/* asm/bitops.h for Linux/CRIS * * TODO: asm versions if speed is needed * * All bit operations return 0 if the bit was cleared before the * operation and != 0 if it was not. * * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). */ #ifndef _CRIS_BITOPS_H #define _CRIS_BITOPS_H /* Currently this is unsuitable for consumption outside the kernel. */ #ifdef __KERNEL__ #include <asm/arch/bitops.h> #include <asm/system.h> #include <asm/atomic.h> #include <linux/compiler.h> /* * Some hacks to defeat gcc over-optimizations.. */ struct __dummy { unsigned long a[100]; }; #define ADDR (*(struct __dummy *) addr) #define CONST_ADDR (*(const struct __dummy *) addr) /* * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * This function is atomic and may not be reordered. See __set_bit() * if you do not require the atomic guarantees. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ #define set_bit(nr, addr) (void)test_and_set_bit(nr, addr) #define __set_bit(nr, addr) (void)__test_and_set_bit(nr, addr) /* * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * clear_bit() is atomic and may not be reordered. However, it does * not contain a memory barrier, so if it is used for locking purposes, * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() * in order to ensure changes are visible on other processors. */ #define clear_bit(nr, addr) (void)test_and_clear_bit(nr, addr) #define __clear_bit(nr, addr) (void)__test_and_clear_bit(nr, addr) /* * change_bit - Toggle a bit in memory * @nr: Bit to change * @addr: Address to start counting from * * change_bit() is atomic and may not be reordered. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ #define change_bit(nr, addr) (void)test_and_change_bit(nr, addr) /* * __change_bit - Toggle a bit in memory * @nr: the bit to change * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ #define __change_bit(nr, addr) (void)__test_and_change_bit(nr, addr) /** * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ extern inline int test_and_set_bit(int nr, volatile unsigned long *addr) { unsigned int mask, retval; unsigned long flags; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); cris_atomic_save(addr, flags); retval = (mask & *adr) != 0; *adr |= mask; cris_atomic_restore(addr, flags); local_irq_restore(flags); return retval; } extern inline int __test_and_set_bit(int nr, volatile unsigned long *addr) { unsigned int mask, retval; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *adr) != 0; *adr |= mask; return retval; } /* * clear_bit() doesn't provide any barrier for the compiler. */ #define smp_mb__before_clear_bit() barrier() #define smp_mb__after_clear_bit() barrier() /** * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ extern inline int test_and_clear_bit(int nr, volatile unsigned long *addr) { unsigned int mask, retval; unsigned long flags; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); cris_atomic_save(addr, flags); retval = (mask & *adr) != 0; *adr &= ~mask; cris_atomic_restore(addr, flags); return retval; } /** * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ extern inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) { unsigned int mask, retval; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *adr) != 0; *adr &= ~mask; return retval; } /** * test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ extern inline int test_and_change_bit(int nr, volatile unsigned long *addr) { unsigned int mask, retval; unsigned long flags; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); cris_atomic_save(addr, flags); retval = (mask & *adr) != 0; *adr ^= mask; cris_atomic_restore(addr, flags); return retval; } /* WARNING: non atomic and it can be reordered! */ extern inline int __test_and_change_bit(int nr, volatile unsigned long *addr) { unsigned int mask, retval; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *adr) != 0; *adr ^= mask; return retval; } /** * test_bit - Determine whether a bit is set * @nr: bit number to test * @addr: Address to start counting from * * This routine doesn't need to be atomic. */ extern inline int test_bit(int nr, const volatile unsigned long *addr) { unsigned int mask; unsigned int *adr = (unsigned int *)addr; adr += nr >> 5; mask = 1 << (nr & 0x1f); return ((mask & *adr) != 0); } /* * Find-bit routines.. */ /* * Since we define it "external", it collides with the built-in * definition, which doesn't have the same semantics. We don't want to * use -fno-builtin, so just hide the name ffs. */ #define ffs kernel_ffs /* * fls: find last bit set. */ #define fls(x) generic_fls(x) /* * hweightN - returns the hamming weight of a N-bit word * @x: the word to weigh * * The Hamming Weight of a number is the total number of bits set in it. */ #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) /** * find_next_zero_bit - find the first zero bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */ extern inline int find_next_zero_bit (const unsigned long * addr, int size, int offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (~tmp) goto found_middle; size -= 32; result += 32; } while (size & ~31UL) { if (~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL >> size; found_middle: return result + ffz(tmp); } /** * find_next_bit - find the first set bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */ static __inline__ int find_next_bit(const unsigned long *addr, int size, int offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *(p++); tmp &= (~0UL << offset); if (size < 32) goto found_first; if (tmp) goto found_middle; size -= 32; result += 32; } while (size & ~31UL) { if ((tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp &= (~0UL >> (32 - size)); if (tmp == 0UL) /* Are any bits set? */ return result + size; /* Nope. */ found_middle: return result + __ffs(tmp); } /** * find_first_zero_bit - find the first zero bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first zero bit, not the number of the byte * containing a bit. */ #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) #define find_first_bit(addr, size) \ find_next_bit((addr), (size), 0) #define ext2_set_bit test_and_set_bit #define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a) #define ext2_clear_bit test_and_clear_bit #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a) #define ext2_test_bit test_bit #define ext2_find_first_zero_bit find_first_zero_bit #define ext2_find_next_zero_bit find_next_zero_bit /* Bitmap functions for the minix filesystem. */ #define minix_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) extern inline int sched_find_first_bit(const unsigned long *b) { if (unlikely(b[0])) return __ffs(b[0]); if (unlikely(b[1])) return __ffs(b[1]) + 32; if (unlikely(b[2])) return __ffs(b[2]) + 64; if (unlikely(b[3])) return __ffs(b[3]) + 96; if (b[4]) return __ffs(b[4]) + 128; return __ffs(b[5]) + 32 + 128; } #endif /* __KERNEL__ */ #endif /* _CRIS_BITOPS_H */