/* * File: mca_asm.h * * Copyright (C) 1999 Silicon Graphics, Inc. * Copyright (C) Vijay Chander (vijay@engr.sgi.com) * Copyright (C) Srinivasa Thirumalachar <sprasad@engr.sgi.com> * Copyright (C) 2000 Hewlett-Packard Co. * Copyright (C) 2000 David Mosberger-Tang <davidm@hpl.hp.com> * Copyright (C) 2002 Intel Corp. * Copyright (C) 2002 Jenna Hall <jenna.s.hall@intel.com> */ #ifndef _ASM_IA64_MCA_ASM_H #define _ASM_IA64_MCA_ASM_H #define PSR_IC 13 #define PSR_I 14 #define PSR_DT 17 #define PSR_RT 27 #define PSR_MC 35 #define PSR_IT 36 #define PSR_BN 44 /* * This macro converts a instruction virtual address to a physical address * Right now for simulation purposes the virtual addresses are * direct mapped to physical addresses. * 1. Lop off bits 61 thru 63 in the virtual address */ #define INST_VA_TO_PA(addr) \ dep addr = 0, addr, 61, 3 /* * This macro converts a data virtual address to a physical address * Right now for simulation purposes the virtual addresses are * direct mapped to physical addresses. * 1. Lop off bits 61 thru 63 in the virtual address */ #define DATA_VA_TO_PA(addr) \ tpa addr = addr /* * This macro converts a data physical address to a virtual address * Right now for simulation purposes the virtual addresses are * direct mapped to physical addresses. * 1. Put 0x7 in bits 61 thru 63. */ #define DATA_PA_TO_VA(addr,temp) \ mov temp = 0x7 ;; \ dep addr = temp, addr, 61, 3 #define GET_THIS_PADDR(reg, var) \ mov reg = IA64_KR(PER_CPU_DATA);; \ addl reg = THIS_CPU(var), reg /* * This macro jumps to the instruction at the given virtual address * and starts execution in physical mode with all the address * translations turned off. * 1. Save the current psr * 2. Make sure that all the upper 32 bits are off * * 3. Clear the interrupt enable and interrupt state collection bits * in the psr before updating the ipsr and iip. * * 4. Turn off the instruction, data and rse translation bits of the psr * and store the new value into ipsr * Also make sure that the interrupts are disabled. * Ensure that we are in little endian mode. * [psr.{rt, it, dt, i, be} = 0] * * 5. Get the physical address corresponding to the virtual address * of the next instruction bundle and put it in iip. * (Using magic numbers 24 and 40 in the deposint instruction since * the IA64_SDK code directly maps to lower 24bits as physical address * from a virtual address). * * 6. Do an rfi to move the values from ipsr to psr and iip to ip. */ #define PHYSICAL_MODE_ENTER(temp1, temp2, start_addr, old_psr) \ mov old_psr = psr; \ ;; \ dep old_psr = 0, old_psr, 32, 32; \ \ mov ar.rsc = 0 ; \ ;; \ srlz.d; \ mov temp2 = ar.bspstore; \ ;; \ DATA_VA_TO_PA(temp2); \ ;; \ mov temp1 = ar.rnat; \ ;; \ mov ar.bspstore = temp2; \ ;; \ mov ar.rnat = temp1; \ mov temp1 = psr; \ mov temp2 = psr; \ ;; \ \ dep temp2 = 0, temp2, PSR_IC, 2; \ ;; \ mov psr.l = temp2; \ ;; \ srlz.d; \ dep temp1 = 0, temp1, 32, 32; \ ;; \ dep temp1 = 0, temp1, PSR_IT, 1; \ ;; \ dep temp1 = 0, temp1, PSR_DT, 1; \ ;; \ dep temp1 = 0, temp1, PSR_RT, 1; \ ;; \ dep temp1 = 0, temp1, PSR_I, 1; \ ;; \ dep temp1 = 0, temp1, PSR_IC, 1; \ ;; \ dep temp1 = -1, temp1, PSR_MC, 1; \ ;; \ mov cr.ipsr = temp1; \ ;; \ LOAD_PHYSICAL(p0, temp2, start_addr); \ ;; \ mov cr.iip = temp2; \ mov cr.ifs = r0; \ DATA_VA_TO_PA(sp); \ DATA_VA_TO_PA(gp); \ ;; \ srlz.i; \ ;; \ nop 1; \ nop 2; \ nop 1; \ nop 2; \ rfi; \ ;; /* * This macro jumps to the instruction at the given virtual address * and starts execution in virtual mode with all the address * translations turned on. * 1. Get the old saved psr * * 2. Clear the interrupt state collection bit in the current psr. * * 3. Set the instruction translation bit back in the old psr * Note we have to do this since we are right now saving only the * lower 32-bits of old psr.(Also the old psr has the data and * rse translation bits on) * * 4. Set ipsr to this old_psr with "it" bit set and "bn" = 1. * * 5. Reset the current thread pointer (r13). * * 6. Set iip to the virtual address of the next instruction bundle. * * 7. Do an rfi to move ipsr to psr and iip to ip. */ #define VIRTUAL_MODE_ENTER(temp1, temp2, start_addr, old_psr) \ mov temp2 = psr; \ ;; \ mov old_psr = temp2; \ ;; \ dep temp2 = 0, temp2, PSR_IC, 2; \ ;; \ mov psr.l = temp2; \ mov ar.rsc = 0; \ ;; \ srlz.d; \ mov r13 = ar.k6; \ mov temp2 = ar.bspstore; \ ;; \ DATA_PA_TO_VA(temp2,temp1); \ ;; \ mov temp1 = ar.rnat; \ ;; \ mov ar.bspstore = temp2; \ ;; \ mov ar.rnat = temp1; \ ;; \ mov temp1 = old_psr; \ ;; \ mov temp2 = 1; \ ;; \ dep temp1 = temp2, temp1, PSR_IC, 1; \ ;; \ dep temp1 = temp2, temp1, PSR_IT, 1; \ ;; \ dep temp1 = temp2, temp1, PSR_DT, 1; \ ;; \ dep temp1 = temp2, temp1, PSR_RT, 1; \ ;; \ dep temp1 = temp2, temp1, PSR_BN, 1; \ ;; \ \ mov cr.ipsr = temp1; \ movl temp2 = start_addr; \ ;; \ mov cr.iip = temp2; \ ;; \ DATA_PA_TO_VA(sp, temp1); \ DATA_PA_TO_VA(gp, temp2); \ srlz.i; \ ;; \ nop 1; \ nop 2; \ nop 1; \ rfi \ ;; /* * The following offsets capture the order in which the * RSE related registers from the old context are * saved onto the new stack frame. * * +-----------------------+ * |NDIRTY [BSP - BSPSTORE]| * +-----------------------+ * | RNAT | * +-----------------------+ * | BSPSTORE | * +-----------------------+ * | IFS | * +-----------------------+ * | PFS | * +-----------------------+ * | RSC | * +-----------------------+ <-------- Bottom of new stack frame */ #define rse_rsc_offset 0 #define rse_pfs_offset (rse_rsc_offset+0x08) #define rse_ifs_offset (rse_pfs_offset+0x08) #define rse_bspstore_offset (rse_ifs_offset+0x08) #define rse_rnat_offset (rse_bspstore_offset+0x08) #define rse_ndirty_offset (rse_rnat_offset+0x08) /* * rse_switch_context * * 1. Save old RSC onto the new stack frame * 2. Save PFS onto new stack frame * 3. Cover the old frame and start a new frame. * 4. Save IFS onto new stack frame * 5. Save the old BSPSTORE on the new stack frame * 6. Save the old RNAT on the new stack frame * 7. Write BSPSTORE with the new backing store pointer * 8. Read and save the new BSP to calculate the #dirty registers * NOTE: Look at pages 11-10, 11-11 in PRM Vol 2 */ #define rse_switch_context(temp,p_stackframe,p_bspstore) \ ;; \ mov temp=ar.rsc;; \ st8 [p_stackframe]=temp,8;; \ mov temp=ar.pfs;; \ st8 [p_stackframe]=temp,8; \ cover ;; \ mov temp=cr.ifs;; \ st8 [p_stackframe]=temp,8;; \ mov temp=ar.bspstore;; \ st8 [p_stackframe]=temp,8;; \ mov temp=ar.rnat;; \ st8 [p_stackframe]=temp,8; \ mov ar.bspstore=p_bspstore;; \ mov temp=ar.bsp;; \ sub temp=temp,p_bspstore;; \ st8 [p_stackframe]=temp,8;; /* * rse_return_context * 1. Allocate a zero-sized frame * 2. Store the number of dirty registers RSC.loadrs field * 3. Issue a loadrs to insure that any registers from the interrupted * context which were saved on the new stack frame have been loaded * back into the stacked registers * 4. Restore BSPSTORE * 5. Restore RNAT * 6. Restore PFS * 7. Restore IFS * 8. Restore RSC * 9. Issue an RFI */ #define rse_return_context(psr_mask_reg,temp,p_stackframe) \ ;; \ alloc temp=ar.pfs,0,0,0,0; \ add p_stackframe=rse_ndirty_offset,p_stackframe;; \ ld8 temp=[p_stackframe];; \ shl temp=temp,16;; \ mov ar.rsc=temp;; \ loadrs;; \ add p_stackframe=-rse_ndirty_offset+rse_bspstore_offset,p_stackframe;;\ ld8 temp=[p_stackframe];; \ mov ar.bspstore=temp;; \ add p_stackframe=-rse_bspstore_offset+rse_rnat_offset,p_stackframe;;\ ld8 temp=[p_stackframe];; \ mov ar.rnat=temp;; \ add p_stackframe=-rse_rnat_offset+rse_pfs_offset,p_stackframe;; \ ld8 temp=[p_stackframe];; \ mov ar.pfs=temp;; \ add p_stackframe=-rse_pfs_offset+rse_ifs_offset,p_stackframe;; \ ld8 temp=[p_stackframe];; \ mov cr.ifs=temp;; \ add p_stackframe=-rse_ifs_offset+rse_rsc_offset,p_stackframe;; \ ld8 temp=[p_stackframe];; \ mov ar.rsc=temp ; \ mov temp=psr;; \ or temp=temp,psr_mask_reg;; \ mov cr.ipsr=temp;; \ mov temp=ip;; \ add temp=0x30,temp;; \ mov cr.iip=temp;; \ srlz.i;; \ rfi;; #endif /* _ASM_IA64_MCA_ASM_H */