/* * PowerPC64 atomic bit operations. * Dave Engebretsen, Todd Inglett, Don Reed, Pat McCarthy, Peter Bergner, * Anton Blanchard * * Originally taken from the 32b PPC code. Modified to use 64b values for * the various counters & memory references. * * Bitops are odd when viewed on big-endian systems. They were designed * on little endian so the size of the bitset doesn't matter (low order bytes * come first) as long as the bit in question is valid. * * Bits are "tested" often using the C expression (val & (1<<nr)) so we do * our best to stay compatible with that. The assumption is that val will * be unsigned long for such tests. As such, we assume the bits are stored * as an array of unsigned long (the usual case is a single unsigned long, * of course). Here's an example bitset with bit numbering: * * |63..........0|127........64|195.......128|255.......196| * * This leads to a problem. If an int, short or char is passed as a bitset * it will be a bad memory reference since we want to store in chunks * of unsigned long (64 bits here) size. * * There are a few little-endian macros used mostly for filesystem bitmaps, * these work on similar bit arrays layouts, but byte-oriented: * * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56| * * The main difference is that bit 3-5 in the bit number field needs to be * reversed compared to the big-endian bit fields. This can be achieved * by XOR with 0b111000 (0x38). * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #ifndef _PPC64_BITOPS_H #define _PPC64_BITOPS_H #ifdef __KERNEL__ #include <asm/memory.h> /* * clear_bit doesn't imply a memory barrier */ #define smp_mb__before_clear_bit() smp_mb() #define smp_mb__after_clear_bit() smp_mb() static __inline__ int test_bit(unsigned long nr, __const__ volatile unsigned long *addr) { return (1UL & (addr[nr >> 6] >> (nr & 63))); } static __inline__ void set_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long old; unsigned long mask = 1UL << (nr & 0x3f); unsigned long *p = ((unsigned long *)addr) + (nr >> 6); __asm__ __volatile__( "1: ldarx %0,0,%3 # set_bit\n\ or %0,%0,%2\n\ stdcx. %0,0,%3\n\ bne- 1b" : "=&r" (old), "=m" (*p) : "r" (mask), "r" (p), "m" (*p) : "cc"); } static __inline__ void clear_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long old; unsigned long mask = 1UL << (nr & 0x3f); unsigned long *p = ((unsigned long *)addr) + (nr >> 6); __asm__ __volatile__( "1: ldarx %0,0,%3 # clear_bit\n\ andc %0,%0,%2\n\ stdcx. %0,0,%3\n\ bne- 1b" : "=&r" (old), "=m" (*p) : "r" (mask), "r" (p), "m" (*p) : "cc"); } static __inline__ void change_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long old; unsigned long mask = 1UL << (nr & 0x3f); unsigned long *p = ((unsigned long *)addr) + (nr >> 6); __asm__ __volatile__( "1: ldarx %0,0,%3 # change_bit\n\ xor %0,%0,%2\n\ stdcx. %0,0,%3\n\ bne- 1b" : "=&r" (old), "=m" (*p) : "r" (mask), "r" (p), "m" (*p) : "cc"); } static __inline__ int test_and_set_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long old, t; unsigned long mask = 1UL << (nr & 0x3f); unsigned long *p = ((unsigned long *)addr) + (nr >> 6); __asm__ __volatile__( EIEIO_ON_SMP "1: ldarx %0,0,%3 # test_and_set_bit\n\ or %1,%0,%2 \n\ stdcx. %1,0,%3 \n\ bne- 1b" ISYNC_ON_SMP : "=&r" (old), "=&r" (t) : "r" (mask), "r" (p) : "cc", "memory"); return (old & mask) != 0; } static __inline__ int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long old, t; unsigned long mask = 1UL << (nr & 0x3f); unsigned long *p = ((unsigned long *)addr) + (nr >> 6); __asm__ __volatile__( EIEIO_ON_SMP "1: ldarx %0,0,%3 # test_and_clear_bit\n\ andc %1,%0,%2\n\ stdcx. %1,0,%3\n\ bne- 1b" ISYNC_ON_SMP : "=&r" (old), "=&r" (t) : "r" (mask), "r" (p) : "cc", "memory"); return (old & mask) != 0; } static __inline__ int test_and_change_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long old, t; unsigned long mask = 1UL << (nr & 0x3f); unsigned long *p = ((unsigned long *)addr) + (nr >> 6); __asm__ __volatile__( EIEIO_ON_SMP "1: ldarx %0,0,%3 # test_and_change_bit\n\ xor %1,%0,%2\n\ stdcx. %1,0,%3\n\ bne- 1b" ISYNC_ON_SMP : "=&r" (old), "=&r" (t) : "r" (mask), "r" (p) : "cc", "memory"); return (old & mask) != 0; } static __inline__ void set_bits(unsigned long mask, unsigned long *addr) { unsigned long old; __asm__ __volatile__( "1: ldarx %0,0,%3 # set_bit\n\ or %0,%0,%2\n\ stdcx. %0,0,%3\n\ bne- 1b" : "=&r" (old), "=m" (*addr) : "r" (mask), "r" (addr), "m" (*addr) : "cc"); } /* * non-atomic versions */ static __inline__ void __set_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long mask = 1UL << (nr & 0x3f); unsigned long *p = ((unsigned long *)addr) + (nr >> 6); *p |= mask; } static __inline__ void __clear_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long mask = 1UL << (nr & 0x3f); unsigned long *p = ((unsigned long *)addr) + (nr >> 6); *p &= ~mask; } static __inline__ void __change_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long mask = 1UL << (nr & 0x3f); unsigned long *p = ((unsigned long *)addr) + (nr >> 6); *p ^= mask; } static __inline__ int __test_and_set_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long mask = 1UL << (nr & 0x3f); unsigned long *p = ((unsigned long *)addr) + (nr >> 6); unsigned long old = *p; *p = old | mask; return (old & mask) != 0; } static __inline__ int __test_and_clear_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long mask = 1UL << (nr & 0x3f); unsigned long *p = ((unsigned long *)addr) + (nr >> 6); unsigned long old = *p; *p = old & ~mask; return (old & mask) != 0; } static __inline__ int __test_and_change_bit(unsigned long nr, volatile unsigned long *addr) { unsigned long mask = 1UL << (nr & 0x3f); unsigned long *p = ((unsigned long *)addr) + (nr >> 6); unsigned long old = *p; *p = old ^ mask; return (old & mask) != 0; } /* * Return the zero-based bit position (from RIGHT TO LEFT, 63 -> 0) of the * most significant (left-most) 1-bit in a double word. */ static __inline__ int __ilog2(unsigned long x) { int lz; asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x)); return 63 - lz; } /* * Determines the bit position of the least significant (rightmost) 0 bit * in the specified double word. The returned bit position will be zero-based, * starting from the right side (63 - 0). */ static __inline__ unsigned long ffz(unsigned long x) { /* no zero exists anywhere in the 8 byte area. */ if ((x = ~x) == 0) return 64; /* * Calculate the bit position of the least signficant '1' bit in x * (since x has been changed this will actually be the least signficant * '0' bit in * the original x). Note: (x & -x) gives us a mask that * is the least significant * (RIGHT-most) 1-bit of the value in x. */ return __ilog2(x & -x); } static __inline__ int __ffs(unsigned long x) { return __ilog2(x & -x); } /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ static __inline__ int ffs(int x) { unsigned long i = (unsigned long)x; return __ilog2(i & -i) + 1; } /* * fls: find last (most-significant) bit set. * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. */ #define fls(x) generic_fls(x) /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #define hweight64(x) generic_hweight64(x) #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) extern unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset); #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) extern unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset); #define find_first_bit(addr, size) \ find_next_bit((addr), (size), 0) extern unsigned long find_next_zero_le_bit(const unsigned long *addr, unsigned long size, unsigned long offset); #define find_first_zero_le_bit(addr, size) \ find_next_zero_le_bit((addr), (size), 0) static __inline__ int test_le_bit(unsigned long nr, __const__ unsigned long * addr) { __const__ unsigned char *ADDR = (__const__ unsigned char *) addr; return (ADDR[nr >> 3] >> (nr & 7)) & 1; } #define test_and_clear_le_bit(nr, addr) \ test_and_clear_bit((nr) ^ 0x38, (addr)) #define test_and_set_le_bit(nr, addr) \ test_and_set_bit((nr) ^ 0x38, (addr)) /* * non-atomic versions */ #define __set_le_bit(nr, addr) \ __set_bit((nr) ^ 0x38, (addr)) #define __clear_le_bit(nr, addr) \ __clear_bit((nr) ^ 0x38, (addr)) #define __test_and_clear_le_bit(nr, addr) \ __test_and_clear_bit((nr) ^ 0x38, (addr)) #define __test_and_set_le_bit(nr, addr) \ __test_and_set_bit((nr) ^ 0x38, (addr)) #define ext2_set_bit(nr,addr) \ __test_and_set_le_bit((nr), (unsigned long*)addr) #define ext2_clear_bit(nr, addr) \ __test_and_clear_le_bit((nr), (unsigned long*)addr) #define ext2_set_bit_atomic(lock, nr, addr) \ test_and_set_le_bit((nr), (unsigned long*)addr) #define ext2_clear_bit_atomic(lock, nr, addr) \ test_and_clear_le_bit((nr), (unsigned long*)addr) #define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr) #define ext2_find_first_zero_bit(addr, size) \ find_first_zero_le_bit((unsigned long*)addr, size) #define ext2_find_next_zero_bit(addr, size, off) \ find_next_zero_le_bit((unsigned long*)addr, size, off) #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_set_bit(nr,addr) set_bit(nr,addr) #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) #endif /* __KERNEL__ */ #endif /* _PPC64_BITOPS_H */