#ifndef __SPARC64_PCI_H #define __SPARC64_PCI_H #ifdef __KERNEL__ #include <linux/dma-mapping.h> /* Can be used to override the logic in pci_scan_bus for skipping * already-configured bus numbers - to be used for buggy BIOSes * or architectures with incomplete PCI setup by the loader. */ #define pcibios_assign_all_busses() 0 #define pcibios_scan_all_fns(a, b) 0 #define PCIBIOS_MIN_IO 0UL #define PCIBIOS_MIN_MEM 0UL #define PCI_IRQ_NONE 0xffffffff #define PCI_CACHE_LINE_BYTES 64 static inline void pcibios_set_master(struct pci_dev *dev) { /* No special bus mastering setup handling */ } static inline void pcibios_penalize_isa_irq(int irq, int active) { /* We don't do dynamic PCI IRQ allocation */ } /* The PCI address space does not equal the physical memory * address space. The networking and block device layers use * this boolean for bounce buffer decisions. */ #define PCI_DMA_BUS_IS_PHYS (0) static inline void *pci_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_handle) { return dma_alloc_coherent(&pdev->dev, size, dma_handle, GFP_ATOMIC); } static inline void pci_free_consistent(struct pci_dev *pdev, size_t size, void *vaddr, dma_addr_t dma_handle) { return dma_free_coherent(&pdev->dev, size, vaddr, dma_handle); } static inline dma_addr_t pci_map_single(struct pci_dev *pdev, void *ptr, size_t size, int direction) { return dma_map_single(&pdev->dev, ptr, size, (enum dma_data_direction) direction); } static inline void pci_unmap_single(struct pci_dev *pdev, dma_addr_t dma_addr, size_t size, int direction) { dma_unmap_single(&pdev->dev, dma_addr, size, (enum dma_data_direction) direction); } #define pci_map_page(dev, page, off, size, dir) \ pci_map_single(dev, (page_address(page) + (off)), size, dir) #define pci_unmap_page(dev,addr,sz,dir) \ pci_unmap_single(dev,addr,sz,dir) /* pci_unmap_{single,page} is not a nop, thus... */ #define DECLARE_PCI_UNMAP_ADDR(ADDR_NAME) \ dma_addr_t ADDR_NAME; #define DECLARE_PCI_UNMAP_LEN(LEN_NAME) \ __u32 LEN_NAME; #define pci_unmap_addr(PTR, ADDR_NAME) \ ((PTR)->ADDR_NAME) #define pci_unmap_addr_set(PTR, ADDR_NAME, VAL) \ (((PTR)->ADDR_NAME) = (VAL)) #define pci_unmap_len(PTR, LEN_NAME) \ ((PTR)->LEN_NAME) #define pci_unmap_len_set(PTR, LEN_NAME, VAL) \ (((PTR)->LEN_NAME) = (VAL)) static inline int pci_map_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents, int direction) { return dma_map_sg(&pdev->dev, sg, nents, (enum dma_data_direction) direction); } static inline void pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents, int direction) { dma_unmap_sg(&pdev->dev, sg, nents, (enum dma_data_direction) direction); } static inline void pci_dma_sync_single_for_cpu(struct pci_dev *pdev, dma_addr_t dma_handle, size_t size, int direction) { dma_sync_single_for_cpu(&pdev->dev, dma_handle, size, (enum dma_data_direction) direction); } static inline void pci_dma_sync_single_for_device(struct pci_dev *pdev, dma_addr_t dma_handle, size_t size, int direction) { /* No flushing needed to sync cpu writes to the device. */ } static inline void pci_dma_sync_sg_for_cpu(struct pci_dev *pdev, struct scatterlist *sg, int nents, int direction) { dma_sync_sg_for_cpu(&pdev->dev, sg, nents, (enum dma_data_direction) direction); } static inline void pci_dma_sync_sg_for_device(struct pci_dev *pdev, struct scatterlist *sg, int nelems, int direction) { /* No flushing needed to sync cpu writes to the device. */ } /* Return whether the given PCI device DMA address mask can * be supported properly. For example, if your device can * only drive the low 24-bits during PCI bus mastering, then * you would pass 0x00ffffff as the mask to this function. */ extern int pci_dma_supported(struct pci_dev *hwdev, u64 mask); /* PCI IOMMU mapping bypass support. */ /* PCI 64-bit addressing works for all slots on all controller * types on sparc64. However, it requires that the device * can drive enough of the 64 bits. */ #define PCI64_REQUIRED_MASK (~(dma64_addr_t)0) #define PCI64_ADDR_BASE 0xfffc000000000000UL static inline int pci_dma_mapping_error(dma_addr_t dma_addr) { return dma_mapping_error(dma_addr); } #ifdef CONFIG_PCI static inline void pci_dma_burst_advice(struct pci_dev *pdev, enum pci_dma_burst_strategy *strat, unsigned long *strategy_parameter) { unsigned long cacheline_size; u8 byte; pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &byte); if (byte == 0) cacheline_size = 1024; else cacheline_size = (int) byte * 4; *strat = PCI_DMA_BURST_BOUNDARY; *strategy_parameter = cacheline_size; } #endif /* Return the index of the PCI controller for device PDEV. */ extern int pci_domain_nr(struct pci_bus *bus); static inline int pci_proc_domain(struct pci_bus *bus) { return 1; } /* Platform support for /proc/bus/pci/X/Y mmap()s. */ #define HAVE_PCI_MMAP #define HAVE_ARCH_PCI_GET_UNMAPPED_AREA #define get_pci_unmapped_area get_fb_unmapped_area extern int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma, enum pci_mmap_state mmap_state, int write_combine); extern void pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region, struct resource *res); extern void pcibios_bus_to_resource(struct pci_dev *dev, struct resource *res, struct pci_bus_region *region); extern struct resource *pcibios_select_root(struct pci_dev *, struct resource *); static inline int pci_get_legacy_ide_irq(struct pci_dev *dev, int channel) { return PCI_IRQ_NONE; } struct device_node; extern struct device_node *pci_device_to_OF_node(struct pci_dev *pdev); #endif /* __KERNEL__ */ #endif /* __SPARC64_PCI_H */