/* * linux/include/asm-xtensa/page.h * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version2 as * published by the Free Software Foundation. * * Copyright (C) 2001 - 2005 Tensilica Inc. */ #ifndef _XTENSA_PGTABLE_H #define _XTENSA_PGTABLE_H #include <asm-generic/pgtable-nopmd.h> #include <asm/page.h> /* Assertions. */ #ifdef CONFIG_MMU #if (XCHAL_MMU_RINGS < 2) # error Linux build assumes at least 2 ring levels. #endif #if (XCHAL_MMU_CA_BITS != 4) # error We assume exactly four bits for CA. #endif #if (XCHAL_MMU_SR_BITS != 0) # error We have no room for SR bits. #endif /* * Use the first min-wired way for mapping page-table pages. * Page coloring requires a second min-wired way. */ #if (XCHAL_DTLB_MINWIRED_SETS == 0) # error Need a min-wired way for mapping page-table pages #endif #define DTLB_WAY_PGTABLE XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAY) #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK # if XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAYS) >= 2 # define DTLB_WAY_DCACHE_ALIAS0 (DTLB_WAY_PGTABLE + 1) # define DTLB_WAY_DCACHE_ALIAS1 (DTLB_WAY_PGTABLE + 2) # else # error Page coloring requires its own wired dtlb way! # endif #endif #endif /* CONFIG_MMU */ /* * We only use two ring levels, user and kernel space. */ #define USER_RING 1 /* user ring level */ #define KERNEL_RING 0 /* kernel ring level */ /* * The Xtensa architecture port of Linux has a two-level page table system, * i.e. the logical three-level Linux page table layout are folded. * Each task has the following memory page tables: * * PGD table (page directory), ie. 3rd-level page table: * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables * (Architectures that don't have the PMD folded point to the PMD tables) * * The pointer to the PGD table for a given task can be retrieved from * the task structure (struct task_struct*) t, e.g. current(): * (t->mm ? t->mm : t->active_mm)->pgd * * PMD tables (page middle-directory), ie. 2nd-level page tables: * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1). * * PTE tables (page table entry), ie. 1st-level page tables: * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE * invalid_pte_table for absent mappings. * * The individual pages are 4 kB big with special pages for the empty_zero_page. */ #define PGDIR_SHIFT 22 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * Entries per page directory level: we use two-level, so * we don't really have any PMD directory physically. */ #define PTRS_PER_PTE 1024 #define PTRS_PER_PTE_SHIFT 10 #define PTRS_PER_PMD 1 #define PTRS_PER_PGD 1024 #define PGD_ORDER 0 #define PMD_ORDER 0 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) #define FIRST_USER_ADDRESS XCHAL_SEG_MAPPABLE_VADDR #define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT) /* virtual memory area. We keep a distance to other memory regions to be * on the safe side. We also use this area for cache aliasing. */ // FIXME: virtual memory area must be configuration-dependent #define VMALLOC_START 0xC0000000 #define VMALLOC_END 0xC7FF0000 /* Xtensa Linux config PTE layout (when present): * 31-12: PPN * 11-6: Software * 5-4: RING * 3-0: CA * * Similar to the Alpha and MIPS ports, we need to keep track of the ref * and mod bits in software. We have a software "you can read * from this page" bit, and a hardware one which actually lets the * process read from the page. On the same token we have a software * writable bit and the real hardware one which actually lets the * process write to the page. * * See further below for PTE layout for swapped-out pages. */ #define _PAGE_VALID (1<<0) /* hardware: page is accessible */ #define _PAGE_WRENABLE (1<<1) /* hardware: page is writable */ /* None of these cache modes include MP coherency: */ #define _PAGE_NO_CACHE (0<<2) /* bypass, non-speculative */ #if XCHAL_DCACHE_IS_WRITEBACK # define _PAGE_WRITEBACK (1<<2) /* write back */ # define _PAGE_WRITETHRU (2<<2) /* write through */ #else # define _PAGE_WRITEBACK (1<<2) /* assume write through */ # define _PAGE_WRITETHRU (1<<2) #endif #define _PAGE_NOALLOC (3<<2) /* don't allocate cache,if not cached */ #define _CACHE_MASK (3<<2) #define _PAGE_USER (1<<4) /* user access (ring=1) */ #define _PAGE_KERNEL (0<<4) /* kernel access (ring=0) */ /* Software */ #define _PAGE_RW (1<<6) /* software: page writable */ #define _PAGE_DIRTY (1<<7) /* software: page dirty */ #define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */ #define _PAGE_FILE (1<<9) /* nonlinear file mapping*/ #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _CACHE_MASK | _PAGE_DIRTY) #define _PAGE_PRESENT ( _PAGE_VALID | _PAGE_WRITEBACK | _PAGE_ACCESSED) #ifdef CONFIG_MMU # define PAGE_NONE __pgprot(_PAGE_PRESENT) # define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_RW) # define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER) # define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER) # define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_KERNEL | _PAGE_WRENABLE) # define PAGE_INVALID __pgprot(_PAGE_USER) # if (DCACHE_WAY_SIZE > PAGE_SIZE) # define PAGE_DIRECTORY __pgprot(_PAGE_VALID | _PAGE_ACCESSED | _PAGE_KERNEL) # else # define PAGE_DIRECTORY __pgprot(_PAGE_PRESENT | _PAGE_KERNEL) # endif #else /* no mmu */ # define PAGE_NONE __pgprot(0) # define PAGE_SHARED __pgprot(0) # define PAGE_COPY __pgprot(0) # define PAGE_READONLY __pgprot(0) # define PAGE_KERNEL __pgprot(0) #endif /* * On certain configurations of Xtensa MMUs (eg. the initial Linux config), * the MMU can't do page protection for execute, and considers that the same as * read. Also, write permissions may imply read permissions. * What follows is the closest we can get by reasonable means.. * See linux/mm/mmap.c for protection_map[] array that uses these definitions. */ #define __P000 PAGE_NONE /* private --- */ #define __P001 PAGE_READONLY /* private --r */ #define __P010 PAGE_COPY /* private -w- */ #define __P011 PAGE_COPY /* private -wr */ #define __P100 PAGE_READONLY /* private x-- */ #define __P101 PAGE_READONLY /* private x-r */ #define __P110 PAGE_COPY /* private xw- */ #define __P111 PAGE_COPY /* private xwr */ #define __S000 PAGE_NONE /* shared --- */ #define __S001 PAGE_READONLY /* shared --r */ #define __S010 PAGE_SHARED /* shared -w- */ #define __S011 PAGE_SHARED /* shared -wr */ #define __S100 PAGE_READONLY /* shared x-- */ #define __S101 PAGE_READONLY /* shared x-r */ #define __S110 PAGE_SHARED /* shared xw- */ #define __S111 PAGE_SHARED /* shared xwr */ #ifndef __ASSEMBLY__ #define pte_ERROR(e) \ printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e)) extern unsigned long empty_zero_page[1024]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)]; /* * The pmd contains the kernel virtual address of the pte page. */ #define pmd_page_kernel(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK)) #define pmd_page(pmd) virt_to_page(pmd_val(pmd)) /* * The following only work if pte_present() is true. */ #define pte_none(pte) (!(pte_val(pte) ^ _PAGE_USER)) #define pte_present(pte) (pte_val(pte) & _PAGE_VALID) #define pte_clear(mm,addr,ptep) \ do { update_pte(ptep, __pte(_PAGE_USER)); } while(0) #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK) #define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0) #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) /* Note: We use the _PAGE_USER bit to indicate write-protect kernel memory */ static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW | _PAGE_WRENABLE); return pte; } static inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } static inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) #define pte_same(a,b) (pte_val(a) == pte_val(b)) #define pte_page(x) pfn_to_page(pte_pfn(x)) #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); } /* * Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */ static inline void update_pte(pte_t *ptep, pte_t pteval) { *ptep = pteval; #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (ptep)); #endif } struct mm_struct; static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval) { update_pte(ptep, pteval); } static inline void set_pmd(pmd_t *pmdp, pmd_t pmdval) { *pmdp = pmdval; #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (pmdp)); #endif } struct vm_area_struct; static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { pte_t pte = *ptep; if (!pte_young(pte)) return 0; update_pte(ptep, pte_mkold(pte)); return 1; } static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { pte_t pte = *ptep; if (!pte_dirty(pte)) return 0; update_pte(ptep, pte_mkclean(pte)); return 1; } static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = *ptep; pte_clear(mm, addr, ptep); return pte; } static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = *ptep; update_pte(ptep, pte_wrprotect(pte)); } /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* to find an entry in a page-table-directory */ #define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address)) #define pgd_index(address) ((address) >> PGDIR_SHIFT) /* Find an entry in the second-level page table.. */ #define pmd_offset(dir,address) ((pmd_t*)(dir)) /* Find an entry in the third-level page table.. */ #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) #define pte_offset_kernel(dir,addr) \ ((pte_t*) pmd_page_kernel(*(dir)) + pte_index(addr)) #define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr)) #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr)) #define pte_unmap(pte) do { } while (0) #define pte_unmap_nested(pte) do { } while (0) /* * Encode and decode a swap entry. * Each PTE in a process VM's page table is either: * "present" -- valid and not swapped out, protection bits are meaningful; * "not present" -- which further subdivides in these two cases: * "none" -- no mapping at all; identified by pte_none(), set by pte_clear( * "swapped out" -- the page is swapped out, and the SWP macros below * are used to store swap file info in the PTE itself. * * In the Xtensa processor MMU, any PTE entries in user space (or anywhere * in virtual memory that can map differently across address spaces) * must have a correct ring value that represents the RASID field that * is changed when switching address spaces. Eg. such PTE entries cannot * be set to ring zero, because that can cause a (global) kernel ASID * entry to be created in the TLBs (even with invalid cache attribute), * potentially causing a multihit exception when going back to another * address space that mapped the same virtual address at another ring. * * SO: we avoid using ring bits (_PAGE_RING_MASK) in "not present" PTEs. * We also avoid using the _PAGE_VALID bit which must be zero for non-present * pages. * * We end up with the following available bits: 1..3 and 7..31. * We don't bother with 1..3 for now (we can use them later if needed), * and chose to allocate 6 bits for SWP_TYPE and the remaining 19 bits * for SWP_OFFSET. At least 5 bits are needed for SWP_TYPE, because it * is currently implemented as an index into swap_info[MAX_SWAPFILES] * and MAX_SWAPFILES is currently defined as 32 in <linux/swap.h>. * However, for some reason all other architectures in the 2.4 kernel * reserve either 6, 7, or 8 bits so I'll not detract from that for now. :) * SWP_OFFSET is an offset into the swap file in page-size units, so * with 4 kB pages, 19 bits supports a maximum swap file size of 2 GB. * * FIXME: 2 GB isn't very big. Other bits can be used to allow * larger swap sizes. In the meantime, it appears relatively easy to get * around the 2 GB limitation by simply using multiple swap files. */ #define __swp_type(entry) (((entry).val >> 7) & 0x3f) #define __swp_offset(entry) ((entry).val >> 13) #define __swp_entry(type,offs) ((swp_entry_t) {((type) << 7) | ((offs) << 13)}) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #define PTE_FILE_MAX_BITS 29 #define pte_to_pgoff(pte) (pte_val(pte) >> 3) #define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE }) #endif /* !defined (__ASSEMBLY__) */ #ifdef __ASSEMBLY__ /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long), * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long), * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long) * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long) * * Note: We require an additional temporary register which can be the same as * the register that holds the address. * * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr)) * */ #define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT #define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT #define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \ _PGD_INDEX(tmp, adr); \ addx4 mm, tmp, mm #define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \ srli pmd, pmd, PAGE_SHIFT; \ slli pmd, pmd, PAGE_SHIFT; \ addx4 pmd, tmp, pmd #else extern void paging_init(void); #define kern_addr_valid(addr) (1) extern void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte); /* * remap a physical page `pfn' of size `size' with page protection `prot' * into virtual address `from' */ #define io_remap_pfn_range(vma,from,pfn,size,prot) \ remap_pfn_range(vma, from, pfn, size, prot) /* No page table caches to init */ #define pgtable_cache_init() do { } while (0) typedef pte_t *pte_addr_t; #endif /* !defined (__ASSEMBLY__) */ #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY #define __HAVE_ARCH_PTEP_GET_AND_CLEAR #define __HAVE_ARCH_PTEP_SET_WRPROTECT #define __HAVE_ARCH_PTEP_MKDIRTY #define __HAVE_ARCH_PTE_SAME #include <asm-generic/pgtable.h> #endif /* _XTENSA_PGTABLE_H */