/* * Definitions for measuring cputime on powerpc machines. * * Copyright (C) 2006 Paul Mackerras, IBM Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * If we have CONFIG_VIRT_CPU_ACCOUNTING, we measure cpu time in * the same units as the timebase. Otherwise we measure cpu time * in jiffies using the generic definitions. */ #ifndef __POWERPC_CPUTIME_H #define __POWERPC_CPUTIME_H #ifndef CONFIG_VIRT_CPU_ACCOUNTING #include <asm-generic/cputime.h> #else #include <linux/types.h> #include <linux/time.h> #include <asm/div64.h> #include <asm/time.h> #include <asm/param.h> typedef u64 cputime_t; typedef u64 cputime64_t; #define cputime_zero ((cputime_t)0) #define cputime_max ((~((cputime_t)0) >> 1) - 1) #define cputime_add(__a, __b) ((__a) + (__b)) #define cputime_sub(__a, __b) ((__a) - (__b)) #define cputime_div(__a, __n) ((__a) / (__n)) #define cputime_halve(__a) ((__a) >> 1) #define cputime_eq(__a, __b) ((__a) == (__b)) #define cputime_gt(__a, __b) ((__a) > (__b)) #define cputime_ge(__a, __b) ((__a) >= (__b)) #define cputime_lt(__a, __b) ((__a) < (__b)) #define cputime_le(__a, __b) ((__a) <= (__b)) #define cputime64_zero ((cputime64_t)0) #define cputime64_add(__a, __b) ((__a) + (__b)) #define cputime64_sub(__a, __b) ((__a) - (__b)) #define cputime_to_cputime64(__ct) (__ct) #ifdef __KERNEL__ /* * Convert cputime <-> jiffies */ extern u64 __cputime_jiffies_factor; DECLARE_PER_CPU(unsigned long, cputime_last_delta); DECLARE_PER_CPU(unsigned long, cputime_scaled_last_delta); static inline unsigned long cputime_to_jiffies(const cputime_t ct) { return mulhdu(ct, __cputime_jiffies_factor); } /* Estimate the scaled cputime by scaling the real cputime based on * the last scaled to real ratio */ static inline cputime_t cputime_to_scaled(const cputime_t ct) { if (cpu_has_feature(CPU_FTR_SPURR) && per_cpu(cputime_last_delta, smp_processor_id())) return ct * per_cpu(cputime_scaled_last_delta, smp_processor_id())/ per_cpu(cputime_last_delta, smp_processor_id()); return ct; } static inline cputime_t jiffies_to_cputime(const unsigned long jif) { cputime_t ct; unsigned long sec; /* have to be a little careful about overflow */ ct = jif % HZ; sec = jif / HZ; if (ct) { ct *= tb_ticks_per_sec; do_div(ct, HZ); } if (sec) ct += (cputime_t) sec * tb_ticks_per_sec; return ct; } static inline cputime64_t jiffies64_to_cputime64(const u64 jif) { cputime_t ct; u64 sec; /* have to be a little careful about overflow */ ct = jif % HZ; sec = jif / HZ; if (ct) { ct *= tb_ticks_per_sec; do_div(ct, HZ); } if (sec) ct += (cputime_t) sec * tb_ticks_per_sec; return ct; } static inline u64 cputime64_to_jiffies64(const cputime_t ct) { return mulhdu(ct, __cputime_jiffies_factor); } /* * Convert cputime <-> milliseconds */ extern u64 __cputime_msec_factor; static inline unsigned long cputime_to_msecs(const cputime_t ct) { return mulhdu(ct, __cputime_msec_factor); } static inline cputime_t msecs_to_cputime(const unsigned long ms) { cputime_t ct; unsigned long sec; /* have to be a little careful about overflow */ ct = ms % 1000; sec = ms / 1000; if (ct) { ct *= tb_ticks_per_sec; do_div(ct, 1000); } if (sec) ct += (cputime_t) sec * tb_ticks_per_sec; return ct; } /* * Convert cputime <-> seconds */ extern u64 __cputime_sec_factor; static inline unsigned long cputime_to_secs(const cputime_t ct) { return mulhdu(ct, __cputime_sec_factor); } static inline cputime_t secs_to_cputime(const unsigned long sec) { return (cputime_t) sec * tb_ticks_per_sec; } /* * Convert cputime <-> timespec */ static inline void cputime_to_timespec(const cputime_t ct, struct timespec *p) { u64 x = ct; unsigned int frac; frac = do_div(x, tb_ticks_per_sec); p->tv_sec = x; x = (u64) frac * 1000000000; do_div(x, tb_ticks_per_sec); p->tv_nsec = x; } static inline cputime_t timespec_to_cputime(const struct timespec *p) { cputime_t ct; ct = (u64) p->tv_nsec * tb_ticks_per_sec; do_div(ct, 1000000000); return ct + (u64) p->tv_sec * tb_ticks_per_sec; } /* * Convert cputime <-> timeval */ static inline void cputime_to_timeval(const cputime_t ct, struct timeval *p) { u64 x = ct; unsigned int frac; frac = do_div(x, tb_ticks_per_sec); p->tv_sec = x; x = (u64) frac * 1000000; do_div(x, tb_ticks_per_sec); p->tv_usec = x; } static inline cputime_t timeval_to_cputime(const struct timeval *p) { cputime_t ct; ct = (u64) p->tv_usec * tb_ticks_per_sec; do_div(ct, 1000000); return ct + (u64) p->tv_sec * tb_ticks_per_sec; } /* * Convert cputime <-> clock_t (units of 1/USER_HZ seconds) */ extern u64 __cputime_clockt_factor; static inline unsigned long cputime_to_clock_t(const cputime_t ct) { return mulhdu(ct, __cputime_clockt_factor); } static inline cputime_t clock_t_to_cputime(const unsigned long clk) { cputime_t ct; unsigned long sec; /* have to be a little careful about overflow */ ct = clk % USER_HZ; sec = clk / USER_HZ; if (ct) { ct *= tb_ticks_per_sec; do_div(ct, USER_HZ); } if (sec) ct += (cputime_t) sec * tb_ticks_per_sec; return ct; } #define cputime64_to_clock_t(ct) cputime_to_clock_t((cputime_t)(ct)) #endif /* __KERNEL__ */ #endif /* CONFIG_VIRT_CPU_ACCOUNTING */ #endif /* __POWERPC_CPUTIME_H */