#ifndef __ASM_SPINLOCK_H #define __ASM_SPINLOCK_H #include <asm/atomic.h> #include <asm/rwlock.h> #include <asm/page.h> #include <linux/config.h> #include <linux/compiler.h> asmlinkage int printk(const char * fmt, ...) __attribute__ ((format (printf, 1, 2))); /* * Your basic SMP spinlocks, allowing only a single CPU anywhere */ typedef struct { volatile unsigned int slock; #ifdef CONFIG_DEBUG_SPINLOCK unsigned magic; #endif #ifdef CONFIG_PREEMPT unsigned int break_lock; #endif } spinlock_t; #define SPINLOCK_MAGIC 0xdead4ead #ifdef CONFIG_DEBUG_SPINLOCK #define SPINLOCK_MAGIC_INIT , SPINLOCK_MAGIC #else #define SPINLOCK_MAGIC_INIT /* */ #endif #define SPIN_LOCK_UNLOCKED (spinlock_t) { 1 SPINLOCK_MAGIC_INIT } #define spin_lock_init(x) do { *(x) = SPIN_LOCK_UNLOCKED; } while(0) /* * Simple spin lock operations. There are two variants, one clears IRQ's * on the local processor, one does not. * * We make no fairness assumptions. They have a cost. */ #define spin_is_locked(x) (*(volatile signed char *)(&(x)->slock) <= 0) #define spin_unlock_wait(x) do { barrier(); } while(spin_is_locked(x)) #define spin_lock_string \ "\n1:\t" \ "lock ; decb %0\n\t" \ "jns 3f\n" \ "2:\t" \ "rep;nop\n\t" \ "cmpb $0,%0\n\t" \ "jle 2b\n\t" \ "jmp 1b\n" \ "3:\n\t" #define spin_lock_string_flags \ "\n1:\t" \ "lock ; decb %0\n\t" \ "jns 4f\n\t" \ "2:\t" \ "testl $0x200, %1\n\t" \ "jz 3f\n\t" \ "sti\n\t" \ "3:\t" \ "rep;nop\n\t" \ "cmpb $0, %0\n\t" \ "jle 3b\n\t" \ "cli\n\t" \ "jmp 1b\n" \ "4:\n\t" /* * This works. Despite all the confusion. * (except on PPro SMP or if we are using OOSTORE) * (PPro errata 66, 92) */ #if !defined(CONFIG_X86_OOSTORE) && !defined(CONFIG_X86_PPRO_FENCE) #define spin_unlock_string \ "movb $1,%0" \ :"=m" (lock->slock) : : "memory" static inline void _raw_spin_unlock(spinlock_t *lock) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(lock->magic != SPINLOCK_MAGIC); BUG_ON(!spin_is_locked(lock)); #endif __asm__ __volatile__( spin_unlock_string ); } #else #define spin_unlock_string \ "xchgb %b0, %1" \ :"=q" (oldval), "=m" (lock->slock) \ :"0" (oldval) : "memory" static inline void _raw_spin_unlock(spinlock_t *lock) { char oldval = 1; #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(lock->magic != SPINLOCK_MAGIC); BUG_ON(!spin_is_locked(lock)); #endif __asm__ __volatile__( spin_unlock_string ); } #endif static inline int _raw_spin_trylock(spinlock_t *lock) { char oldval; __asm__ __volatile__( "xchgb %b0,%1" :"=q" (oldval), "=m" (lock->slock) :"0" (0) : "memory"); return oldval > 0; } static inline void _raw_spin_lock(spinlock_t *lock) { #ifdef CONFIG_DEBUG_SPINLOCK if (unlikely(lock->magic != SPINLOCK_MAGIC)) { printk("eip: %p\n", __builtin_return_address(0)); BUG(); } #endif __asm__ __volatile__( spin_lock_string :"=m" (lock->slock) : : "memory"); } static inline void _raw_spin_lock_flags (spinlock_t *lock, unsigned long flags) { #ifdef CONFIG_DEBUG_SPINLOCK if (unlikely(lock->magic != SPINLOCK_MAGIC)) { printk("eip: %p\n", __builtin_return_address(0)); BUG(); } #endif __asm__ __volatile__( spin_lock_string_flags :"=m" (lock->slock) : "r" (flags) : "memory"); } /* * Read-write spinlocks, allowing multiple readers * but only one writer. * * NOTE! it is quite common to have readers in interrupts * but no interrupt writers. For those circumstances we * can "mix" irq-safe locks - any writer needs to get a * irq-safe write-lock, but readers can get non-irqsafe * read-locks. */ typedef struct { volatile unsigned int lock; #ifdef CONFIG_DEBUG_SPINLOCK unsigned magic; #endif #ifdef CONFIG_PREEMPT unsigned int break_lock; #endif } rwlock_t; #define RWLOCK_MAGIC 0xdeaf1eed #ifdef CONFIG_DEBUG_SPINLOCK #define RWLOCK_MAGIC_INIT , RWLOCK_MAGIC #else #define RWLOCK_MAGIC_INIT /* */ #endif #define RW_LOCK_UNLOCKED (rwlock_t) { RW_LOCK_BIAS RWLOCK_MAGIC_INIT } #define rwlock_init(x) do { *(x) = RW_LOCK_UNLOCKED; } while(0) /** * read_can_lock - would read_trylock() succeed? * @lock: the rwlock in question. */ #define read_can_lock(x) ((int)(x)->lock > 0) /** * write_can_lock - would write_trylock() succeed? * @lock: the rwlock in question. */ #define write_can_lock(x) ((x)->lock == RW_LOCK_BIAS) /* * On x86, we implement read-write locks as a 32-bit counter * with the high bit (sign) being the "contended" bit. * * The inline assembly is non-obvious. Think about it. * * Changed to use the same technique as rw semaphores. See * semaphore.h for details. -ben */ /* the spinlock helpers are in arch/i386/kernel/semaphore.c */ static inline void _raw_read_lock(rwlock_t *rw) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(rw->magic != RWLOCK_MAGIC); #endif __build_read_lock(rw, "__read_lock_failed"); } static inline void _raw_write_lock(rwlock_t *rw) { #ifdef CONFIG_DEBUG_SPINLOCK BUG_ON(rw->magic != RWLOCK_MAGIC); #endif __build_write_lock(rw, "__write_lock_failed"); } #define _raw_read_unlock(rw) asm volatile("lock ; incl %0" :"=m" ((rw)->lock) : : "memory") #define _raw_write_unlock(rw) asm volatile("lock ; addl $" RW_LOCK_BIAS_STR ",%0":"=m" ((rw)->lock) : : "memory") static inline int _raw_read_trylock(rwlock_t *lock) { atomic_t *count = (atomic_t *)lock; atomic_dec(count); if (atomic_read(count) >= 0) return 1; atomic_inc(count); return 0; } static inline int _raw_write_trylock(rwlock_t *lock) { atomic_t *count = (atomic_t *)lock; if (atomic_sub_and_test(RW_LOCK_BIAS, count)) return 1; atomic_add(RW_LOCK_BIAS, count); return 0; } #endif /* __ASM_SPINLOCK_H */