#ifndef _PARISC_BITOPS_H #define _PARISC_BITOPS_H #include <linux/compiler.h> #include <asm/types.h> /* for BITS_PER_LONG/SHIFT_PER_LONG */ #include <asm/byteorder.h> #include <asm/atomic.h> /* * HP-PARISC specific bit operations * for a detailed description of the functions please refer * to include/asm-i386/bitops.h or kerneldoc */ #define CHOP_SHIFTCOUNT(x) (((unsigned long) (x)) & (BITS_PER_LONG - 1)) #define smp_mb__before_clear_bit() smp_mb() #define smp_mb__after_clear_bit() smp_mb() /* See http://marc.theaimsgroup.com/?t=108826637900003 for discussion * on use of volatile and __*_bit() (set/clear/change): * *_bit() want use of volatile. * __*_bit() are "relaxed" and don't use spinlock or volatile. */ static __inline__ void set_bit(int nr, volatile unsigned long * addr) { unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); unsigned long flags; addr += (nr >> SHIFT_PER_LONG); _atomic_spin_lock_irqsave(addr, flags); *addr |= mask; _atomic_spin_unlock_irqrestore(addr, flags); } static __inline__ void clear_bit(int nr, volatile unsigned long * addr) { unsigned long mask = ~(1UL << CHOP_SHIFTCOUNT(nr)); unsigned long flags; addr += (nr >> SHIFT_PER_LONG); _atomic_spin_lock_irqsave(addr, flags); *addr &= mask; _atomic_spin_unlock_irqrestore(addr, flags); } static __inline__ void change_bit(int nr, volatile unsigned long * addr) { unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); unsigned long flags; addr += (nr >> SHIFT_PER_LONG); _atomic_spin_lock_irqsave(addr, flags); *addr ^= mask; _atomic_spin_unlock_irqrestore(addr, flags); } static __inline__ int test_and_set_bit(int nr, volatile unsigned long * addr) { unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); unsigned long oldbit; unsigned long flags; addr += (nr >> SHIFT_PER_LONG); _atomic_spin_lock_irqsave(addr, flags); oldbit = *addr; *addr = oldbit | mask; _atomic_spin_unlock_irqrestore(addr, flags); return (oldbit & mask) ? 1 : 0; } static __inline__ int test_and_clear_bit(int nr, volatile unsigned long * addr) { unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); unsigned long oldbit; unsigned long flags; addr += (nr >> SHIFT_PER_LONG); _atomic_spin_lock_irqsave(addr, flags); oldbit = *addr; *addr = oldbit & ~mask; _atomic_spin_unlock_irqrestore(addr, flags); return (oldbit & mask) ? 1 : 0; } static __inline__ int test_and_change_bit(int nr, volatile unsigned long * addr) { unsigned long mask = 1UL << CHOP_SHIFTCOUNT(nr); unsigned long oldbit; unsigned long flags; addr += (nr >> SHIFT_PER_LONG); _atomic_spin_lock_irqsave(addr, flags); oldbit = *addr; *addr = oldbit ^ mask; _atomic_spin_unlock_irqrestore(addr, flags); return (oldbit & mask) ? 1 : 0; } #include <asm-generic/bitops/non-atomic.h> #ifdef __KERNEL__ /** * __ffs - find first bit in word. returns 0 to "BITS_PER_LONG-1". * @word: The word to search * * __ffs() return is undefined if no bit is set. * * 32-bit fast __ffs by LaMont Jones "lamont At hp com". * 64-bit enhancement by Grant Grundler "grundler At parisc-linux org". * (with help from willy/jejb to get the semantics right) * * This algorithm avoids branches by making use of nullification. * One side effect of "extr" instructions is it sets PSW[N] bit. * How PSW[N] (nullify next insn) gets set is determined by the * "condition" field (eg "<>" or "TR" below) in the extr* insn. * Only the 1st and one of either the 2cd or 3rd insn will get executed. * Each set of 3 insn will get executed in 2 cycles on PA8x00 vs 16 or so * cycles for each mispredicted branch. */ static __inline__ unsigned long __ffs(unsigned long x) { unsigned long ret; __asm__( #ifdef __LP64__ " ldi 63,%1\n" " extrd,u,*<> %0,63,32,%%r0\n" " extrd,u,*TR %0,31,32,%0\n" /* move top 32-bits down */ " addi -32,%1,%1\n" #else " ldi 31,%1\n" #endif " extru,<> %0,31,16,%%r0\n" " extru,TR %0,15,16,%0\n" /* xxxx0000 -> 0000xxxx */ " addi -16,%1,%1\n" " extru,<> %0,31,8,%%r0\n" " extru,TR %0,23,8,%0\n" /* 0000xx00 -> 000000xx */ " addi -8,%1,%1\n" " extru,<> %0,31,4,%%r0\n" " extru,TR %0,27,4,%0\n" /* 000000x0 -> 0000000x */ " addi -4,%1,%1\n" " extru,<> %0,31,2,%%r0\n" " extru,TR %0,29,2,%0\n" /* 0000000y, 1100b -> 0011b */ " addi -2,%1,%1\n" " extru,= %0,31,1,%%r0\n" /* check last bit */ " addi -1,%1,%1\n" : "+r" (x), "=r" (ret) ); return ret; } #include <asm-generic/bitops/ffz.h> /* * ffs: find first bit set. returns 1 to BITS_PER_LONG or 0 (if none set) * This is defined the same way as the libc and compiler builtin * ffs routines, therefore differs in spirit from the above ffz (man ffs). */ static __inline__ int ffs(int x) { return x ? (__ffs((unsigned long)x) + 1) : 0; } /* * fls: find last (most significant) bit set. * fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. */ static __inline__ int fls(int x) { int ret; if (!x) return 0; __asm__( " ldi 1,%1\n" " extru,<> %0,15,16,%%r0\n" " zdep,TR %0,15,16,%0\n" /* xxxx0000 */ " addi 16,%1,%1\n" " extru,<> %0,7,8,%%r0\n" " zdep,TR %0,23,24,%0\n" /* xx000000 */ " addi 8,%1,%1\n" " extru,<> %0,3,4,%%r0\n" " zdep,TR %0,27,28,%0\n" /* x0000000 */ " addi 4,%1,%1\n" " extru,<> %0,1,2,%%r0\n" " zdep,TR %0,29,30,%0\n" /* y0000000 (y&3 = 0) */ " addi 2,%1,%1\n" " extru,= %0,0,1,%%r0\n" " addi 1,%1,%1\n" /* if y & 8, add 1 */ : "+r" (x), "=r" (ret) ); return ret; } #include <asm-generic/bitops/fls64.h> #include <asm-generic/bitops/hweight.h> #include <asm-generic/bitops/sched.h> #endif /* __KERNEL__ */ #include <asm-generic/bitops/find.h> #ifdef __KERNEL__ #include <asm-generic/bitops/ext2-non-atomic.h> /* '3' is bits per byte */ #define LE_BYTE_ADDR ((sizeof(unsigned long) - 1) << 3) #define ext2_set_bit_atomic(l,nr,addr) \ test_and_set_bit((nr) ^ LE_BYTE_ADDR, (unsigned long *)addr) #define ext2_clear_bit_atomic(l,nr,addr) \ test_and_clear_bit( (nr) ^ LE_BYTE_ADDR, (unsigned long *)addr) #endif /* __KERNEL__ */ #include <asm-generic/bitops/minix-le.h> #endif /* _PARISC_BITOPS_H */