#ifndef _ALPHA_BITOPS_H #define _ALPHA_BITOPS_H #include <asm/compiler.h> /* * Copyright 1994, Linus Torvalds. */ /* * These have to be done with inline assembly: that way the bit-setting * is guaranteed to be atomic. All bit operations return 0 if the bit * was cleared before the operation and != 0 if it was not. * * To get proper branch prediction for the main line, we must branch * forward to code at the end of this object's .text section, then * branch back to restart the operation. * * bit 0 is the LSB of addr; bit 64 is the LSB of (addr+1). */ static inline void set_bit(unsigned long nr, volatile void * addr) { unsigned long temp; int *m = ((int *) addr) + (nr >> 5); __asm__ __volatile__( "1: ldl_l %0,%3\n" " bis %0,%2,%0\n" " stl_c %0,%1\n" " beq %0,2f\n" ".subsection 2\n" "2: br 1b\n" ".previous" :"=&r" (temp), "=m" (*m) :"Ir" (1UL << (nr & 31)), "m" (*m)); } /* * WARNING: non atomic version. */ static inline void __set_bit(unsigned long nr, volatile void * addr) { int *m = ((int *) addr) + (nr >> 5); *m |= 1 << (nr & 31); } #define smp_mb__before_clear_bit() smp_mb() #define smp_mb__after_clear_bit() smp_mb() static inline void clear_bit(unsigned long nr, volatile void * addr) { unsigned long temp; int *m = ((int *) addr) + (nr >> 5); __asm__ __volatile__( "1: ldl_l %0,%3\n" " bic %0,%2,%0\n" " stl_c %0,%1\n" " beq %0,2f\n" ".subsection 2\n" "2: br 1b\n" ".previous" :"=&r" (temp), "=m" (*m) :"Ir" (1UL << (nr & 31)), "m" (*m)); } /* * WARNING: non atomic version. */ static __inline__ void __clear_bit(unsigned long nr, volatile void * addr) { int *m = ((int *) addr) + (nr >> 5); *m &= ~(1 << (nr & 31)); } static inline void change_bit(unsigned long nr, volatile void * addr) { unsigned long temp; int *m = ((int *) addr) + (nr >> 5); __asm__ __volatile__( "1: ldl_l %0,%3\n" " xor %0,%2,%0\n" " stl_c %0,%1\n" " beq %0,2f\n" ".subsection 2\n" "2: br 1b\n" ".previous" :"=&r" (temp), "=m" (*m) :"Ir" (1UL << (nr & 31)), "m" (*m)); } /* * WARNING: non atomic version. */ static __inline__ void __change_bit(unsigned long nr, volatile void * addr) { int *m = ((int *) addr) + (nr >> 5); *m ^= 1 << (nr & 31); } static inline int test_and_set_bit(unsigned long nr, volatile void *addr) { unsigned long oldbit; unsigned long temp; int *m = ((int *) addr) + (nr >> 5); __asm__ __volatile__( "1: ldl_l %0,%4\n" " and %0,%3,%2\n" " bne %2,2f\n" " xor %0,%3,%0\n" " stl_c %0,%1\n" " beq %0,3f\n" "2:\n" #ifdef CONFIG_SMP " mb\n" #endif ".subsection 2\n" "3: br 1b\n" ".previous" :"=&r" (temp), "=m" (*m), "=&r" (oldbit) :"Ir" (1UL << (nr & 31)), "m" (*m) : "memory"); return oldbit != 0; } /* * WARNING: non atomic version. */ static inline int __test_and_set_bit(unsigned long nr, volatile void * addr) { unsigned long mask = 1 << (nr & 0x1f); int *m = ((int *) addr) + (nr >> 5); int old = *m; *m = old | mask; return (old & mask) != 0; } static inline int test_and_clear_bit(unsigned long nr, volatile void * addr) { unsigned long oldbit; unsigned long temp; int *m = ((int *) addr) + (nr >> 5); __asm__ __volatile__( "1: ldl_l %0,%4\n" " and %0,%3,%2\n" " beq %2,2f\n" " xor %0,%3,%0\n" " stl_c %0,%1\n" " beq %0,3f\n" "2:\n" #ifdef CONFIG_SMP " mb\n" #endif ".subsection 2\n" "3: br 1b\n" ".previous" :"=&r" (temp), "=m" (*m), "=&r" (oldbit) :"Ir" (1UL << (nr & 31)), "m" (*m) : "memory"); return oldbit != 0; } /* * WARNING: non atomic version. */ static inline int __test_and_clear_bit(unsigned long nr, volatile void * addr) { unsigned long mask = 1 << (nr & 0x1f); int *m = ((int *) addr) + (nr >> 5); int old = *m; *m = old & ~mask; return (old & mask) != 0; } static inline int test_and_change_bit(unsigned long nr, volatile void * addr) { unsigned long oldbit; unsigned long temp; int *m = ((int *) addr) + (nr >> 5); __asm__ __volatile__( "1: ldl_l %0,%4\n" " and %0,%3,%2\n" " xor %0,%3,%0\n" " stl_c %0,%1\n" " beq %0,3f\n" #ifdef CONFIG_SMP " mb\n" #endif ".subsection 2\n" "3: br 1b\n" ".previous" :"=&r" (temp), "=m" (*m), "=&r" (oldbit) :"Ir" (1UL << (nr & 31)), "m" (*m) : "memory"); return oldbit != 0; } /* * WARNING: non atomic version. */ static __inline__ int __test_and_change_bit(unsigned long nr, volatile void * addr) { unsigned long mask = 1 << (nr & 0x1f); int *m = ((int *) addr) + (nr >> 5); int old = *m; *m = old ^ mask; return (old & mask) != 0; } static inline int test_bit(int nr, const volatile void * addr) { return (1UL & (((const int *) addr)[nr >> 5] >> (nr & 31))) != 0UL; } /* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. * * Do a binary search on the bits. Due to the nature of large * constants on the alpha, it is worthwhile to split the search. */ static inline unsigned long ffz_b(unsigned long x) { unsigned long sum, x1, x2, x4; x = ~x & -~x; /* set first 0 bit, clear others */ x1 = x & 0xAA; x2 = x & 0xCC; x4 = x & 0xF0; sum = x2 ? 2 : 0; sum += (x4 != 0) * 4; sum += (x1 != 0); return sum; } static inline unsigned long ffz(unsigned long word) { #if defined(CONFIG_ALPHA_EV6) && defined(CONFIG_ALPHA_EV67) /* Whee. EV67 can calculate it directly. */ return __kernel_cttz(~word); #else unsigned long bits, qofs, bofs; bits = __kernel_cmpbge(word, ~0UL); qofs = ffz_b(bits); bits = __kernel_extbl(word, qofs); bofs = ffz_b(bits); return qofs*8 + bofs; #endif } /* * __ffs = Find First set bit in word. Undefined if no set bit exists. */ static inline unsigned long __ffs(unsigned long word) { #if defined(CONFIG_ALPHA_EV6) && defined(CONFIG_ALPHA_EV67) /* Whee. EV67 can calculate it directly. */ return __kernel_cttz(word); #else unsigned long bits, qofs, bofs; bits = __kernel_cmpbge(0, word); qofs = ffz_b(bits); bits = __kernel_extbl(word, qofs); bofs = ffz_b(~bits); return qofs*8 + bofs; #endif } #ifdef __KERNEL__ /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above __ffs. */ static inline int ffs(int word) { int result = __ffs(word) + 1; return word ? result : 0; } /* * fls: find last bit set. */ #if defined(CONFIG_ALPHA_EV6) && defined(CONFIG_ALPHA_EV67) static inline int fls64(unsigned long word) { return 64 - __kernel_ctlz(word); } #else extern const unsigned char __flsm1_tab[256]; static inline int fls64(unsigned long x) { unsigned long t, a, r; t = __kernel_cmpbge (x, 0x0101010101010101); a = __flsm1_tab[t]; t = __kernel_extbl (x, a); r = a*8 + __flsm1_tab[t] + (x != 0); return r; } #endif static inline int fls(int x) { return fls64((unsigned int) x); } /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #if defined(CONFIG_ALPHA_EV6) && defined(CONFIG_ALPHA_EV67) /* Whee. EV67 can calculate it directly. */ static inline unsigned long hweight64(unsigned long w) { return __kernel_ctpop(w); } static inline unsigned int hweight32(unsigned int w) { return hweight64(w); } static inline unsigned int hweight16(unsigned int w) { return hweight64(w & 0xffff); } static inline unsigned int hweight8(unsigned int w) { return hweight64(w & 0xff); } #else #include <asm-generic/bitops/hweight.h> #endif #endif /* __KERNEL__ */ #include <asm-generic/bitops/find.h> #ifdef __KERNEL__ /* * Every architecture must define this function. It's the fastest * way of searching a 140-bit bitmap where the first 100 bits are * unlikely to be set. It's guaranteed that at least one of the 140 * bits is set. */ static inline unsigned long sched_find_first_bit(unsigned long b[3]) { unsigned long b0 = b[0], b1 = b[1], b2 = b[2]; unsigned long ofs; ofs = (b1 ? 64 : 128); b1 = (b1 ? b1 : b2); ofs = (b0 ? 0 : ofs); b0 = (b0 ? b0 : b1); return __ffs(b0) + ofs; } #include <asm-generic/bitops/ext2-non-atomic.h> #define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a) #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a) #include <asm-generic/bitops/minix.h> #endif /* __KERNEL__ */ #endif /* _ALPHA_BITOPS_H */