#ifndef _PARISC_BITOPS_H #define _PARISC_BITOPS_H #include <linux/compiler.h> #include <asm/system.h> #include <asm/byteorder.h> #include <asm/atomic.h> /* * HP-PARISC specific bit operations * for a detailed description of the functions please refer * to include/asm-i386/bitops.h or kerneldoc */ #ifdef __LP64__ # define SHIFT_PER_LONG 6 #ifndef BITS_PER_LONG # define BITS_PER_LONG 64 #endif #else # define SHIFT_PER_LONG 5 #ifndef BITS_PER_LONG # define BITS_PER_LONG 32 #endif #endif #define CHOP_SHIFTCOUNT(x) ((x) & (BITS_PER_LONG - 1)) #define smp_mb__before_clear_bit() smp_mb() #define smp_mb__after_clear_bit() smp_mb() static __inline__ void set_bit(int nr, volatile unsigned long * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; unsigned long flags; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); _atomic_spin_lock_irqsave(addr, flags); *addr |= mask; _atomic_spin_unlock_irqrestore(addr, flags); } static __inline__ void __set_bit(int nr, volatile unsigned long * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); *addr |= mask; } static __inline__ void clear_bit(int nr, volatile unsigned long * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; unsigned long flags; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); _atomic_spin_lock_irqsave(addr, flags); *addr &= ~mask; _atomic_spin_unlock_irqrestore(addr, flags); } static __inline__ void __clear_bit(unsigned long nr, volatile unsigned long * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); *addr &= ~mask; } static __inline__ void change_bit(int nr, volatile unsigned long * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; unsigned long flags; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); _atomic_spin_lock_irqsave(addr, flags); *addr ^= mask; _atomic_spin_unlock_irqrestore(addr, flags); } static __inline__ void __change_bit(int nr, volatile unsigned long * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); *addr ^= mask; } static __inline__ int test_and_set_bit(int nr, volatile unsigned long * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; int oldbit; unsigned long flags; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); _atomic_spin_lock_irqsave(addr, flags); oldbit = (*addr & mask) ? 1 : 0; *addr |= mask; _atomic_spin_unlock_irqrestore(addr, flags); return oldbit; } static __inline__ int __test_and_set_bit(int nr, volatile unsigned long * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; int oldbit; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); oldbit = (*addr & mask) ? 1 : 0; *addr |= mask; return oldbit; } static __inline__ int test_and_clear_bit(int nr, volatile unsigned long * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; int oldbit; unsigned long flags; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); _atomic_spin_lock_irqsave(addr, flags); oldbit = (*addr & mask) ? 1 : 0; *addr &= ~mask; _atomic_spin_unlock_irqrestore(addr, flags); return oldbit; } static __inline__ int __test_and_clear_bit(int nr, volatile unsigned long * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; int oldbit; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); oldbit = (*addr & mask) ? 1 : 0; *addr &= ~mask; return oldbit; } static __inline__ int test_and_change_bit(int nr, volatile unsigned long * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; int oldbit; unsigned long flags; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); _atomic_spin_lock_irqsave(addr, flags); oldbit = (*addr & mask) ? 1 : 0; *addr ^= mask; _atomic_spin_unlock_irqrestore(addr, flags); return oldbit; } static __inline__ int __test_and_change_bit(int nr, volatile unsigned long * address) { unsigned long mask; unsigned long *addr = (unsigned long *) address; int oldbit; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); oldbit = (*addr & mask) ? 1 : 0; *addr ^= mask; return oldbit; } static __inline__ int test_bit(int nr, const volatile unsigned long *address) { unsigned long mask; const unsigned long *addr = (const unsigned long *)address; addr += (nr >> SHIFT_PER_LONG); mask = 1L << CHOP_SHIFTCOUNT(nr); return !!(*addr & mask); } #ifdef __KERNEL__ /** * __ffs - find first bit in word. returns 0 to "BITS_PER_LONG-1". * @word: The word to search * * __ffs() return is undefined if no bit is set. * * 32-bit fast __ffs by LaMont Jones "lamont At hp com". * 64-bit enhancement by Grant Grundler "grundler At parisc-linux org". * (with help from willy/jejb to get the semantics right) * * This algorithm avoids branches by making use of nullification. * One side effect of "extr" instructions is it sets PSW[N] bit. * How PSW[N] (nullify next insn) gets set is determined by the * "condition" field (eg "<>" or "TR" below) in the extr* insn. * Only the 1st and one of either the 2cd or 3rd insn will get executed. * Each set of 3 insn will get executed in 2 cycles on PA8x00 vs 16 or so * cycles for each mispredicted branch. */ static __inline__ unsigned long __ffs(unsigned long x) { unsigned long ret; __asm__( #if BITS_PER_LONG > 32 " ldi 63,%1\n" " extrd,u,*<> %0,63,32,%%r0\n" " extrd,u,*TR %0,31,32,%0\n" /* move top 32-bits down */ " addi -32,%1,%1\n" #else " ldi 31,%1\n" #endif " extru,<> %0,31,16,%%r0\n" " extru,TR %0,15,16,%0\n" /* xxxx0000 -> 0000xxxx */ " addi -16,%1,%1\n" " extru,<> %0,31,8,%%r0\n" " extru,TR %0,23,8,%0\n" /* 0000xx00 -> 000000xx */ " addi -8,%1,%1\n" " extru,<> %0,31,4,%%r0\n" " extru,TR %0,27,4,%0\n" /* 000000x0 -> 0000000x */ " addi -4,%1,%1\n" " extru,<> %0,31,2,%%r0\n" " extru,TR %0,29,2,%0\n" /* 0000000y, 1100b -> 0011b */ " addi -2,%1,%1\n" " extru,= %0,31,1,%%r0\n" /* check last bit */ " addi -1,%1,%1\n" : "+r" (x), "=r" (ret) ); return ret; } /* Undefined if no bit is zero. */ #define ffz(x) __ffs(~x) /* * ffs: find first bit set. returns 1 to BITS_PER_LONG or 0 (if none set) * This is defined the same way as the libc and compiler builtin * ffs routines, therefore differs in spirit from the above ffz (man ffs). */ static __inline__ int ffs(int x) { return x ? (__ffs((unsigned long)x) + 1) : 0; } /* * fls: find last (most significant) bit set. * fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. */ static __inline__ int fls(int x) { int ret; if (!x) return 0; __asm__( " ldi 1,%1\n" " extru,<> %0,15,16,%%r0\n" " zdep,TR %0,15,16,%0\n" /* xxxx0000 */ " addi 16,%1,%1\n" " extru,<> %0,7,8,%%r0\n" " zdep,TR %0,23,24,%0\n" /* xx000000 */ " addi 8,%1,%1\n" " extru,<> %0,3,4,%%r0\n" " zdep,TR %0,27,28,%0\n" /* x0000000 */ " addi 4,%1,%1\n" " extru,<> %0,1,2,%%r0\n" " zdep,TR %0,29,30,%0\n" /* y0000000 (y&3 = 0) */ " addi 2,%1,%1\n" " extru,= %0,0,1,%%r0\n" " addi 1,%1,%1\n" /* if y & 8, add 1 */ : "+r" (x), "=r" (ret) ); return ret; } /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #define hweight64(x) \ ({ \ unsigned long __x = (x); \ unsigned int __w; \ __w = generic_hweight32((unsigned int) __x); \ __w += generic_hweight32((unsigned int) (__x>>32)); \ __w; \ }) #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) /* * Every architecture must define this function. It's the fastest * way of searching a 140-bit bitmap where the first 100 bits are * unlikely to be set. It's guaranteed that at least one of the 140 * bits is cleared. */ static inline int sched_find_first_bit(const unsigned long *b) { #ifndef __LP64__ if (unlikely(b[0])) return __ffs(b[0]); if (unlikely(b[1])) return __ffs(b[1]) + 32; if (unlikely(b[2])) return __ffs(b[2]) + 64; if (b[3]) return __ffs(b[3]) + 96; return __ffs(b[4]) + 128; #else if (unlikely(b[0])) return __ffs(b[0]); if (unlikely(((unsigned int)b[1]))) return __ffs(b[1]) + 64; if (b[1] >> 32) return __ffs(b[1] >> 32) + 96; return __ffs(b[2]) + 128; #endif } #endif /* __KERNEL__ */ /* * This implementation of find_{first,next}_zero_bit was stolen from * Linus' asm-alpha/bitops.h. */ #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) static __inline__ unsigned long find_next_zero_bit(const void * addr, unsigned long size, unsigned long offset) { const unsigned long * p = ((unsigned long *) addr) + (offset >> SHIFT_PER_LONG); unsigned long result = offset & ~(BITS_PER_LONG-1); unsigned long tmp; if (offset >= size) return size; size -= result; offset &= (BITS_PER_LONG-1); if (offset) { tmp = *(p++); tmp |= ~0UL >> (BITS_PER_LONG-offset); if (size < BITS_PER_LONG) goto found_first; if (~tmp) goto found_middle; size -= BITS_PER_LONG; result += BITS_PER_LONG; } while (size & ~(BITS_PER_LONG -1)) { if (~(tmp = *(p++))) goto found_middle; result += BITS_PER_LONG; size -= BITS_PER_LONG; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; found_middle: return result + ffz(tmp); } static __inline__ unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { const unsigned long *p = addr + (offset >> 6); unsigned long result = offset & ~(BITS_PER_LONG-1); unsigned long tmp; if (offset >= size) return size; size -= result; offset &= (BITS_PER_LONG-1); if (offset) { tmp = *(p++); tmp &= (~0UL << offset); if (size < BITS_PER_LONG) goto found_first; if (tmp) goto found_middle; size -= BITS_PER_LONG; result += BITS_PER_LONG; } while (size & ~(BITS_PER_LONG-1)) { if ((tmp = *(p++))) goto found_middle; result += BITS_PER_LONG; size -= BITS_PER_LONG; } if (!size) return result; tmp = *p; found_first: tmp &= (~0UL >> (BITS_PER_LONG - size)); if (tmp == 0UL) /* Are any bits set? */ return result + size; /* Nope. */ found_middle: return result + __ffs(tmp); } /** * find_first_bit - find the first set bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first set bit, not the number of the byte * containing a bit. */ #define find_first_bit(addr, size) \ find_next_bit((addr), (size), 0) #define _EXT2_HAVE_ASM_BITOPS_ #ifdef __KERNEL__ /* * test_and_{set,clear}_bit guarantee atomicity without * disabling interrupts. */ #ifdef __LP64__ #define ext2_set_bit(nr, addr) __test_and_set_bit((nr) ^ 0x38, (unsigned long *)addr) #define ext2_set_bit_atomic(l,nr,addr) test_and_set_bit((nr) ^ 0x38, (unsigned long *)addr) #define ext2_clear_bit(nr, addr) __test_and_clear_bit((nr) ^ 0x38, (unsigned long *)addr) #define ext2_clear_bit_atomic(l,nr,addr) test_and_clear_bit((nr) ^ 0x38, (unsigned long *)addr) #else #define ext2_set_bit(nr, addr) __test_and_set_bit((nr) ^ 0x18, (unsigned long *)addr) #define ext2_set_bit_atomic(l,nr,addr) test_and_set_bit((nr) ^ 0x18, (unsigned long *)addr) #define ext2_clear_bit(nr, addr) __test_and_clear_bit((nr) ^ 0x18, (unsigned long *)addr) #define ext2_clear_bit_atomic(l,nr,addr) test_and_clear_bit((nr) ^ 0x18, (unsigned long *)addr) #endif #endif /* __KERNEL__ */ static __inline__ int ext2_test_bit(int nr, __const__ void * addr) { __const__ unsigned char *ADDR = (__const__ unsigned char *) addr; return (ADDR[nr >> 3] >> (nr & 7)) & 1; } /* * This implementation of ext2_find_{first,next}_zero_bit was stolen from * Linus' asm-alpha/bitops.h and modified for a big-endian machine. */ #define ext2_find_first_zero_bit(addr, size) \ ext2_find_next_zero_bit((addr), (size), 0) extern __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) { unsigned int *p = ((unsigned int *) addr) + (offset >> 5); unsigned int result = offset & ~31UL; unsigned int tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = cpu_to_le32p(p++); tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (tmp != ~0U) goto found_middle; size -= 32; result += 32; } while (size >= 32) { if ((tmp = cpu_to_le32p(p++)) != ~0U) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = cpu_to_le32p(p); found_first: tmp |= ~0U << size; found_middle: return result + ffz(tmp); } /* Bitmap functions for the minix filesystem. */ #define minix_test_and_set_bit(nr,addr) ext2_set_bit(nr,addr) #define minix_set_bit(nr,addr) ((void)ext2_set_bit(nr,addr)) #define minix_test_and_clear_bit(nr,addr) ext2_clear_bit(nr,addr) #define minix_test_bit(nr,addr) ext2_test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) ext2_find_first_zero_bit(addr,size) #endif /* _PARISC_BITOPS_H */