/* $Id: mmu_context.h,v 1.54 2002/02/09 19:49:31 davem Exp $ */ #ifndef __SPARC64_MMU_CONTEXT_H #define __SPARC64_MMU_CONTEXT_H /* Derived heavily from Linus's Alpha/AXP ASN code... */ #ifndef __ASSEMBLY__ #include #include #include static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) { } extern spinlock_t ctx_alloc_lock; extern unsigned long tlb_context_cache; extern unsigned long mmu_context_bmap[]; extern void get_new_mmu_context(struct mm_struct *mm); /* Initialize a new mmu context. This is invoked when a new * address space instance (unique or shared) is instantiated. * This just needs to set mm->context to an invalid context. */ #define init_new_context(__tsk, __mm) \ ({ unsigned long __pg = get_zeroed_page(GFP_KERNEL); \ (__mm)->context.sparc64_ctx_val = 0UL; \ (__mm)->context.sparc64_tsb = \ (unsigned long *) __pg; \ (__pg ? 0 : -ENOMEM); \ }) /* Destroy a dead context. This occurs when mmput drops the * mm_users count to zero, the mmaps have been released, and * all the page tables have been flushed. Our job is to destroy * any remaining processor-specific state, and in the sparc64 * case this just means freeing up the mmu context ID held by * this task if valid. */ #define destroy_context(__mm) \ do { free_page((unsigned long)(__mm)->context.sparc64_tsb); \ spin_lock(&ctx_alloc_lock); \ if (CTX_VALID((__mm)->context)) { \ unsigned long nr = CTX_NRBITS((__mm)->context); \ mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63)); \ } \ spin_unlock(&ctx_alloc_lock); \ } while(0) extern unsigned long tsb_context_switch(unsigned long pgd_pa, unsigned long *tsb); /* Set MMU context in the actual hardware. */ #define load_secondary_context(__mm) \ __asm__ __volatile__("stxa %0, [%1] %2\n\t" \ "flush %%g6" \ : /* No outputs */ \ : "r" (CTX_HWBITS((__mm)->context)), \ "r" (SECONDARY_CONTEXT), "i" (ASI_DMMU)) extern void __flush_tlb_mm(unsigned long, unsigned long); /* Switch the current MM context. */ static inline void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, struct task_struct *tsk) { unsigned long ctx_valid; int cpu; /* Note: page_table_lock is used here to serialize switch_mm * and activate_mm, and their calls to get_new_mmu_context. * This use of page_table_lock is unrelated to its other uses. */ spin_lock(&mm->page_table_lock); ctx_valid = CTX_VALID(mm->context); if (!ctx_valid) get_new_mmu_context(mm); spin_unlock(&mm->page_table_lock); if (!ctx_valid || (old_mm != mm)) { load_secondary_context(mm); tsb_context_switch(__pa(mm->pgd), mm->context.sparc64_tsb); } /* Even if (mm == old_mm) we _must_ check * the cpu_vm_mask. If we do not we could * corrupt the TLB state because of how * smp_flush_tlb_{page,range,mm} on sparc64 * and lazy tlb switches work. -DaveM */ cpu = smp_processor_id(); if (!ctx_valid || !cpu_isset(cpu, mm->cpu_vm_mask)) { cpu_set(cpu, mm->cpu_vm_mask); __flush_tlb_mm(CTX_HWBITS(mm->context), SECONDARY_CONTEXT); } } #define deactivate_mm(tsk,mm) do { } while (0) /* Activate a new MM instance for the current task. */ static inline void activate_mm(struct mm_struct *active_mm, struct mm_struct *mm) { int cpu; /* Note: page_table_lock is used here to serialize switch_mm * and activate_mm, and their calls to get_new_mmu_context. * This use of page_table_lock is unrelated to its other uses. */ spin_lock(&mm->page_table_lock); if (!CTX_VALID(mm->context)) get_new_mmu_context(mm); cpu = smp_processor_id(); if (!cpu_isset(cpu, mm->cpu_vm_mask)) cpu_set(cpu, mm->cpu_vm_mask); spin_unlock(&mm->page_table_lock); load_secondary_context(mm); __flush_tlb_mm(CTX_HWBITS(mm->context), SECONDARY_CONTEXT); tsb_context_switch(__pa(mm->pgd), mm->context.sparc64_tsb); } #endif /* !(__ASSEMBLY__) */ #endif /* !(__SPARC64_MMU_CONTEXT_H) */