/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994, 95, 96, 97, 98, 99, 2003 by Ralf Baechle * Copyright (C) 1996 by Paul M. Antoine * Copyright (C) 1999 Silicon Graphics * Kevin D. Kissell, kevink@mips.org and Carsten Langgaard, carstenl@mips.com * Copyright (C) 2000 MIPS Technologies, Inc. */ #ifndef _ASM_SYSTEM_H #define _ASM_SYSTEM_H #include <linux/types.h> #include <asm/addrspace.h> #include <asm/cpu-features.h> #include <asm/dsp.h> #include <asm/ptrace.h> #include <asm/war.h> #include <asm/interrupt.h> /* * read_barrier_depends - Flush all pending reads that subsequents reads * depend on. * * No data-dependent reads from memory-like regions are ever reordered * over this barrier. All reads preceding this primitive are guaranteed * to access memory (but not necessarily other CPUs' caches) before any * reads following this primitive that depend on the data return by * any of the preceding reads. This primitive is much lighter weight than * rmb() on most CPUs, and is never heavier weight than is * rmb(). * * These ordering constraints are respected by both the local CPU * and the compiler. * * Ordering is not guaranteed by anything other than these primitives, * not even by data dependencies. See the documentation for * memory_barrier() for examples and URLs to more information. * * For example, the following code would force ordering (the initial * value of "a" is zero, "b" is one, and "p" is "&a"): * * <programlisting> * CPU 0 CPU 1 * * b = 2; * memory_barrier(); * p = &b; q = p; * read_barrier_depends(); * d = *q; * </programlisting> * * because the read of "*q" depends on the read of "p" and these * two reads are separated by a read_barrier_depends(). However, * the following code, with the same initial values for "a" and "b": * * <programlisting> * CPU 0 CPU 1 * * a = 2; * memory_barrier(); * b = 3; y = b; * read_barrier_depends(); * x = a; * </programlisting> * * does not enforce ordering, since there is no data dependency between * the read of "a" and the read of "b". Therefore, on some CPUs, such * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb() * in cases like this where there are no data dependencies. */ #define read_barrier_depends() do { } while(0) #ifdef CONFIG_CPU_HAS_SYNC #define __sync() \ __asm__ __volatile__( \ ".set push\n\t" \ ".set noreorder\n\t" \ ".set mips2\n\t" \ "sync\n\t" \ ".set pop" \ : /* no output */ \ : /* no input */ \ : "memory") #else #define __sync() do { } while(0) #endif #define __fast_iob() \ __asm__ __volatile__( \ ".set push\n\t" \ ".set noreorder\n\t" \ "lw $0,%0\n\t" \ "nop\n\t" \ ".set pop" \ : /* no output */ \ : "m" (*(int *)CKSEG1) \ : "memory") #define fast_wmb() __sync() #define fast_rmb() __sync() #define fast_mb() __sync() #define fast_iob() \ do { \ __sync(); \ __fast_iob(); \ } while (0) #ifdef CONFIG_CPU_HAS_WB #include <asm/wbflush.h> #define wmb() fast_wmb() #define rmb() fast_rmb() #define mb() wbflush() #define iob() wbflush() #else /* !CONFIG_CPU_HAS_WB */ #define wmb() fast_wmb() #define rmb() fast_rmb() #define mb() fast_mb() #define iob() fast_iob() #endif /* !CONFIG_CPU_HAS_WB */ #ifdef CONFIG_SMP #define smp_mb() mb() #define smp_rmb() rmb() #define smp_wmb() wmb() #define smp_read_barrier_depends() read_barrier_depends() #else #define smp_mb() barrier() #define smp_rmb() barrier() #define smp_wmb() barrier() #define smp_read_barrier_depends() do { } while(0) #endif #define set_mb(var, value) \ do { var = value; mb(); } while (0) #define set_wmb(var, value) \ do { var = value; wmb(); } while (0) /* * switch_to(n) should switch tasks to task nr n, first * checking that n isn't the current task, in which case it does nothing. */ extern asmlinkage void *resume(void *last, void *next, void *next_ti); struct task_struct; #ifdef CONFIG_MIPS_MT_FPAFF /* * Handle the scheduler resume end of FPU affinity management. We do this * inline to try to keep the overhead down. If we have been forced to run on * a "CPU" with an FPU because of a previous high level of FP computation, * but did not actually use the FPU during the most recent time-slice (CU1 * isn't set), we undo the restriction on cpus_allowed. * * We're not calling set_cpus_allowed() here, because we have no need to * force prompt migration - we're already switching the current CPU to a * different thread. */ #define switch_to(prev,next,last) \ do { \ if (cpu_has_fpu && \ (prev->thread.mflags & MF_FPUBOUND) && \ (!(KSTK_STATUS(prev) & ST0_CU1))) { \ prev->thread.mflags &= ~MF_FPUBOUND; \ prev->cpus_allowed = prev->thread.user_cpus_allowed; \ } \ if (cpu_has_dsp) \ __save_dsp(prev); \ next->thread.emulated_fp = 0; \ (last) = resume(prev, next, next->thread_info); \ if (cpu_has_dsp) \ __restore_dsp(current); \ } while(0) #else #define switch_to(prev,next,last) \ do { \ if (cpu_has_dsp) \ __save_dsp(prev); \ (last) = resume(prev, next, task_thread_info(next)); \ if (cpu_has_dsp) \ __restore_dsp(current); \ } while(0) #endif /* * On SMP systems, when the scheduler does migration-cost autodetection, * it needs a way to flush as much of the CPU's caches as possible. * * TODO: fill this in! */ static inline void sched_cacheflush(void) { } static inline unsigned long __xchg_u32(volatile int * m, unsigned int val) { __u32 retval; if (cpu_has_llsc && R10000_LLSC_WAR) { unsigned long dummy; __asm__ __volatile__( " .set mips3 \n" "1: ll %0, %3 # xchg_u32 \n" " .set mips0 \n" " move %2, %z4 \n" " .set mips3 \n" " sc %2, %1 \n" " beqzl %2, 1b \n" #ifdef CONFIG_SMP " sync \n" #endif " .set mips0 \n" : "=&r" (retval), "=m" (*m), "=&r" (dummy) : "R" (*m), "Jr" (val) : "memory"); } else if (cpu_has_llsc) { unsigned long dummy; __asm__ __volatile__( " .set mips3 \n" "1: ll %0, %3 # xchg_u32 \n" " .set mips0 \n" " move %2, %z4 \n" " .set mips3 \n" " sc %2, %1 \n" " beqz %2, 1b \n" #ifdef CONFIG_SMP " sync \n" #endif " .set mips0 \n" : "=&r" (retval), "=m" (*m), "=&r" (dummy) : "R" (*m), "Jr" (val) : "memory"); } else { unsigned long flags; local_irq_save(flags); retval = *m; *m = val; local_irq_restore(flags); /* implies memory barrier */ } return retval; } #ifdef CONFIG_64BIT static inline __u64 __xchg_u64(volatile __u64 * m, __u64 val) { __u64 retval; if (cpu_has_llsc && R10000_LLSC_WAR) { unsigned long dummy; __asm__ __volatile__( " .set mips3 \n" "1: lld %0, %3 # xchg_u64 \n" " move %2, %z4 \n" " scd %2, %1 \n" " beqzl %2, 1b \n" #ifdef CONFIG_SMP " sync \n" #endif " .set mips0 \n" : "=&r" (retval), "=m" (*m), "=&r" (dummy) : "R" (*m), "Jr" (val) : "memory"); } else if (cpu_has_llsc) { unsigned long dummy; __asm__ __volatile__( " .set mips3 \n" "1: lld %0, %3 # xchg_u64 \n" " move %2, %z4 \n" " scd %2, %1 \n" " beqz %2, 1b \n" #ifdef CONFIG_SMP " sync \n" #endif " .set mips0 \n" : "=&r" (retval), "=m" (*m), "=&r" (dummy) : "R" (*m), "Jr" (val) : "memory"); } else { unsigned long flags; local_irq_save(flags); retval = *m; *m = val; local_irq_restore(flags); /* implies memory barrier */ } return retval; } #else extern __u64 __xchg_u64_unsupported_on_32bit_kernels(volatile __u64 * m, __u64 val); #define __xchg_u64 __xchg_u64_unsupported_on_32bit_kernels #endif /* This function doesn't exist, so you'll get a linker error if something tries to do an invalid xchg(). */ extern void __xchg_called_with_bad_pointer(void); static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size) { switch (size) { case 4: return __xchg_u32(ptr, x); case 8: return __xchg_u64(ptr, x); } __xchg_called_with_bad_pointer(); return x; } #define xchg(ptr,x) ((__typeof__(*(ptr)))__xchg((unsigned long)(x),(ptr),sizeof(*(ptr)))) #define tas(ptr) (xchg((ptr),1)) #define __HAVE_ARCH_CMPXCHG 1 static inline unsigned long __cmpxchg_u32(volatile int * m, unsigned long old, unsigned long new) { __u32 retval; if (cpu_has_llsc && R10000_LLSC_WAR) { __asm__ __volatile__( " .set push \n" " .set noat \n" " .set mips3 \n" "1: ll %0, %2 # __cmpxchg_u32 \n" " bne %0, %z3, 2f \n" " .set mips0 \n" " move $1, %z4 \n" " .set mips3 \n" " sc $1, %1 \n" " beqzl $1, 1b \n" #ifdef CONFIG_SMP " sync \n" #endif "2: \n" " .set pop \n" : "=&r" (retval), "=R" (*m) : "R" (*m), "Jr" (old), "Jr" (new) : "memory"); } else if (cpu_has_llsc) { __asm__ __volatile__( " .set push \n" " .set noat \n" " .set mips3 \n" "1: ll %0, %2 # __cmpxchg_u32 \n" " bne %0, %z3, 2f \n" " .set mips0 \n" " move $1, %z4 \n" " .set mips3 \n" " sc $1, %1 \n" " beqz $1, 1b \n" #ifdef CONFIG_SMP " sync \n" #endif "2: \n" " .set pop \n" : "=&r" (retval), "=R" (*m) : "R" (*m), "Jr" (old), "Jr" (new) : "memory"); } else { unsigned long flags; local_irq_save(flags); retval = *m; if (retval == old) *m = new; local_irq_restore(flags); /* implies memory barrier */ } return retval; } #ifdef CONFIG_64BIT static inline unsigned long __cmpxchg_u64(volatile int * m, unsigned long old, unsigned long new) { __u64 retval; if (cpu_has_llsc) { __asm__ __volatile__( " .set push \n" " .set noat \n" " .set mips3 \n" "1: lld %0, %2 # __cmpxchg_u64 \n" " bne %0, %z3, 2f \n" " move $1, %z4 \n" " scd $1, %1 \n" " beqzl $1, 1b \n" #ifdef CONFIG_SMP " sync \n" #endif "2: \n" " .set pop \n" : "=&r" (retval), "=R" (*m) : "R" (*m), "Jr" (old), "Jr" (new) : "memory"); } else if (cpu_has_llsc) { __asm__ __volatile__( " .set push \n" " .set noat \n" " .set mips3 \n" "1: lld %0, %2 # __cmpxchg_u64 \n" " bne %0, %z3, 2f \n" " move $1, %z4 \n" " scd $1, %1 \n" " beqz $1, 1b \n" #ifdef CONFIG_SMP " sync \n" #endif "2: \n" " .set pop \n" : "=&r" (retval), "=R" (*m) : "R" (*m), "Jr" (old), "Jr" (new) : "memory"); } else { unsigned long flags; local_irq_save(flags); retval = *m; if (retval == old) *m = new; local_irq_restore(flags); /* implies memory barrier */ } return retval; } #else extern unsigned long __cmpxchg_u64_unsupported_on_32bit_kernels( volatile int * m, unsigned long old, unsigned long new); #define __cmpxchg_u64 __cmpxchg_u64_unsupported_on_32bit_kernels #endif /* This function doesn't exist, so you'll get a linker error if something tries to do an invalid cmpxchg(). */ extern void __cmpxchg_called_with_bad_pointer(void); static inline unsigned long __cmpxchg(volatile void * ptr, unsigned long old, unsigned long new, int size) { switch (size) { case 4: return __cmpxchg_u32(ptr, old, new); case 8: return __cmpxchg_u64(ptr, old, new); } __cmpxchg_called_with_bad_pointer(); return old; } #define cmpxchg(ptr,old,new) ((__typeof__(*(ptr)))__cmpxchg((ptr), (unsigned long)(old), (unsigned long)(new),sizeof(*(ptr)))) extern void set_handler (unsigned long offset, void *addr, unsigned long len); extern void set_uncached_handler (unsigned long offset, void *addr, unsigned long len); extern void *set_vi_handler (int n, void *addr); extern void *set_except_vector(int n, void *addr); extern unsigned long ebase; extern void per_cpu_trap_init(void); extern NORET_TYPE void die(const char *, struct pt_regs *); static inline void die_if_kernel(const char *str, struct pt_regs *regs) { if (unlikely(!user_mode(regs))) die(str, regs); } extern int stop_a_enabled; /* * See include/asm-ia64/system.h; prevents deadlock on SMP * systems. */ #define __ARCH_WANT_UNLOCKED_CTXSW #define arch_align_stack(x) (x) #endif /* _ASM_SYSTEM_H */