#ifndef _ASM_X86_PGTABLE_H #define _ASM_X86_PGTABLE_H #define USER_PTRS_PER_PGD ((TASK_SIZE-1)/PGDIR_SIZE+1) #define FIRST_USER_ADDRESS 0 #define _PAGE_BIT_PRESENT 0 #define _PAGE_BIT_RW 1 #define _PAGE_BIT_USER 2 #define _PAGE_BIT_PWT 3 #define _PAGE_BIT_PCD 4 #define _PAGE_BIT_ACCESSED 5 #define _PAGE_BIT_DIRTY 6 #define _PAGE_BIT_FILE 6 #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */ #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */ #define _PAGE_BIT_UNUSED1 9 /* available for programmer */ #define _PAGE_BIT_UNUSED2 10 #define _PAGE_BIT_UNUSED3 11 #define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */ /* * Note: we use _AC(1, L) instead of _AC(1, UL) so that we get a * sign-extended value on 32-bit with all 1's in the upper word, * which preserves the upper pte values on 64-bit ptes: */ #define _PAGE_PRESENT (_AC(1, L)<<_PAGE_BIT_PRESENT) #define _PAGE_RW (_AC(1, L)<<_PAGE_BIT_RW) #define _PAGE_USER (_AC(1, L)<<_PAGE_BIT_USER) #define _PAGE_PWT (_AC(1, L)<<_PAGE_BIT_PWT) #define _PAGE_PCD (_AC(1, L)<<_PAGE_BIT_PCD) #define _PAGE_ACCESSED (_AC(1, L)<<_PAGE_BIT_ACCESSED) #define _PAGE_DIRTY (_AC(1, L)<<_PAGE_BIT_DIRTY) #define _PAGE_PSE (_AC(1, L)<<_PAGE_BIT_PSE) /* 2MB page */ #define _PAGE_GLOBAL (_AC(1, L)<<_PAGE_BIT_GLOBAL) /* Global TLB entry */ #define _PAGE_UNUSED1 (_AC(1, L)<<_PAGE_BIT_UNUSED1) #define _PAGE_UNUSED2 (_AC(1, L)<<_PAGE_BIT_UNUSED2) #define _PAGE_UNUSED3 (_AC(1, L)<<_PAGE_BIT_UNUSED3) #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) #define _PAGE_NX (_AC(1, ULL) << _PAGE_BIT_NX) #else #define _PAGE_NX 0 #endif /* If _PAGE_PRESENT is clear, we use these: */ #define _PAGE_FILE _PAGE_DIRTY /* nonlinear file mapping, saved PTE; unset:swap */ #define _PAGE_PROTNONE _PAGE_PSE /* if the user mapped it with PROT_NONE; pte_present gives true */ #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY) #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY) #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) #define PAGE_SHARED_EXEC __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #define PAGE_COPY PAGE_COPY_NOEXEC #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX) #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED) #ifdef CONFIG_X86_32 #define _PAGE_KERNEL_EXEC \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) #define _PAGE_KERNEL (_PAGE_KERNEL_EXEC | _PAGE_NX) #ifndef __ASSEMBLY__ extern pteval_t __PAGE_KERNEL, __PAGE_KERNEL_EXEC; #endif /* __ASSEMBLY__ */ #else #define __PAGE_KERNEL_EXEC \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED) #define __PAGE_KERNEL (__PAGE_KERNEL_EXEC | _PAGE_NX) #endif #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW) #define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW) #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD | _PAGE_PWT) #define __PAGE_KERNEL_VSYSCALL (__PAGE_KERNEL_RX | _PAGE_USER) #define __PAGE_KERNEL_VSYSCALL_NOCACHE (__PAGE_KERNEL_VSYSCALL | _PAGE_PCD | _PAGE_PWT) #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE) #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE) #ifdef CONFIG_X86_32 # define MAKE_GLOBAL(x) __pgprot((x)) #else # define MAKE_GLOBAL(x) __pgprot((x) | _PAGE_GLOBAL) #endif #define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL) #define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO) #define PAGE_KERNEL_EXEC MAKE_GLOBAL(__PAGE_KERNEL_EXEC) #define PAGE_KERNEL_RX MAKE_GLOBAL(__PAGE_KERNEL_RX) #define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE) #define PAGE_KERNEL_LARGE MAKE_GLOBAL(__PAGE_KERNEL_LARGE) #define PAGE_KERNEL_LARGE_EXEC MAKE_GLOBAL(__PAGE_KERNEL_LARGE_EXEC) #define PAGE_KERNEL_VSYSCALL MAKE_GLOBAL(__PAGE_KERNEL_VSYSCALL) #define PAGE_KERNEL_VSYSCALL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_VSYSCALL_NOCACHE) /* xwr */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY_EXEC #define __P101 PAGE_READONLY_EXEC #define __P110 PAGE_COPY_EXEC #define __P111 PAGE_COPY_EXEC #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY_EXEC #define __S101 PAGE_READONLY_EXEC #define __S110 PAGE_SHARED_EXEC #define __S111 PAGE_SHARED_EXEC #ifndef __ASSEMBLY__ /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_PSE; } static inline int pte_global(pte_t pte) { return pte_val(pte) & _PAGE_GLOBAL; } static inline int pte_exec(pte_t pte) { return !(pte_val(pte) & _PAGE_NX); } static inline int pmd_large(pmd_t pte) { return (pmd_val(pte) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT); } static inline pte_t pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_DIRTY); } static inline pte_t pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_ACCESSED); } static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_RW); } static inline pte_t pte_mkexec(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_NX); } static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); } static inline pte_t pte_mkwrite(pte_t pte) { return __pte(pte_val(pte) | _PAGE_RW); } static inline pte_t pte_mkhuge(pte_t pte) { return __pte(pte_val(pte) | _PAGE_PSE); } static inline pte_t pte_clrhuge(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_PSE); } static inline pte_t pte_mkglobal(pte_t pte) { return __pte(pte_val(pte) | _PAGE_GLOBAL); } static inline pte_t pte_clrglobal(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_GLOBAL); } extern pteval_t __supported_pte_mask; static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) { return __pte((((phys_addr_t)page_nr << PAGE_SHIFT) | pgprot_val(pgprot)) & __supported_pte_mask); } static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) { return __pmd((((phys_addr_t)page_nr << PAGE_SHIFT) | pgprot_val(pgprot)) & __supported_pte_mask); } static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pteval_t val = pte_val(pte); /* * Chop off the NX bit (if present), and add the NX portion of * the newprot (if present): */ val &= _PAGE_CHG_MASK & ~_PAGE_NX; val |= pgprot_val(newprot) & __supported_pte_mask; return __pte(val); } #define pte_pgprot(x) __pgprot(pte_val(x) & (0xfff | _PAGE_NX)) #ifdef CONFIG_PARAVIRT #include #else /* !CONFIG_PARAVIRT */ #define set_pte(ptep, pte) native_set_pte(ptep, pte) #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) #define set_pte_present(mm, addr, ptep, pte) \ native_set_pte_present(mm, addr, ptep, pte) #define set_pte_atomic(ptep, pte) \ native_set_pte_atomic(ptep, pte) #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) #ifndef __PAGETABLE_PUD_FOLDED #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) #define pgd_clear(pgd) native_pgd_clear(pgd) #endif #ifndef set_pud # define set_pud(pudp, pud) native_set_pud(pudp, pud) #endif #ifndef __PAGETABLE_PMD_FOLDED #define pud_clear(pud) native_pud_clear(pud) #endif #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) #define pmd_clear(pmd) native_pmd_clear(pmd) #define pte_update(mm, addr, ptep) do { } while (0) #define pte_update_defer(mm, addr, ptep) do { } while (0) #endif /* CONFIG_PARAVIRT */ #endif /* __ASSEMBLY__ */ #ifdef CONFIG_X86_32 # include "pgtable_32.h" #else # include "pgtable_64.h" #endif #ifndef __ASSEMBLY__ /* local pte updates need not use xchg for locking */ static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) { pte_t res = *ptep; /* Pure native function needs no input for mm, addr */ native_pte_clear(NULL, 0, ptep); return res; } static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep , pte_t pte) { native_set_pte(ptep, pte); } #ifndef CONFIG_PARAVIRT /* * Rules for using pte_update - it must be called after any PTE update which * has not been done using the set_pte / clear_pte interfaces. It is used by * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE * updates should either be sets, clears, or set_pte_atomic for P->P * transitions, which means this hook should only be called for user PTEs. * This hook implies a P->P protection or access change has taken place, which * requires a subsequent TLB flush. The notification can optionally be delayed * until the TLB flush event by using the pte_update_defer form of the * interface, but care must be taken to assure that the flush happens while * still holding the same page table lock so that the shadow and primary pages * do not become out of sync on SMP. */ #define pte_update(mm, addr, ptep) do { } while (0) #define pte_update_defer(mm, addr, ptep) do { } while (0) #endif /* * We only update the dirty/accessed state if we set * the dirty bit by hand in the kernel, since the hardware * will do the accessed bit for us, and we don't want to * race with other CPU's that might be updating the dirty * bit at the same time. */ #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS #define ptep_set_access_flags(vma, address, ptep, entry, dirty) \ ({ \ int __changed = !pte_same(*(ptep), entry); \ if (__changed && dirty) { \ *ptep = entry; \ pte_update_defer((vma)->vm_mm, (address), (ptep)); \ flush_tlb_page(vma, address); \ } \ __changed; \ }) #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define ptep_test_and_clear_young(vma, addr, ptep) ({ \ int __ret = 0; \ if (pte_young(*(ptep))) \ __ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, \ &(ptep)->pte); \ if (__ret) \ pte_update((vma)->vm_mm, addr, ptep); \ __ret; \ }) #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH #define ptep_clear_flush_young(vma, address, ptep) \ ({ \ int __young; \ __young = ptep_test_and_clear_young((vma), (address), (ptep)); \ if (__young) \ flush_tlb_page(vma, address); \ __young; \ }) #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = native_ptep_get_and_clear(ptep); pte_update(mm, addr, ptep); return pte; } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { pte_t pte; if (full) { /* * Full address destruction in progress; paravirt does not * care about updates and native needs no locking */ pte = native_local_ptep_get_and_clear(ptep); } else { pte = ptep_get_and_clear(mm, addr, ptep); } return pte; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); pte_update(mm, addr, ptep); } #include #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_H */