#ifndef __LINUX_GFP_H #define __LINUX_GFP_H #include <linux/mmzone.h> #include <linux/stddef.h> #include <linux/linkage.h> #include <linux/topology.h> #include <linux/mmdebug.h> struct vm_area_struct; /* * GFP bitmasks.. * * Zone modifiers (see linux/mmzone.h - low three bits) * * Do not put any conditional on these. If necessary modify the definitions * without the underscores and use them consistently. The definitions here may * be used in bit comparisons. */ #define __GFP_DMA ((__force gfp_t)0x01u) #define __GFP_HIGHMEM ((__force gfp_t)0x02u) #define __GFP_DMA32 ((__force gfp_t)0x04u) #define __GFP_MOVABLE ((__force gfp_t)0x08u) /* Page is movable */ #define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE) /* * Action modifiers - doesn't change the zoning * * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt * _might_ fail. This depends upon the particular VM implementation. * * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller * cannot handle allocation failures. This modifier is deprecated and no new * users should be added. * * __GFP_NORETRY: The VM implementation must not retry indefinitely. * * __GFP_MOVABLE: Flag that this page will be movable by the page migration * mechanism or reclaimed */ #define __GFP_WAIT ((__force gfp_t)0x10u) /* Can wait and reschedule? */ #define __GFP_HIGH ((__force gfp_t)0x20u) /* Should access emergency pools? */ #define __GFP_IO ((__force gfp_t)0x40u) /* Can start physical IO? */ #define __GFP_FS ((__force gfp_t)0x80u) /* Can call down to low-level FS? */ #define __GFP_COLD ((__force gfp_t)0x100u) /* Cache-cold page required */ #define __GFP_NOWARN ((__force gfp_t)0x200u) /* Suppress page allocation failure warning */ #define __GFP_REPEAT ((__force gfp_t)0x400u) /* See above */ #define __GFP_NOFAIL ((__force gfp_t)0x800u) /* See above */ #define __GFP_NORETRY ((__force gfp_t)0x1000u)/* See above */ #define __GFP_COMP ((__force gfp_t)0x4000u)/* Add compound page metadata */ #define __GFP_ZERO ((__force gfp_t)0x8000u)/* Return zeroed page on success */ #define __GFP_NOMEMALLOC ((__force gfp_t)0x10000u) /* Don't use emergency reserves */ #define __GFP_HARDWALL ((__force gfp_t)0x20000u) /* Enforce hardwall cpuset memory allocs */ #define __GFP_THISNODE ((__force gfp_t)0x40000u)/* No fallback, no policies */ #define __GFP_RECLAIMABLE ((__force gfp_t)0x80000u) /* Page is reclaimable */ #ifdef CONFIG_KMEMCHECK #define __GFP_NOTRACK ((__force gfp_t)0x200000u) /* Don't track with kmemcheck */ #else #define __GFP_NOTRACK ((__force gfp_t)0) #endif /* * This may seem redundant, but it's a way of annotating false positives vs. * allocations that simply cannot be supported (e.g. page tables). */ #define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK) #define __GFP_BITS_SHIFT 22 /* Room for 22 __GFP_FOO bits */ #define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1)) /* This equals 0, but use constants in case they ever change */ #define GFP_NOWAIT (GFP_ATOMIC & ~__GFP_HIGH) /* GFP_ATOMIC means both !wait (__GFP_WAIT not set) and use emergency pool */ #define GFP_ATOMIC (__GFP_HIGH) #define GFP_NOIO (__GFP_WAIT) #define GFP_NOFS (__GFP_WAIT | __GFP_IO) #define GFP_KERNEL (__GFP_WAIT | __GFP_IO | __GFP_FS) #define GFP_TEMPORARY (__GFP_WAIT | __GFP_IO | __GFP_FS | \ __GFP_RECLAIMABLE) #define GFP_USER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL) #define GFP_HIGHUSER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL | \ __GFP_HIGHMEM) #define GFP_HIGHUSER_MOVABLE (__GFP_WAIT | __GFP_IO | __GFP_FS | \ __GFP_HARDWALL | __GFP_HIGHMEM | \ __GFP_MOVABLE) #define GFP_IOFS (__GFP_IO | __GFP_FS) #ifdef CONFIG_NUMA #define GFP_THISNODE (__GFP_THISNODE | __GFP_NOWARN | __GFP_NORETRY) #else #define GFP_THISNODE ((__force gfp_t)0) #endif /* This mask makes up all the page movable related flags */ #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE) /* Control page allocator reclaim behavior */ #define GFP_RECLAIM_MASK (__GFP_WAIT|__GFP_HIGH|__GFP_IO|__GFP_FS|\ __GFP_NOWARN|__GFP_REPEAT|__GFP_NOFAIL|\ __GFP_NORETRY|__GFP_NOMEMALLOC) /* Control slab gfp mask during early boot */ #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_WAIT|__GFP_IO|__GFP_FS)) /* Control allocation constraints */ #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) /* Do not use these with a slab allocator */ #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) /* Flag - indicates that the buffer will be suitable for DMA. Ignored on some platforms, used as appropriate on others */ #define GFP_DMA __GFP_DMA /* 4GB DMA on some platforms */ #define GFP_DMA32 __GFP_DMA32 /* Convert GFP flags to their corresponding migrate type */ static inline int allocflags_to_migratetype(gfp_t gfp_flags) { WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); if (unlikely(page_group_by_mobility_disabled)) return MIGRATE_UNMOVABLE; /* Group based on mobility */ return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) | ((gfp_flags & __GFP_RECLAIMABLE) != 0); } #ifdef CONFIG_HIGHMEM #define OPT_ZONE_HIGHMEM ZONE_HIGHMEM #else #define OPT_ZONE_HIGHMEM ZONE_NORMAL #endif #ifdef CONFIG_ZONE_DMA #define OPT_ZONE_DMA ZONE_DMA #else #define OPT_ZONE_DMA ZONE_NORMAL #endif #ifdef CONFIG_ZONE_DMA32 #define OPT_ZONE_DMA32 ZONE_DMA32 #else #define OPT_ZONE_DMA32 ZONE_NORMAL #endif /* * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the * zone to use given the lowest 4 bits of gfp_t. Entries are ZONE_SHIFT long * and there are 16 of them to cover all possible combinations of * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM. * * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA. * But GFP_MOVABLE is not only a zone specifier but also an allocation * policy. Therefore __GFP_MOVABLE plus another zone selector is valid. * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1". * * bit result * ================= * 0x0 => NORMAL * 0x1 => DMA or NORMAL * 0x2 => HIGHMEM or NORMAL * 0x3 => BAD (DMA+HIGHMEM) * 0x4 => DMA32 or DMA or NORMAL * 0x5 => BAD (DMA+DMA32) * 0x6 => BAD (HIGHMEM+DMA32) * 0x7 => BAD (HIGHMEM+DMA32+DMA) * 0x8 => NORMAL (MOVABLE+0) * 0x9 => DMA or NORMAL (MOVABLE+DMA) * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too) * 0xb => BAD (MOVABLE+HIGHMEM+DMA) * 0xc => DMA32 (MOVABLE+HIGHMEM+DMA32) * 0xd => BAD (MOVABLE+DMA32+DMA) * 0xe => BAD (MOVABLE+DMA32+HIGHMEM) * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA) * * ZONES_SHIFT must be <= 2 on 32 bit platforms. */ #if 16 * ZONES_SHIFT > BITS_PER_LONG #error ZONES_SHIFT too large to create GFP_ZONE_TABLE integer #endif #define GFP_ZONE_TABLE ( \ (ZONE_NORMAL << 0 * ZONES_SHIFT) \ | (OPT_ZONE_DMA << __GFP_DMA * ZONES_SHIFT) \ | (OPT_ZONE_HIGHMEM << __GFP_HIGHMEM * ZONES_SHIFT) \ | (OPT_ZONE_DMA32 << __GFP_DMA32 * ZONES_SHIFT) \ | (ZONE_NORMAL << __GFP_MOVABLE * ZONES_SHIFT) \ | (OPT_ZONE_DMA << (__GFP_MOVABLE | __GFP_DMA) * ZONES_SHIFT) \ | (ZONE_MOVABLE << (__GFP_MOVABLE | __GFP_HIGHMEM) * ZONES_SHIFT)\ | (OPT_ZONE_DMA32 << (__GFP_MOVABLE | __GFP_DMA32) * ZONES_SHIFT)\ ) /* * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per * entry starting with bit 0. Bit is set if the combination is not * allowed. */ #define GFP_ZONE_BAD ( \ 1 << (__GFP_DMA | __GFP_HIGHMEM) \ | 1 << (__GFP_DMA | __GFP_DMA32) \ | 1 << (__GFP_DMA32 | __GFP_HIGHMEM) \ | 1 << (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM) \ | 1 << (__GFP_MOVABLE | __GFP_HIGHMEM | __GFP_DMA) \ | 1 << (__GFP_MOVABLE | __GFP_DMA32 | __GFP_DMA) \ | 1 << (__GFP_MOVABLE | __GFP_DMA32 | __GFP_HIGHMEM) \ | 1 << (__GFP_MOVABLE | __GFP_DMA32 | __GFP_DMA | __GFP_HIGHMEM)\ ) static inline enum zone_type gfp_zone(gfp_t flags) { enum zone_type z; int bit = flags & GFP_ZONEMASK; z = (GFP_ZONE_TABLE >> (bit * ZONES_SHIFT)) & ((1 << ZONES_SHIFT) - 1); if (__builtin_constant_p(bit)) MAYBE_BUILD_BUG_ON((GFP_ZONE_BAD >> bit) & 1); else { #ifdef CONFIG_DEBUG_VM BUG_ON((GFP_ZONE_BAD >> bit) & 1); #endif } return z; } /* * There is only one page-allocator function, and two main namespaces to * it. The alloc_page*() variants return 'struct page *' and as such * can allocate highmem pages, the *get*page*() variants return * virtual kernel addresses to the allocated page(s). */ static inline int gfp_zonelist(gfp_t flags) { if (NUMA_BUILD && unlikely(flags & __GFP_THISNODE)) return 1; return 0; } /* * We get the zone list from the current node and the gfp_mask. * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones. * There are two zonelists per node, one for all zones with memory and * one containing just zones from the node the zonelist belongs to. * * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets * optimized to &contig_page_data at compile-time. */ static inline struct zonelist *node_zonelist(int nid, gfp_t flags) { return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags); } #ifndef HAVE_ARCH_FREE_PAGE static inline void arch_free_page(struct page *page, int order) { } #endif #ifndef HAVE_ARCH_ALLOC_PAGE static inline void arch_alloc_page(struct page *page, int order) { } #endif struct page * __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, nodemask_t *nodemask); static inline struct page * __alloc_pages(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist) { return __alloc_pages_nodemask(gfp_mask, order, zonelist, NULL); } static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) { /* Unknown node is current node */ if (nid < 0) nid = numa_node_id(); return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask)); } static inline struct page *alloc_pages_exact_node(int nid, gfp_t gfp_mask, unsigned int order) { VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES); return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask)); } #ifdef CONFIG_NUMA extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order); static inline struct page * alloc_pages(gfp_t gfp_mask, unsigned int order) { return alloc_pages_current(gfp_mask, order); } extern struct page *alloc_page_vma(gfp_t gfp_mask, struct vm_area_struct *vma, unsigned long addr); #else #define alloc_pages(gfp_mask, order) \ alloc_pages_node(numa_node_id(), gfp_mask, order) #define alloc_page_vma(gfp_mask, vma, addr) alloc_pages(gfp_mask, 0) #endif #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0) extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order); extern unsigned long get_zeroed_page(gfp_t gfp_mask); void *alloc_pages_exact(size_t size, gfp_t gfp_mask); void free_pages_exact(void *virt, size_t size); #define __get_free_page(gfp_mask) \ __get_free_pages((gfp_mask), 0) #define __get_dma_pages(gfp_mask, order) \ __get_free_pages((gfp_mask) | GFP_DMA, (order)) extern void __free_pages(struct page *page, unsigned int order); extern void free_pages(unsigned long addr, unsigned int order); extern void free_hot_cold_page(struct page *page, int cold); #define __free_page(page) __free_pages((page), 0) #define free_page(addr) free_pages((addr), 0) void page_alloc_init(void); void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp); void drain_all_pages(void); void drain_local_pages(void *dummy); extern gfp_t gfp_allowed_mask; extern void set_gfp_allowed_mask(gfp_t mask); extern gfp_t clear_gfp_allowed_mask(gfp_t mask); #endif /* __LINUX_GFP_H */