#ifndef _PPC64_PGTABLE_H #define _PPC64_PGTABLE_H /* * This file contains the functions and defines necessary to modify and use * the ppc64 hashed page table. */ #ifndef __ASSEMBLY__ #include <linux/config.h> #include <linux/stddef.h> #include <asm/processor.h> /* For TASK_SIZE */ #include <asm/mmu.h> #include <asm/page.h> #include <asm/tlbflush.h> #endif /* __ASSEMBLY__ */ #include <asm-generic/pgtable-nopud.h> /* * Entries per page directory level. The PTE level must use a 64b record * for each page table entry. The PMD and PGD level use a 32b record for * each entry by assuming that each entry is page aligned. */ #define PTE_INDEX_SIZE 9 #define PMD_INDEX_SIZE 10 #define PGD_INDEX_SIZE 10 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE) #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) /* PMD_SHIFT determines what a second-level page table entry can map */ #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define FIRST_USER_ADDRESS 0 /* * Size of EA range mapped by our pagetables. */ #define EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ PGD_INDEX_SIZE + PAGE_SHIFT) #define EADDR_MASK ((1UL << EADDR_SIZE) - 1) /* * Define the address range of the vmalloc VM area. */ #define VMALLOC_START (0xD000000000000000ul) #define VMALLOC_SIZE (0x10000000000UL) #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) /* * Bits in a linux-style PTE. These match the bits in the * (hardware-defined) PowerPC PTE as closely as possible. */ #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */ #define _PAGE_USER 0x0002 /* matches one of the PP bits */ #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */ #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */ #define _PAGE_GUARDED 0x0008 #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */ #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */ #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */ #define _PAGE_DIRTY 0x0080 /* C: page changed */ #define _PAGE_ACCESSED 0x0100 /* R: page referenced */ #define _PAGE_RW 0x0200 /* software: user write access allowed */ #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */ #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */ #define _PAGE_SECONDARY 0x8000 /* software: HPTE is in secondary group */ #define _PAGE_GROUP_IX 0x7000 /* software: HPTE index within group */ #define _PAGE_HUGE 0x10000 /* 16MB page */ /* Bits 0x7000 identify the index within an HPT Group */ #define _PAGE_HPTEFLAGS (_PAGE_BUSY | _PAGE_HASHPTE | _PAGE_SECONDARY | _PAGE_GROUP_IX) /* PAGE_MASK gives the right answer below, but only by accident */ /* It should be preserving the high 48 bits and then specifically */ /* preserving _PAGE_SECONDARY | _PAGE_GROUP_IX */ #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_HPTEFLAGS) #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT) #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY) /* __pgprot defined in asm-ppc64/page.h */ #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER) #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC) #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE) #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED) #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC) #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE) #define HAVE_PAGE_AGP /* * This bit in a hardware PTE indicates that the page is *not* executable. */ #define HW_NO_EXEC _PAGE_EXEC /* * POWER4 and newer have per page execute protection, older chips can only * do this on a segment (256MB) basis. * * Also, write permissions imply read permissions. * This is the closest we can get.. * * Note due to the way vm flags are laid out, the bits are XWR */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY_X #define __P101 PAGE_READONLY_X #define __P110 PAGE_COPY_X #define __P111 PAGE_COPY_X #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY_X #define __S101 PAGE_READONLY_X #define __S110 PAGE_SHARED_X #define __S111 PAGE_SHARED_X #ifndef __ASSEMBLY__ /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) #endif /* __ASSEMBLY__ */ /* shift to put page number into pte */ #define PTE_SHIFT (17) #ifdef CONFIG_HUGETLB_PAGE #ifndef __ASSEMBLY__ int hash_huge_page(struct mm_struct *mm, unsigned long access, unsigned long ea, unsigned long vsid, int local); void hugetlb_mm_free_pgd(struct mm_struct *mm); #endif /* __ASSEMBLY__ */ #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN #else #define hash_huge_page(mm,a,ea,vsid,local) -1 #define hugetlb_mm_free_pgd(mm) do {} while (0) #endif #ifndef __ASSEMBLY__ /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * mk_pte takes a (struct page *) as input */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { pte_t pte; pte_val(pte) = (pfn << PTE_SHIFT) | pgprot_val(pgprot); return pte; } #define pte_modify(_pte, newprot) \ (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))) #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0) #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) /* pte_clear moved to later in this file */ #define pte_pfn(x) ((unsigned long)((pte_val(x) >> PTE_SHIFT))) #define pte_page(x) pfn_to_page(pte_pfn(x)) #define pmd_set(pmdp, ptep) \ (pmd_val(*(pmdp)) = __ba_to_bpn(ptep)) #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) (pmd_val(pmd) == 0) #define pmd_present(pmd) (pmd_val(pmd) != 0) #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0) #define pmd_page_kernel(pmd) (__bpn_to_ba(pmd_val(pmd))) #define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd)) #define pud_set(pudp, pmdp) (pud_val(*(pudp)) = (__ba_to_bpn(pmdp))) #define pud_none(pud) (!pud_val(pud)) #define pud_bad(pud) ((pud_val(pud)) == 0UL) #define pud_present(pud) (pud_val(pud) != 0UL) #define pud_clear(pudp) (pud_val(*(pudp)) = 0UL) #define pud_page(pud) (__bpn_to_ba(pud_val(pud))) /* * Find an entry in a page-table-directory. We combine the address region * (the high order N bits) and the pgd portion of the address. */ /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */ #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x7ff) #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) /* Find an entry in the second-level page table.. */ #define pmd_offset(pudp,addr) \ ((pmd_t *) pud_page(*(pudp)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) /* Find an entry in the third-level page table.. */ #define pte_offset_kernel(dir,addr) \ ((pte_t *) pmd_page_kernel(*(dir)) \ + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr)) #define pte_unmap(pte) do { } while(0) #define pte_unmap_nested(pte) do { } while(0) /* to find an entry in a kernel page-table-directory */ /* This now only contains the vmalloc pages */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;} static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;} static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;} static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;} static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;} static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;} static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_HUGE;} static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } static inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; } static inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_EXEC; return pte; } static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW); return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_DIRTY); return pte; } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } static inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; } static inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } static inline pte_t pte_mkhuge(pte_t pte) { pte_val(pte) |= _PAGE_HUGE; return pte; } /* Atomic PTE updates */ static inline unsigned long pte_update(pte_t *p, unsigned long clr) { unsigned long old, tmp; __asm__ __volatile__( "1: ldarx %0,0,%3 # pte_update\n\ andi. %1,%0,%6\n\ bne- 1b \n\ andc %1,%0,%4 \n\ stdcx. %1,0,%3 \n\ bne- 1b" : "=&r" (old), "=&r" (tmp), "=m" (*p) : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY) : "cc" ); return old; } /* PTE updating functions, this function puts the PTE in the * batch, doesn't actually triggers the hash flush immediately, * you need to call flush_tlb_pending() to do that. */ extern void hpte_update(struct mm_struct *mm, unsigned long addr, unsigned long pte, int wrprot); static inline int __ptep_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old; if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) return 0; old = pte_update(ptep, _PAGE_ACCESSED); if (old & _PAGE_HASHPTE) { hpte_update(mm, addr, old, 0); flush_tlb_pending(); } return (old & _PAGE_ACCESSED) != 0; } #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ ({ \ int __r; \ __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ __r; \ }) /* * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the * moment we always flush but we need to fix hpte_update and test if the * optimisation is worth it. */ static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old; if ((pte_val(*ptep) & _PAGE_DIRTY) == 0) return 0; old = pte_update(ptep, _PAGE_DIRTY); if (old & _PAGE_HASHPTE) hpte_update(mm, addr, old, 0); return (old & _PAGE_DIRTY) != 0; } #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \ ({ \ int __r; \ __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \ __r; \ }) #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old; if ((pte_val(*ptep) & _PAGE_RW) == 0) return; old = pte_update(ptep, _PAGE_RW); if (old & _PAGE_HASHPTE) hpte_update(mm, addr, old, 0); } /* * We currently remove entries from the hashtable regardless of whether * the entry was young or dirty. The generic routines only flush if the * entry was young or dirty which is not good enough. * * We should be more intelligent about this but for the moment we override * these functions and force a tlb flush unconditionally */ #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH #define ptep_clear_flush_young(__vma, __address, __ptep) \ ({ \ int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ __ptep); \ __young; \ }) #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH #define ptep_clear_flush_dirty(__vma, __address, __ptep) \ ({ \ int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \ __ptep); \ flush_tlb_page(__vma, __address); \ __dirty; \ }) #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old = pte_update(ptep, ~0UL); if (old & _PAGE_HASHPTE) hpte_update(mm, addr, old, 0); return __pte(old); } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t * ptep) { unsigned long old = pte_update(ptep, ~0UL); if (old & _PAGE_HASHPTE) hpte_update(mm, addr, old, 0); } /* * set_pte stores a linux PTE into the linux page table. */ static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { if (pte_present(*ptep)) { pte_clear(mm, addr, ptep); flush_tlb_pending(); } *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); } /* Set the dirty and/or accessed bits atomically in a linux PTE, this * function doesn't need to flush the hash entry */ #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) { unsigned long bits = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); unsigned long old, tmp; __asm__ __volatile__( "1: ldarx %0,0,%4\n\ andi. %1,%0,%6\n\ bne- 1b \n\ or %0,%3,%0\n\ stdcx. %0,0,%4\n\ bne- 1b" :"=&r" (old), "=&r" (tmp), "=m" (*ptep) :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY) :"cc"); } #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ do { \ __ptep_set_access_flags(__ptep, __entry, __dirty); \ flush_tlb_page_nohash(__vma, __address); \ } while(0) /* * Macro to mark a page protection value as "uncacheable". */ #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) struct file; extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long addr, unsigned long size, pgprot_t vma_prot); #define __HAVE_PHYS_MEM_ACCESS_PROT #define __HAVE_ARCH_PTE_SAME #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %08x.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %08x.\n", __FILE__, __LINE__, pgd_val(e)) extern pgd_t swapper_pg_dir[]; extern void paging_init(void); /* * Because the huge pgtables are only 2 level, they can take * at most around 4M, much less than one hugepage which the * process is presumably entitled to use. So we don't bother * freeing up the pagetables on unmap, and wait until * destroy_context() to clean up the lot. */ #define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) \ do { } while (0) /* * This gets called at the end of handling a page fault, when * the kernel has put a new PTE into the page table for the process. * We use it to put a corresponding HPTE into the hash table * ahead of time, instead of waiting for the inevitable extra * hash-table miss exception. */ struct vm_area_struct; extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); /* Encode and de-code a swap entry */ #define __swp_type(entry) (((entry).val >> 1) & 0x3f) #define __swp_offset(entry) ((entry).val >> 8) #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 8) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> PTE_SHIFT }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_SHIFT }) #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT) #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_SHIFT)|_PAGE_FILE}) #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_SHIFT) /* * kern_addr_valid is intended to indicate whether an address is a valid * kernel address. Most 32-bit archs define it as always true (like this) * but most 64-bit archs actually perform a test. What should we do here? * The only use is in fs/ncpfs/dir.c */ #define kern_addr_valid(addr) (1) #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ remap_pfn_range(vma, vaddr, pfn, size, prot) void pgtable_cache_init(void); /* * find_linux_pte returns the address of a linux pte for a given * effective address and directory. If not found, it returns zero. */ static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea) { pgd_t *pg; pud_t *pu; pmd_t *pm; pte_t *pt = NULL; pte_t pte; pg = pgdir + pgd_index(ea); if (!pgd_none(*pg)) { pu = pud_offset(pg, ea); if (!pud_none(*pu)) { pm = pmd_offset(pu, ea); if (pmd_present(*pm)) { pt = pte_offset_kernel(pm, ea); pte = *pt; if (!pte_present(pte)) pt = NULL; } } } return pt; } #include <asm-generic/pgtable.h> #endif /* __ASSEMBLY__ */ #endif /* _PPC64_PGTABLE_H */