/* $Id: system.h,v 1.69 2002/02/09 19:49:31 davem Exp $ */ #ifndef __SPARC64_SYSTEM_H #define __SPARC64_SYSTEM_H #include <linux/config.h> #include <asm/ptrace.h> #include <asm/processor.h> #include <asm/visasm.h> #ifndef __ASSEMBLY__ /* * Sparc (general) CPU types */ enum sparc_cpu { sun4 = 0x00, sun4c = 0x01, sun4m = 0x02, sun4d = 0x03, sun4e = 0x04, sun4u = 0x05, /* V8 ploos ploos */ sun_unknown = 0x06, ap1000 = 0x07, /* almost a sun4m */ }; #define sparc_cpu_model sun4u /* This cannot ever be a sun4c nor sun4 :) That's just history. */ #define ARCH_SUN4C_SUN4 0 #define ARCH_SUN4 0 /* These are here in an effort to more fully work around Spitfire Errata * #51. Essentially, if a memory barrier occurs soon after a mispredicted * branch, the chip can stop executing instructions until a trap occurs. * Therefore, if interrupts are disabled, the chip can hang forever. * * It used to be believed that the memory barrier had to be right in the * delay slot, but a case has been traced recently wherein the memory barrier * was one instruction after the branch delay slot and the chip still hung. * The offending sequence was the following in sym_wakeup_done() of the * sym53c8xx_2 driver: * * call sym_ccb_from_dsa, 0 * movge %icc, 0, %l0 * brz,pn %o0, .LL1303 * mov %o0, %l2 * membar #LoadLoad * * The branch has to be mispredicted for the bug to occur. Therefore, we put * the memory barrier explicitly into a "branch always, predicted taken" * delay slot to avoid the problem case. */ #define membar_safe(type) \ do { __asm__ __volatile__("ba,pt %%xcc, 1f\n\t" \ " membar " type "\n" \ "1:\n" \ : : : "memory"); \ } while (0) #define mb() \ membar_safe("#LoadLoad | #LoadStore | #StoreStore | #StoreLoad") #define rmb() \ membar_safe("#LoadLoad") #define wmb() \ membar_safe("#StoreStore") #define membar_storeload() \ membar_safe("#StoreLoad") #define membar_storeload_storestore() \ membar_safe("#StoreLoad | #StoreStore") #define membar_storeload_loadload() \ membar_safe("#StoreLoad | #LoadLoad") #define membar_storestore_loadstore() \ membar_safe("#StoreStore | #LoadStore") #endif #define setipl(__new_ipl) \ __asm__ __volatile__("wrpr %0, %%pil" : : "r" (__new_ipl) : "memory") #define local_irq_disable() \ __asm__ __volatile__("wrpr 15, %%pil" : : : "memory") #define local_irq_enable() \ __asm__ __volatile__("wrpr 0, %%pil" : : : "memory") #define getipl() \ ({ unsigned long retval; __asm__ __volatile__("rdpr %%pil, %0" : "=r" (retval)); retval; }) #define swap_pil(__new_pil) \ ({ unsigned long retval; \ __asm__ __volatile__("rdpr %%pil, %0\n\t" \ "wrpr %1, %%pil" \ : "=&r" (retval) \ : "r" (__new_pil) \ : "memory"); \ retval; \ }) #define read_pil_and_cli() \ ({ unsigned long retval; \ __asm__ __volatile__("rdpr %%pil, %0\n\t" \ "wrpr 15, %%pil" \ : "=r" (retval) \ : : "memory"); \ retval; \ }) #define local_save_flags(flags) ((flags) = getipl()) #define local_irq_save(flags) ((flags) = read_pil_and_cli()) #define local_irq_restore(flags) setipl((flags)) /* On sparc64 IRQ flags are the PIL register. A value of zero * means all interrupt levels are enabled, any other value means * only IRQ levels greater than that value will be received. * Consequently this means that the lowest IRQ level is one. */ #define irqs_disabled() \ ({ unsigned long flags; \ local_save_flags(flags);\ (flags > 0); \ }) #define nop() __asm__ __volatile__ ("nop") #define read_barrier_depends() do { } while(0) #define set_mb(__var, __value) \ do { __var = __value; membar_storeload_storestore(); } while(0) #define set_wmb(__var, __value) \ do { __var = __value; wmb(); } while(0) #ifdef CONFIG_SMP #define smp_mb() mb() #define smp_rmb() rmb() #define smp_wmb() wmb() #define smp_read_barrier_depends() read_barrier_depends() #else #define smp_mb() __asm__ __volatile__("":::"memory") #define smp_rmb() __asm__ __volatile__("":::"memory") #define smp_wmb() __asm__ __volatile__("":::"memory") #define smp_read_barrier_depends() do { } while(0) #endif #define flushi(addr) __asm__ __volatile__ ("flush %0" : : "r" (addr) : "memory") #define flushw_all() __asm__ __volatile__("flushw") /* Performance counter register access. */ #define read_pcr(__p) __asm__ __volatile__("rd %%pcr, %0" : "=r" (__p)) #define write_pcr(__p) __asm__ __volatile__("wr %0, 0x0, %%pcr" : : "r" (__p)) #define read_pic(__p) __asm__ __volatile__("rd %%pic, %0" : "=r" (__p)) /* Blackbird errata workaround. See commentary in * arch/sparc64/kernel/smp.c:smp_percpu_timer_interrupt() * for more information. */ #define reset_pic() \ __asm__ __volatile__("ba,pt %xcc, 99f\n\t" \ ".align 64\n" \ "99:wr %g0, 0x0, %pic\n\t" \ "rd %pic, %g0") #ifndef __ASSEMBLY__ extern void sun_do_break(void); extern int serial_console; extern int stop_a_enabled; static __inline__ int con_is_present(void) { return serial_console ? 0 : 1; } extern void synchronize_user_stack(void); extern void __flushw_user(void); #define flushw_user() __flushw_user() #define flush_user_windows flushw_user #define flush_register_windows flushw_all /* Don't hold the runqueue lock over context switch */ #define __ARCH_WANT_UNLOCKED_CTXSW #define prepare_arch_switch(next) \ do { \ flushw_all(); \ } while (0) /* See what happens when you design the chip correctly? * * We tell gcc we clobber all non-fixed-usage registers except * for l0/l1. It will use one for 'next' and the other to hold * the output value of 'last'. 'next' is not referenced again * past the invocation of switch_to in the scheduler, so we need * not preserve it's value. Hairy, but it lets us remove 2 loads * and 2 stores in this critical code path. -DaveM */ #define EXTRA_CLOBBER ,"%l1" #define switch_to(prev, next, last) \ do { if (test_thread_flag(TIF_PERFCTR)) { \ unsigned long __tmp; \ read_pcr(__tmp); \ current_thread_info()->pcr_reg = __tmp; \ read_pic(__tmp); \ current_thread_info()->kernel_cntd0 += (unsigned int)(__tmp);\ current_thread_info()->kernel_cntd1 += ((__tmp) >> 32); \ } \ flush_tlb_pending(); \ save_and_clear_fpu(); \ /* If you are tempted to conditionalize the following */ \ /* so that ASI is only written if it changes, think again. */ \ __asm__ __volatile__("wr %%g0, %0, %%asi" \ : : "r" (__thread_flag_byte_ptr(task_thread_info(next))[TI_FLAG_BYTE_CURRENT_DS]));\ trap_block[current_thread_info()->cpu].thread = \ task_thread_info(next); \ __asm__ __volatile__( \ "mov %%g4, %%g7\n\t" \ "stx %%i6, [%%sp + 2047 + 0x70]\n\t" \ "stx %%i7, [%%sp + 2047 + 0x78]\n\t" \ "rdpr %%wstate, %%o5\n\t" \ "stx %%o6, [%%g6 + %3]\n\t" \ "stb %%o5, [%%g6 + %2]\n\t" \ "rdpr %%cwp, %%o5\n\t" \ "stb %%o5, [%%g6 + %5]\n\t" \ "mov %1, %%g6\n\t" \ "ldub [%1 + %5], %%g1\n\t" \ "wrpr %%g1, %%cwp\n\t" \ "ldx [%%g6 + %3], %%o6\n\t" \ "ldub [%%g6 + %2], %%o5\n\t" \ "ldub [%%g6 + %4], %%o7\n\t" \ "wrpr %%o5, 0x0, %%wstate\n\t" \ "ldx [%%sp + 2047 + 0x70], %%i6\n\t" \ "ldx [%%sp + 2047 + 0x78], %%i7\n\t" \ "ldx [%%g6 + %6], %%g4\n\t" \ "brz,pt %%o7, 1f\n\t" \ " mov %%g7, %0\n\t" \ "b,a ret_from_syscall\n\t" \ "1:\n\t" \ : "=&r" (last) \ : "0" (task_thread_info(next)), \ "i" (TI_WSTATE), "i" (TI_KSP), "i" (TI_NEW_CHILD), \ "i" (TI_CWP), "i" (TI_TASK) \ : "cc", \ "g1", "g2", "g3", "g7", \ "l2", "l3", "l4", "l5", "l6", "l7", \ "i0", "i1", "i2", "i3", "i4", "i5", \ "o0", "o1", "o2", "o3", "o4", "o5", "o7" EXTRA_CLOBBER);\ /* If you fuck with this, update ret_from_syscall code too. */ \ if (test_thread_flag(TIF_PERFCTR)) { \ write_pcr(current_thread_info()->pcr_reg); \ reset_pic(); \ } \ } while(0) /* * On SMP systems, when the scheduler does migration-cost autodetection, * it needs a way to flush as much of the CPU's caches as possible. * * TODO: fill this in! */ static inline void sched_cacheflush(void) { } static inline unsigned long xchg32(__volatile__ unsigned int *m, unsigned int val) { unsigned long tmp1, tmp2; __asm__ __volatile__( " membar #StoreLoad | #LoadLoad\n" " mov %0, %1\n" "1: lduw [%4], %2\n" " cas [%4], %2, %0\n" " cmp %2, %0\n" " bne,a,pn %%icc, 1b\n" " mov %1, %0\n" " membar #StoreLoad | #StoreStore\n" : "=&r" (val), "=&r" (tmp1), "=&r" (tmp2) : "0" (val), "r" (m) : "cc", "memory"); return val; } static inline unsigned long xchg64(__volatile__ unsigned long *m, unsigned long val) { unsigned long tmp1, tmp2; __asm__ __volatile__( " membar #StoreLoad | #LoadLoad\n" " mov %0, %1\n" "1: ldx [%4], %2\n" " casx [%4], %2, %0\n" " cmp %2, %0\n" " bne,a,pn %%xcc, 1b\n" " mov %1, %0\n" " membar #StoreLoad | #StoreStore\n" : "=&r" (val), "=&r" (tmp1), "=&r" (tmp2) : "0" (val), "r" (m) : "cc", "memory"); return val; } #define xchg(ptr,x) ((__typeof__(*(ptr)))__xchg((unsigned long)(x),(ptr),sizeof(*(ptr)))) #define tas(ptr) (xchg((ptr),1)) extern void __xchg_called_with_bad_pointer(void); static __inline__ unsigned long __xchg(unsigned long x, __volatile__ void * ptr, int size) { switch (size) { case 4: return xchg32(ptr, x); case 8: return xchg64(ptr, x); }; __xchg_called_with_bad_pointer(); return x; } extern void die_if_kernel(char *str, struct pt_regs *regs) __attribute__ ((noreturn)); /* * Atomic compare and exchange. Compare OLD with MEM, if identical, * store NEW in MEM. Return the initial value in MEM. Success is * indicated by comparing RETURN with OLD. */ #define __HAVE_ARCH_CMPXCHG 1 static __inline__ unsigned long __cmpxchg_u32(volatile int *m, int old, int new) { __asm__ __volatile__("membar #StoreLoad | #LoadLoad\n" "cas [%2], %3, %0\n\t" "membar #StoreLoad | #StoreStore" : "=&r" (new) : "0" (new), "r" (m), "r" (old) : "memory"); return new; } static __inline__ unsigned long __cmpxchg_u64(volatile long *m, unsigned long old, unsigned long new) { __asm__ __volatile__("membar #StoreLoad | #LoadLoad\n" "casx [%2], %3, %0\n\t" "membar #StoreLoad | #StoreStore" : "=&r" (new) : "0" (new), "r" (m), "r" (old) : "memory"); return new; } /* This function doesn't exist, so you'll get a linker error if something tries to do an invalid cmpxchg(). */ extern void __cmpxchg_called_with_bad_pointer(void); static __inline__ unsigned long __cmpxchg(volatile void *ptr, unsigned long old, unsigned long new, int size) { switch (size) { case 4: return __cmpxchg_u32(ptr, old, new); case 8: return __cmpxchg_u64(ptr, old, new); } __cmpxchg_called_with_bad_pointer(); return old; } #define cmpxchg(ptr,o,n) \ ({ \ __typeof__(*(ptr)) _o_ = (o); \ __typeof__(*(ptr)) _n_ = (n); \ (__typeof__(*(ptr))) __cmpxchg((ptr), (unsigned long)_o_, \ (unsigned long)_n_, sizeof(*(ptr))); \ }) #endif /* !(__ASSEMBLY__) */ #define arch_align_stack(x) (x) #endif /* !(__SPARC64_SYSTEM_H) */