#ifndef __ASM_SH_IO_H #define __ASM_SH_IO_H /* * Convention: * read{b,w,l}/write{b,w,l} are for PCI, * while in{b,w,l}/out{b,w,l} are for ISA * These may (will) be platform specific function. * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p * and 'string' versions: ins{b,w,l}/outs{b,w,l} * For read{b,w,l} and write{b,w,l} there are also __raw versions, which * do not have a memory barrier after them. * * In addition, we have * ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O. * which are processor specific. */ /* * We follow the Alpha convention here: * __inb expands to an inline function call (which calls via the mv) * _inb is a real function call (note ___raw fns are _ version of __raw) * inb by default expands to _inb, but the machine specific code may * define it to __inb if it chooses. */ #include <asm/cache.h> #include <asm/system.h> #include <asm/addrspace.h> #include <asm/machvec.h> #include <asm/pgtable.h> #include <asm-generic/iomap.h> #ifdef __KERNEL__ /* * Depending on which platform we are running on, we need different * I/O functions. */ #define __IO_PREFIX generic #include <asm/io_generic.h> #define maybebadio(port) \ printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \ __FUNCTION__, __LINE__, (port), (u32)__builtin_return_address(0)) /* * Since boards are able to define their own set of I/O routines through * their respective machine vector, we always wrap through the mv. * * Also, in the event that a board hasn't provided its own definition for * a given routine, it will be wrapped to generic code at run-time. */ #define __inb(p) sh_mv.mv_inb((p)) #define __inw(p) sh_mv.mv_inw((p)) #define __inl(p) sh_mv.mv_inl((p)) #define __outb(x,p) sh_mv.mv_outb((x),(p)) #define __outw(x,p) sh_mv.mv_outw((x),(p)) #define __outl(x,p) sh_mv.mv_outl((x),(p)) #define __inb_p(p) sh_mv.mv_inb_p((p)) #define __inw_p(p) sh_mv.mv_inw_p((p)) #define __inl_p(p) sh_mv.mv_inl_p((p)) #define __outb_p(x,p) sh_mv.mv_outb_p((x),(p)) #define __outw_p(x,p) sh_mv.mv_outw_p((x),(p)) #define __outl_p(x,p) sh_mv.mv_outl_p((x),(p)) #define __insb(p,b,c) sh_mv.mv_insb((p), (b), (c)) #define __insw(p,b,c) sh_mv.mv_insw((p), (b), (c)) #define __insl(p,b,c) sh_mv.mv_insl((p), (b), (c)) #define __outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c)) #define __outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c)) #define __outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c)) #define __readb(a) sh_mv.mv_readb((a)) #define __readw(a) sh_mv.mv_readw((a)) #define __readl(a) sh_mv.mv_readl((a)) #define __writeb(v,a) sh_mv.mv_writeb((v),(a)) #define __writew(v,a) sh_mv.mv_writew((v),(a)) #define __writel(v,a) sh_mv.mv_writel((v),(a)) #define inb __inb #define inw __inw #define inl __inl #define outb __outb #define outw __outw #define outl __outl #define inb_p __inb_p #define inw_p __inw_p #define inl_p __inl_p #define outb_p __outb_p #define outw_p __outw_p #define outl_p __outl_p #define insb __insb #define insw __insw #define insl __insl #define outsb __outsb #define outsw __outsw #define outsl __outsl #define __raw_readb(a) __readb((void __iomem *)(a)) #define __raw_readw(a) __readw((void __iomem *)(a)) #define __raw_readl(a) __readl((void __iomem *)(a)) #define __raw_writeb(v, a) __writeb(v, (void __iomem *)(a)) #define __raw_writew(v, a) __writew(v, (void __iomem *)(a)) #define __raw_writel(v, a) __writel(v, (void __iomem *)(a)) void __raw_writesl(unsigned long addr, const void *data, int longlen); void __raw_readsl(unsigned long addr, void *data, int longlen); /* * The platform header files may define some of these macros to use * the inlined versions where appropriate. These macros may also be * redefined by userlevel programs. */ #ifdef __readb # define readb(a) ({ unsigned int r_ = __raw_readb(a); mb(); r_; }) #endif #ifdef __raw_readw # define readw(a) ({ unsigned int r_ = __raw_readw(a); mb(); r_; }) #endif #ifdef __raw_readl # define readl(a) ({ unsigned int r_ = __raw_readl(a); mb(); r_; }) #endif #ifdef __raw_writeb # define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); }) #endif #ifdef __raw_writew # define writew(v,a) ({ __raw_writew((v),(a)); mb(); }) #endif #ifdef __raw_writel # define writel(v,a) ({ __raw_writel((v),(a)); mb(); }) #endif #define __BUILD_MEMORY_STRING(bwlq, type) \ \ static inline void writes##bwlq(volatile void __iomem *mem, \ const void *addr, unsigned int count) \ { \ const volatile type *__addr = addr; \ \ while (count--) { \ __raw_write##bwlq(*__addr, mem); \ __addr++; \ } \ } \ \ static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \ unsigned int count) \ { \ volatile type *__addr = addr; \ \ while (count--) { \ *__addr = __raw_read##bwlq(mem); \ __addr++; \ } \ } __BUILD_MEMORY_STRING(b, u8) __BUILD_MEMORY_STRING(w, u16) #define writesl __raw_writesl #define readsl __raw_readsl #define readb_relaxed(a) readb(a) #define readw_relaxed(a) readw(a) #define readl_relaxed(a) readl(a) /* Simple MMIO */ #define ioread8(a) readb(a) #define ioread16(a) readw(a) #define ioread16be(a) be16_to_cpu(__raw_readw((a))) #define ioread32(a) readl(a) #define ioread32be(a) be32_to_cpu(__raw_readl((a))) #define iowrite8(v,a) writeb((v),(a)) #define iowrite16(v,a) writew((v),(a)) #define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a)) #define iowrite32(v,a) writel((v),(a)) #define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a)) #define ioread8_rep(a,d,c) insb((a),(d),(c)) #define ioread16_rep(a,d,c) insw((a),(d),(c)) #define ioread32_rep(a,d,c) insl((a),(d),(c)) #define iowrite8_rep(a,s,c) outsb((a),(s),(c)) #define iowrite16_rep(a,s,c) outsw((a),(s),(c)) #define iowrite32_rep(a,s,c) outsl((a),(s),(c)) #define mmiowb() wmb() /* synco on SH-4A, otherwise a nop */ /* * This function provides a method for the generic case where a board-specific * ioport_map simply needs to return the port + some arbitrary port base. * * We use this at board setup time to implicitly set the port base, and * as a result, we can use the generic ioport_map. */ static inline void __set_io_port_base(unsigned long pbase) { extern unsigned long generic_io_base; generic_io_base = pbase; } /* We really want to try and get these to memcpy etc */ extern void memcpy_fromio(void *, volatile void __iomem *, unsigned long); extern void memcpy_toio(volatile void __iomem *, const void *, unsigned long); extern void memset_io(volatile void __iomem *, int, unsigned long); /* SuperH on-chip I/O functions */ static inline unsigned char ctrl_inb(unsigned long addr) { return *(volatile unsigned char*)addr; } static inline unsigned short ctrl_inw(unsigned long addr) { return *(volatile unsigned short*)addr; } static inline unsigned int ctrl_inl(unsigned long addr) { return *(volatile unsigned long*)addr; } static inline void ctrl_outb(unsigned char b, unsigned long addr) { *(volatile unsigned char*)addr = b; } static inline void ctrl_outw(unsigned short b, unsigned long addr) { *(volatile unsigned short*)addr = b; } static inline void ctrl_outl(unsigned int b, unsigned long addr) { *(volatile unsigned long*)addr = b; } static inline void ctrl_delay(void) { ctrl_inw(P2SEG); } #define IO_SPACE_LIMIT 0xffffffff #ifdef CONFIG_MMU /* * Change virtual addresses to physical addresses and vv. * These are trivial on the 1:1 Linux/SuperH mapping */ static inline unsigned long virt_to_phys(volatile void *address) { return PHYSADDR(address); } static inline void *phys_to_virt(unsigned long address) { return (void *)P1SEGADDR(address); } #else #define phys_to_virt(address) ((void *)(address)) #define virt_to_phys(address) ((unsigned long)(address)) #endif /* * readX/writeX() are used to access memory mapped devices. On some * architectures the memory mapped IO stuff needs to be accessed * differently. On the x86 architecture, we just read/write the * memory location directly. * * On SH, we traditionally have the whole physical address space mapped * at all times (as MIPS does), so "ioremap()" and "iounmap()" do not * need to do anything but place the address in the proper segment. This * is true for P1 and P2 addresses, as well as some P3 ones. However, * most of the P3 addresses and newer cores using extended addressing * need to map through page tables, so the ioremap() implementation * becomes a bit more complicated. See arch/sh/mm/ioremap.c for * additional notes on this. * * We cheat a bit and always return uncachable areas until we've fixed * the drivers to handle caching properly. */ #ifdef CONFIG_MMU void __iomem *__ioremap(unsigned long offset, unsigned long size, unsigned long flags); void __iounmap(void __iomem *addr); #else #define __ioremap(offset, size, flags) ((void __iomem *)(offset)) #define __iounmap(addr) do { } while (0) #endif /* CONFIG_MMU */ static inline void __iomem * __ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags) { unsigned long last_addr = offset + size - 1; /* * For P1 and P2 space this is trivial, as everything is already * mapped. Uncached access for P1 addresses are done through P2. * In the P3 case or for addresses outside of the 29-bit space, * mapping must be done by the PMB or by using page tables. */ if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) { if (unlikely(flags & _PAGE_CACHABLE)) return (void __iomem *)P1SEGADDR(offset); return (void __iomem *)P2SEGADDR(offset); } return __ioremap(offset, size, flags); } #define ioremap(offset, size) \ __ioremap_mode((offset), (size), 0) #define ioremap_nocache(offset, size) \ __ioremap_mode((offset), (size), 0) #define ioremap_cache(offset, size) \ __ioremap_mode((offset), (size), _PAGE_CACHABLE) #define p3_ioremap(offset, size, flags) \ __ioremap((offset), (size), (flags)) #define iounmap(addr) \ __iounmap((addr)) /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */ #define xlate_dev_mem_ptr(p) __va(p) /* * Convert a virtual cached pointer to an uncached pointer */ #define xlate_dev_kmem_ptr(p) p #endif /* __KERNEL__ */ #endif /* __ASM_SH_IO_H */