -= 2; sg_count /= 3; } else sg_count /= 2; if (c->short_req && (sg_count > 8)) sg_count = 8; return sg_count; }; /** * i2o_dma_map_single - Map pointer to controller and fill in I2O message. * @c: I2O controller * @ptr: pointer to the data which should be mapped * @size: size of data in bytes * @direction: DMA_TO_DEVICE / DMA_FROM_DEVICE * @sg_ptr: pointer to the SG list inside the I2O message * * This function does all necessary DMA handling and also writes the I2O * SGL elements into the I2O message. For details on DMA handling see also * dma_map_single(). The pointer sg_ptr will only be set to the end of the * SG list if the allocation was successful. * * Returns DMA address which must be checked for failures using * dma_mapping_error(). */ static inline dma_addr_t i2o_dma_map_single(struct i2o_controller *c, void *ptr, size_t size, enum dma_data_direction direction, u32 ** sg_ptr) { u32 sg_flags; u32 *mptr = *sg_ptr; dma_addr_t dma_addr; switch (direction) { case DMA_TO_DEVICE: sg_flags = 0xd4000000; break; case DMA_FROM_DEVICE: sg_flags = 0xd0000000; break; default: return 0; } dma_addr = dma_map_single(&c->pdev->dev, ptr, size, direction); if (!dma_mapping_error(dma_addr)) { #ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64 if ((sizeof(dma_addr_t) > 4) && c->pae_support) { *mptr++ = cpu_to_le32(0x7C020002); *mptr++ = cpu_to_le32(PAGE_SIZE); } #endif *mptr++ = cpu_to_le32(sg_flags | size); *mptr++ = cpu_to_le32(i2o_dma_low(dma_addr)); #ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64 if ((sizeof(dma_addr_t) > 4) && c->pae_support) *mptr++ = cpu_to_le32(i2o_dma_high(dma_addr)); #endif *sg_ptr = mptr; } return dma_addr; }; /** * i2o_dma_map_sg - Map a SG List to controller and fill in I2O message. * @c: I2O controller * @sg: SG list to be mapped * @sg_count: number of elements in the SG list * @direction: DMA_TO_DEVICE / DMA_FROM_DEVICE * @sg_ptr: pointer to the SG list inside the I2O message * * This function does all necessary DMA handling and also writes the I2O * SGL elements into the I2O message. For details on DMA handling see also * dma_map_sg(). The pointer sg_ptr will only be set to the end of the SG * list if the allocation was successful. * * Returns 0 on failure or 1 on success. */ static inline int i2o_dma_map_sg(struct i2o_controller *c, struct scatterlist *sg, int sg_count, enum dma_data_direction direction, u32 ** sg_ptr) { u32 sg_flags; u32 *mptr = *sg_ptr; switch (direction) { case DMA_TO_DEVICE: sg_flags = 0x14000000; break; case DMA_FROM_DEVICE: sg_flags = 0x10000000; break; default: return 0; } sg_count = dma_map_sg(&c->pdev->dev, sg, sg_count, direction); if (!sg_count) return 0; #ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64 if ((sizeof(dma_addr_t) > 4) && c->pae_support) { *mptr++ = cpu_to_le32(0x7C020002); *mptr++ = cpu_to_le32(PAGE_SIZE); } #endif while (sg_count-- > 0) { if (!sg_count) sg_flags |= 0xC0000000; *mptr++ = cpu_to_le32(sg_flags | sg_dma_len(sg)); *mptr++ = cpu_to_le32(i2o_dma_low(sg_dma_address(sg))); #ifdef CONFIG_I2O_EXT_ADAPTEC_DMA64 if ((sizeof(dma_addr_t) > 4) && c->pae_support) *mptr++ = cpu_to_le32(i2o_dma_high(sg_dma_address(sg))); #endif sg++; } *sg_ptr = mptr; return 1; }; /** * i2o_dma_alloc - Allocate DMA memory * @dev: struct device pointer to the PCI device of the I2O controller * @addr: i2o_dma struct which should get the DMA buffer * @len: length of the new DMA memory * @gfp_mask: GFP mask * * Allocate a coherent DMA memory and write the pointers into addr. * * Returns 0 on success or -ENOMEM on failure. */ static inline int i2o_dma_alloc(struct device *dev, struct i2o_dma *addr, size_t len, gfp_t gfp_mask) { struct pci_dev *pdev = to_pci_dev(dev); int dma_64 = 0; if ((sizeof(dma_addr_t) > 4) && (pdev->dma_mask == DMA_64BIT_MASK)) { dma_64 = 1; if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) return -ENOMEM; } addr->virt = dma_alloc_coherent(dev, len, &addr->phys, gfp_mask); if ((sizeof(dma_addr_t) > 4) && dma_64) if (pci_set_dma_mask(pdev, DMA_64BIT_MASK)) printk(KERN_WARNING "i2o: unable to set 64-bit DMA"); if (!addr->virt) return -ENOMEM; memset(addr->virt, 0, len); addr->len = len; return 0; }; /** * i2o_dma_free - Free DMA memory * @dev: struct device pointer to the PCI device of the I2O controller * @addr: i2o_dma struct which contains the DMA buffer * * Free a coherent DMA memory and set virtual address of addr to NULL. */ static inline void i2o_dma_free(struct device *dev, struct i2o_dma *addr) { if (addr->virt) { if (addr->phys) dma_free_coherent(dev, addr->len, addr->virt, addr->phys); else kfree(addr->virt); addr->virt = NULL; } }; /** * i2o_dma_realloc - Realloc DMA memory * @dev: struct device pointer to the PCI device of the I2O controller * @addr: pointer to a i2o_dma struct DMA buffer * @len: new length of memory * @gfp_mask: GFP mask * * If there was something allocated in the addr, free it first. If len > 0 * than try to allocate it and write the addresses back to the addr * structure. If len == 0 set the virtual address to NULL. * * Returns the 0 on success or negative error code on failure. */ static inline int i2o_dma_realloc(struct device *dev, struct i2o_dma *addr, size_t len, gfp_t gfp_mask) { i2o_dma_free(dev, addr); if (len) return i2o_dma_alloc(dev, addr, len, gfp_mask); return 0; }; /* * i2o_pool_alloc - Allocate an slab cache and mempool * @mempool: pointer to struct i2o_pool to write data into. * @name: name which is used to identify cache * @size: size of each object * @min_nr: minimum number of objects * * First allocates a slab cache with name and size. Then allocates a * mempool which uses the slab cache for allocation and freeing. * * Returns 0 on success or negative error code on failure. */ static inline int i2o_pool_alloc(struct i2o_pool *pool, const char *name, size_t size, int min_nr) { pool->name = kmalloc(strlen(name) + 1, GFP_KERNEL); if (!pool->name) goto exit; strcpy(pool->name, name); pool->slab = kmem_cache_create(pool->name, size, 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if (!pool->slab) goto free_name; pool->mempool = mempool_create_slab_pool(min_nr, pool->slab); if (!pool->mempool) goto free_slab; return 0; free_slab: kmem_cache_destroy(pool->slab); free_name: kfree(pool->name); exit: return -ENOMEM; }; /* * i2o_pool_free - Free slab cache and mempool again * @mempool: pointer to struct i2o_pool which should be freed * * Note that you have to return all objects to the mempool again before * calling i2o_pool_free(). */ static inline void i2o_pool_free(struct i2o_pool *pool) { mempool_destroy(pool->mempool); kmem_cache_destroy(pool->slab); kfree(pool->name); }; /* I2O driver (OSM) functions */ extern int i2o_driver_register(struct i2o_driver *); extern void i2o_driver_unregister(struct i2o_driver *); /** * i2o_driver_notify_controller_add - Send notification of added controller * to a single I2O driver * * Send notification of added controller to a single registered driver. */ static inline void i2o_driver_notify_controller_add(struct i2o_driver *drv, struct i2o_controller *c) { if (drv->notify_controller_add) drv->notify_controller_add(c); }; /** * i2o_driver_notify_controller_remove - Send notification of removed * controller to a single I2O driver * * Send notification of removed controller to a single registered driver. */ static inline void i2o_driver_notify_controller_remove(struct i2o_driver *drv, struct i2o_controller *c) { if (drv->notify_controller_remove) drv->notify_controller_remove(c); }; /** * i2o_driver_notify_device_add - Send notification of added device to a * single I2O driver * * Send notification of added device to a single registered driver. */ static inline void i2o_driver_notify_device_add(struct i2o_driver *drv, struct i2o_device *i2o_dev) { if (drv->notify_device_add) drv->notify_device_add(i2o_dev); }; /** * i2o_driver_notify_device_remove - Send notification of removed device * to a single I2O driver * * Send notification of removed device to a single registered driver. */ static inline void i2o_driver_notify_device_remove(struct i2o_driver *drv, struct i2o_device *i2o_dev) { if (drv->notify_device_remove) drv->notify_device_remove(i2o_dev); }; extern void i2o_driver_notify_controller_add_all(struct i2o_controller *); extern void i2o_driver_notify_controller_remove_all(struct i2o_controller *); extern void i2o_driver_notify_device_add_all(struct i2o_device *); extern void i2o_driver_notify_device_remove_all(struct i2o_device *); /* I2O device functions */ extern int i2o_device_claim(struct i2o_device *); extern int i2o_device_claim_release(struct i2o_device *); /* Exec OSM functions */ extern int i2o_exec_lct_get(struct i2o_controller *); /* device / driver / kobject conversion functions */ #define to_i2o_driver(drv) container_of(drv,struct i2o_driver, driver) #define to_i2o_device(dev) container_of(dev, struct i2o_device, device) #define to_i2o_controller(dev) container_of(dev, struct i2o_controller, device) #define kobj_to_i2o_device(kobj) to_i2o_device(container_of(kobj, struct device, kobj)) /** * i2o_out_to_virt - Turn an I2O message to a virtual address * @c: controller * @m: message engine value * * Turn a receive message from an I2O controller bus address into * a Linux virtual address. The shared page frame is a linear block * so we simply have to shift the offset. This function does not * work for sender side messages as they are ioremap objects * provided by the I2O controller. */ static inline struct i2o_message *i2o_msg_out_to_virt(struct i2o_controller *c, u32 m) { BUG_ON(m < c->out_queue.phys || m >= c->out_queue.phys + c->out_queue.len); return c->out_queue.virt + (m - c->out_queue.phys); }; /** * i2o_msg_in_to_virt - Turn an I2O message to a virtual address * @c: controller * @m: message engine value * * Turn a send message from an I2O controller bus address into * a Linux virtual address. The shared page frame is a linear block * so we simply have to shift the offset. This function does not * work for receive side messages as they are kmalloc objects * in a different pool. */ static inline struct i2o_message __iomem *i2o_msg_in_to_virt(struct i2o_controller *c, u32 m) { return c->in_queue.virt + m; }; /** * i2o_msg_get - obtain an I2O message from the IOP * @c: I2O controller * * This function tries to get a message frame. If no message frame is * available do not wait until one is availabe (see also i2o_msg_get_wait). * The returned pointer to the message frame is not in I/O memory, it is * allocated from a mempool. But because a MFA is allocated from the * controller too it is guaranteed that i2o_msg_post() will never fail. * * On a success a pointer to the message frame is returned. If the message * queue is empty -EBUSY is returned and if no memory is available -ENOMEM * is returned. */ static inline struct i2o_message *i2o_msg_get(struct i2o_controller *c) { struct i2o_msg_mfa *mmsg = mempool_alloc(c->in_msg.mempool, GFP_ATOMIC); if (!mmsg) return ERR_PTR(-ENOMEM); mmsg->mfa = readl(c->in_port); if (unlikely(mmsg->mfa >= c->in_queue.len)) { u32 mfa = mmsg->mfa; mempool_free(mmsg, c->in_msg.mempool); if (mfa == I2O_QUEUE_EMPTY) return ERR_PTR(-EBUSY); return ERR_PTR(-EFAULT); } return &mmsg->msg; }; /** * i2o_msg_post - Post I2O message to I2O controller * @c: I2O controller to which the message should be send * @msg: message returned by i2o_msg_get() * * Post the message to the I2O controller and return immediately. */ static inline void i2o_msg_post(struct i2o_controller *c, struct i2o_message *msg) { struct i2o_msg_mfa *mmsg; mmsg = container_of(msg, struct i2o_msg_mfa, msg); memcpy_toio(i2o_msg_in_to_virt(c, mmsg->mfa), msg, (le32_to_cpu(msg->u.head[0]) >> 16) << 2); writel(mmsg->mfa, c->in_port); mempool_free(mmsg, c->in_msg.mempool); }; /** * i2o_msg_post_wait - Post and wait a message and wait until return * @c: controller * @m: message to post * @timeout: time in seconds to wait * * This API allows an OSM to post a message and then be told whether or * not the system received a successful reply. If the message times out * then the value '-ETIMEDOUT' is returned. * * Returns 0 on success or negative error code on failure. */ static inline int i2o_msg_post_wait(struct i2o_controller *c, struct i2o_message *msg, unsigned long timeout) { return i2o_msg_post_wait_mem(c, msg, timeout, NULL); }; /** * i2o_msg_nop_mfa - Returns a fetched MFA back to the controller * @c: I2O controller from which the MFA was fetched * @mfa: MFA which should be returned * * This function must be used for preserved messages, because i2o_msg_nop() * also returns the allocated memory back to the msg_pool mempool. */ static inline void i2o_msg_nop_mfa(struct i2o_controller *c, u32 mfa) { struct i2o_message __iomem *msg; u32 nop[3] = { THREE_WORD_MSG_SIZE | SGL_OFFSET_0, I2O_CMD_UTIL_NOP << 24 | HOST_TID << 12 | ADAPTER_TID, 0x00000000 }; msg = i2o_msg_in_to_virt(c, mfa); memcpy_toio(msg, nop, sizeof(nop)); writel(mfa, c->in_port); }; /** * i2o_msg_nop - Returns a message which is not used * @c: I2O controller from which the message was created * @msg: message which should be returned * * If you fetch a message via i2o_msg_get, and can't use it, you must * return the message with this function. Otherwise the MFA is lost as well * as the allocated memory from the mempool. */ static inline void i2o_msg_nop(struct i2o_controller *c, struct i2o_message *msg) { struct i2o_msg_mfa *mmsg; mmsg = container_of(msg, struct i2o_msg_mfa, msg); i2o_msg_nop_mfa(c, mmsg->mfa); mempool_free(mmsg, c->in_msg.mempool); }; /** * i2o_flush_reply - Flush reply from I2O controller * @c: I2O controller * @m: the message identifier * * The I2O controller must be informed that the reply message is not needed * anymore. If you forget to flush the reply, the message frame can't be * used by the controller anymore and is therefore lost. */ static inline void i2o_flush_reply(struct i2o_controller *c, u32 m) { writel(m, c->out_port); }; /* * Endian handling wrapped into the macro - keeps the core code * cleaner. */ #define i2o_raw_writel(val, mem) __raw_writel(cpu_to_le32(val), mem) extern int i2o_parm_field_get(struct i2o_device *, int, int, void *, int); extern int i2o_parm_table_get(struct i2o_device *, int, int, int, void *, int, void *, int); /* debugging and troubleshooting/diagnostic helpers. */ #define osm_printk(level, format, arg...) \ printk(level "%s: " format, OSM_NAME , ## arg) #ifdef DEBUG #define osm_debug(format, arg...) \ osm_printk(KERN_DEBUG, format , ## arg) #else #define osm_debug(format, arg...) \ do { } while (0) #endif #define osm_err(format, arg...) \ osm_printk(KERN_ERR, format , ## arg) #define osm_info(format, arg...) \ osm_printk(KERN_INFO, format , ## arg) #define osm_warn(format, arg...) \ osm_printk(KERN_WARNING, format , ## arg) /* debugging functions */ extern void i2o_report_status(const char *, const char *, struct i2o_message *); extern void i2o_dump_message(struct i2o_message *); extern void i2o_dump_hrt(struct i2o_controller *c); extern void i2o_debug_state(struct i2o_controller *c); #endif /* __KERNEL__ */ #endif /* _I2O_H */