/* * linux/fs/ufs/super.c * * Copyright (C) 1998 * Daniel Pirkl <daniel.pirkl@email.cz> * Charles University, Faculty of Mathematics and Physics */ /* Derived from * * linux/fs/ext2/super.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/inode.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 */ /* * Inspired by * * linux/fs/ufs/super.c * * Copyright (C) 1996 * Adrian Rodriguez (adrian@franklins-tower.rutgers.edu) * Laboratory for Computer Science Research Computing Facility * Rutgers, The State University of New Jersey * * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) * * Kernel module support added on 96/04/26 by * Stefan Reinauer <stepan@home.culture.mipt.ru> * * Module usage counts added on 96/04/29 by * Gertjan van Wingerde <gertjan@cs.vu.nl> * * Clean swab support on 19970406 by * Francois-Rene Rideau <fare@tunes.org> * * 4.4BSD (FreeBSD) support added on February 1st 1998 by * Niels Kristian Bech Jensen <nkbj@image.dk> partially based * on code by Martin von Loewis <martin@mira.isdn.cs.tu-berlin.de>. * * NeXTstep support added on February 5th 1998 by * Niels Kristian Bech Jensen <nkbj@image.dk>. * * write support Daniel Pirkl <daniel.pirkl@email.cz> 1998 * * HP/UX hfs filesystem support added by * Martin K. Petersen <mkp@mkp.net>, August 1999 * * UFS2 (of FreeBSD 5.x) support added by * Niraj Kumar <niraj17@iitbombay.org>, Jan 2004 * * UFS2 write support added by * Evgeniy Dushistov <dushistov@mail.ru>, 2007 */ #include <linux/module.h> #include <linux/bitops.h> #include <stdarg.h> #include <asm/uaccess.h> #include <asm/system.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/quotaops.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/stat.h> #include <linux/string.h> #include <linux/blkdev.h> #include <linux/init.h> #include <linux/parser.h> #include <linux/smp_lock.h> #include <linux/buffer_head.h> #include <linux/vfs.h> #include <linux/log2.h> #include <linux/mount.h> #include <linux/seq_file.h> #include "ufs_fs.h" #include "ufs.h" #include "swab.h" #include "util.h" #ifdef CONFIG_UFS_DEBUG /* * Print contents of ufs_super_block, useful for debugging */ static void ufs_print_super_stuff(struct super_block *sb, struct ufs_super_block_first *usb1, struct ufs_super_block_second *usb2, struct ufs_super_block_third *usb3) { u32 magic = fs32_to_cpu(sb, usb3->fs_magic); printk("ufs_print_super_stuff\n"); printk(" magic: 0x%x\n", magic); if (fs32_to_cpu(sb, usb3->fs_magic) == UFS2_MAGIC) { printk(" fs_size: %llu\n", (unsigned long long) fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size)); printk(" fs_dsize: %llu\n", (unsigned long long) fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize)); printk(" bsize: %u\n", fs32_to_cpu(sb, usb1->fs_bsize)); printk(" fsize: %u\n", fs32_to_cpu(sb, usb1->fs_fsize)); printk(" fs_volname: %s\n", usb2->fs_un.fs_u2.fs_volname); printk(" fs_sblockloc: %llu\n", (unsigned long long) fs64_to_cpu(sb, usb2->fs_un.fs_u2.fs_sblockloc)); printk(" cs_ndir(No of dirs): %llu\n", (unsigned long long) fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir)); printk(" cs_nbfree(No of free blocks): %llu\n", (unsigned long long) fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree)); printk(KERN_INFO" cs_nifree(Num of free inodes): %llu\n", (unsigned long long) fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree)); printk(KERN_INFO" cs_nffree(Num of free frags): %llu\n", (unsigned long long) fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree)); printk(KERN_INFO" fs_maxsymlinklen: %u\n", fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen)); } else { printk(" sblkno: %u\n", fs32_to_cpu(sb, usb1->fs_sblkno)); printk(" cblkno: %u\n", fs32_to_cpu(sb, usb1->fs_cblkno)); printk(" iblkno: %u\n", fs32_to_cpu(sb, usb1->fs_iblkno)); printk(" dblkno: %u\n", fs32_to_cpu(sb, usb1->fs_dblkno)); printk(" cgoffset: %u\n", fs32_to_cpu(sb, usb1->fs_cgoffset)); printk(" ~cgmask: 0x%x\n", ~fs32_to_cpu(sb, usb1->fs_cgmask)); printk(" size: %u\n", fs32_to_cpu(sb, usb1->fs_size)); printk(" dsize: %u\n", fs32_to_cpu(sb, usb1->fs_dsize)); printk(" ncg: %u\n", fs32_to_cpu(sb, usb1->fs_ncg)); printk(" bsize: %u\n", fs32_to_cpu(sb, usb1->fs_bsize)); printk(" fsize: %u\n", fs32_to_cpu(sb, usb1->fs_fsize)); printk(" frag: %u\n", fs32_to_cpu(sb, usb1->fs_frag)); printk(" fragshift: %u\n", fs32_to_cpu(sb, usb1->fs_fragshift)); printk(" ~fmask: %u\n", ~fs32_to_cpu(sb, usb1->fs_fmask)); printk(" fshift: %u\n", fs32_to_cpu(sb, usb1->fs_fshift)); printk(" sbsize: %u\n", fs32_to_cpu(sb, usb1->fs_sbsize)); printk(" spc: %u\n", fs32_to_cpu(sb, usb1->fs_spc)); printk(" cpg: %u\n", fs32_to_cpu(sb, usb1->fs_cpg)); printk(" ipg: %u\n", fs32_to_cpu(sb, usb1->fs_ipg)); printk(" fpg: %u\n", fs32_to_cpu(sb, usb1->fs_fpg)); printk(" csaddr: %u\n", fs32_to_cpu(sb, usb1->fs_csaddr)); printk(" cssize: %u\n", fs32_to_cpu(sb, usb1->fs_cssize)); printk(" cgsize: %u\n", fs32_to_cpu(sb, usb1->fs_cgsize)); printk(" fstodb: %u\n", fs32_to_cpu(sb, usb1->fs_fsbtodb)); printk(" nrpos: %u\n", fs32_to_cpu(sb, usb3->fs_nrpos)); printk(" ndir %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir)); printk(" nifree %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree)); printk(" nbfree %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree)); printk(" nffree %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree)); } printk("\n"); } /* * Print contents of ufs_cylinder_group, useful for debugging */ static void ufs_print_cylinder_stuff(struct super_block *sb, struct ufs_cylinder_group *cg) { printk("\nufs_print_cylinder_stuff\n"); printk("size of ucg: %zu\n", sizeof(struct ufs_cylinder_group)); printk(" magic: %x\n", fs32_to_cpu(sb, cg->cg_magic)); printk(" time: %u\n", fs32_to_cpu(sb, cg->cg_time)); printk(" cgx: %u\n", fs32_to_cpu(sb, cg->cg_cgx)); printk(" ncyl: %u\n", fs16_to_cpu(sb, cg->cg_ncyl)); printk(" niblk: %u\n", fs16_to_cpu(sb, cg->cg_niblk)); printk(" ndblk: %u\n", fs32_to_cpu(sb, cg->cg_ndblk)); printk(" cs_ndir: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_ndir)); printk(" cs_nbfree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nbfree)); printk(" cs_nifree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nifree)); printk(" cs_nffree: %u\n", fs32_to_cpu(sb, cg->cg_cs.cs_nffree)); printk(" rotor: %u\n", fs32_to_cpu(sb, cg->cg_rotor)); printk(" frotor: %u\n", fs32_to_cpu(sb, cg->cg_frotor)); printk(" irotor: %u\n", fs32_to_cpu(sb, cg->cg_irotor)); printk(" frsum: %u, %u, %u, %u, %u, %u, %u, %u\n", fs32_to_cpu(sb, cg->cg_frsum[0]), fs32_to_cpu(sb, cg->cg_frsum[1]), fs32_to_cpu(sb, cg->cg_frsum[2]), fs32_to_cpu(sb, cg->cg_frsum[3]), fs32_to_cpu(sb, cg->cg_frsum[4]), fs32_to_cpu(sb, cg->cg_frsum[5]), fs32_to_cpu(sb, cg->cg_frsum[6]), fs32_to_cpu(sb, cg->cg_frsum[7])); printk(" btotoff: %u\n", fs32_to_cpu(sb, cg->cg_btotoff)); printk(" boff: %u\n", fs32_to_cpu(sb, cg->cg_boff)); printk(" iuseoff: %u\n", fs32_to_cpu(sb, cg->cg_iusedoff)); printk(" freeoff: %u\n", fs32_to_cpu(sb, cg->cg_freeoff)); printk(" nextfreeoff: %u\n", fs32_to_cpu(sb, cg->cg_nextfreeoff)); printk(" clustersumoff %u\n", fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clustersumoff)); printk(" clusteroff %u\n", fs32_to_cpu(sb, cg->cg_u.cg_44.cg_clusteroff)); printk(" nclusterblks %u\n", fs32_to_cpu(sb, cg->cg_u.cg_44.cg_nclusterblks)); printk("\n"); } #else # define ufs_print_super_stuff(sb, usb1, usb2, usb3) /**/ # define ufs_print_cylinder_stuff(sb, cg) /**/ #endif /* CONFIG_UFS_DEBUG */ static const struct super_operations ufs_super_ops; static char error_buf[1024]; void ufs_error (struct super_block * sb, const char * function, const char * fmt, ...) { struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; va_list args; uspi = UFS_SB(sb)->s_uspi; usb1 = ubh_get_usb_first(uspi); if (!(sb->s_flags & MS_RDONLY)) { usb1->fs_clean = UFS_FSBAD; ubh_mark_buffer_dirty(USPI_UBH(uspi)); sb->s_dirt = 1; sb->s_flags |= MS_RDONLY; } va_start (args, fmt); vsnprintf (error_buf, sizeof(error_buf), fmt, args); va_end (args); switch (UFS_SB(sb)->s_mount_opt & UFS_MOUNT_ONERROR) { case UFS_MOUNT_ONERROR_PANIC: panic ("UFS-fs panic (device %s): %s: %s\n", sb->s_id, function, error_buf); case UFS_MOUNT_ONERROR_LOCK: case UFS_MOUNT_ONERROR_UMOUNT: case UFS_MOUNT_ONERROR_REPAIR: printk (KERN_CRIT "UFS-fs error (device %s): %s: %s\n", sb->s_id, function, error_buf); } } void ufs_panic (struct super_block * sb, const char * function, const char * fmt, ...) { struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; va_list args; uspi = UFS_SB(sb)->s_uspi; usb1 = ubh_get_usb_first(uspi); if (!(sb->s_flags & MS_RDONLY)) { usb1->fs_clean = UFS_FSBAD; ubh_mark_buffer_dirty(USPI_UBH(uspi)); sb->s_dirt = 1; } va_start (args, fmt); vsnprintf (error_buf, sizeof(error_buf), fmt, args); va_end (args); sb->s_flags |= MS_RDONLY; printk (KERN_CRIT "UFS-fs panic (device %s): %s: %s\n", sb->s_id, function, error_buf); } void ufs_warning (struct super_block * sb, const char * function, const char * fmt, ...) { va_list args; va_start (args, fmt); vsnprintf (error_buf, sizeof(error_buf), fmt, args); va_end (args); printk (KERN_WARNING "UFS-fs warning (device %s): %s: %s\n", sb->s_id, function, error_buf); } enum { Opt_type_old = UFS_MOUNT_UFSTYPE_OLD, Opt_type_sunx86 = UFS_MOUNT_UFSTYPE_SUNx86, Opt_type_sun = UFS_MOUNT_UFSTYPE_SUN, Opt_type_sunos = UFS_MOUNT_UFSTYPE_SUNOS, Opt_type_44bsd = UFS_MOUNT_UFSTYPE_44BSD, Opt_type_ufs2 = UFS_MOUNT_UFSTYPE_UFS2, Opt_type_hp = UFS_MOUNT_UFSTYPE_HP, Opt_type_nextstepcd = UFS_MOUNT_UFSTYPE_NEXTSTEP_CD, Opt_type_nextstep = UFS_MOUNT_UFSTYPE_NEXTSTEP, Opt_type_openstep = UFS_MOUNT_UFSTYPE_OPENSTEP, Opt_onerror_panic = UFS_MOUNT_ONERROR_PANIC, Opt_onerror_lock = UFS_MOUNT_ONERROR_LOCK, Opt_onerror_umount = UFS_MOUNT_ONERROR_UMOUNT, Opt_onerror_repair = UFS_MOUNT_ONERROR_REPAIR, Opt_err }; static match_table_t tokens = { {Opt_type_old, "ufstype=old"}, {Opt_type_sunx86, "ufstype=sunx86"}, {Opt_type_sun, "ufstype=sun"}, {Opt_type_sunos, "ufstype=sunos"}, {Opt_type_44bsd, "ufstype=44bsd"}, {Opt_type_ufs2, "ufstype=ufs2"}, {Opt_type_ufs2, "ufstype=5xbsd"}, {Opt_type_hp, "ufstype=hp"}, {Opt_type_nextstepcd, "ufstype=nextstep-cd"}, {Opt_type_nextstep, "ufstype=nextstep"}, {Opt_type_openstep, "ufstype=openstep"}, /*end of possible ufs types */ {Opt_onerror_panic, "onerror=panic"}, {Opt_onerror_lock, "onerror=lock"}, {Opt_onerror_umount, "onerror=umount"}, {Opt_onerror_repair, "onerror=repair"}, {Opt_err, NULL} }; static int ufs_parse_options (char * options, unsigned * mount_options) { char * p; UFSD("ENTER\n"); if (!options) return 1; while ((p = strsep(&options, ",")) != NULL) { substring_t args[MAX_OPT_ARGS]; int token; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_type_old: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_OLD); break; case Opt_type_sunx86: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_SUNx86); break; case Opt_type_sun: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_SUN); break; case Opt_type_sunos: ufs_clear_opt(*mount_options, UFSTYPE); ufs_set_opt(*mount_options, UFSTYPE_SUNOS); break; case Opt_type_44bsd: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_44BSD); break; case Opt_type_ufs2: ufs_clear_opt(*mount_options, UFSTYPE); ufs_set_opt(*mount_options, UFSTYPE_UFS2); break; case Opt_type_hp: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_HP); break; case Opt_type_nextstepcd: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP_CD); break; case Opt_type_nextstep: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_NEXTSTEP); break; case Opt_type_openstep: ufs_clear_opt (*mount_options, UFSTYPE); ufs_set_opt (*mount_options, UFSTYPE_OPENSTEP); break; case Opt_onerror_panic: ufs_clear_opt (*mount_options, ONERROR); ufs_set_opt (*mount_options, ONERROR_PANIC); break; case Opt_onerror_lock: ufs_clear_opt (*mount_options, ONERROR); ufs_set_opt (*mount_options, ONERROR_LOCK); break; case Opt_onerror_umount: ufs_clear_opt (*mount_options, ONERROR); ufs_set_opt (*mount_options, ONERROR_UMOUNT); break; case Opt_onerror_repair: printk("UFS-fs: Unable to do repair on error, " "will lock lock instead\n"); ufs_clear_opt (*mount_options, ONERROR); ufs_set_opt (*mount_options, ONERROR_REPAIR); break; default: printk("UFS-fs: Invalid option: \"%s\" " "or missing value\n", p); return 0; } } return 1; } /* * Diffrent types of UFS hold fs_cstotal in different * places, and use diffrent data structure for it. * To make things simplier we just copy fs_cstotal to ufs_sb_private_info */ static void ufs_setup_cstotal(struct super_block *sb) { struct ufs_sb_info *sbi = UFS_SB(sb); struct ufs_sb_private_info *uspi = sbi->s_uspi; struct ufs_super_block_first *usb1; struct ufs_super_block_second *usb2; struct ufs_super_block_third *usb3; unsigned mtype = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE; UFSD("ENTER, mtype=%u\n", mtype); usb1 = ubh_get_usb_first(uspi); usb2 = ubh_get_usb_second(uspi); usb3 = ubh_get_usb_third(uspi); if ((mtype == UFS_MOUNT_UFSTYPE_44BSD && (usb1->fs_flags & UFS_FLAGS_UPDATED)) || mtype == UFS_MOUNT_UFSTYPE_UFS2) { /*we have statistic in different place, then usual*/ uspi->cs_total.cs_ndir = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir); uspi->cs_total.cs_nbfree = fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree); uspi->cs_total.cs_nifree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree); uspi->cs_total.cs_nffree = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree); } else { uspi->cs_total.cs_ndir = fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir); uspi->cs_total.cs_nbfree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree); uspi->cs_total.cs_nifree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree); uspi->cs_total.cs_nffree = fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree); } UFSD("EXIT\n"); } /* * Read on-disk structures associated with cylinder groups */ static int ufs_read_cylinder_structures(struct super_block *sb) { struct ufs_sb_info *sbi = UFS_SB(sb); struct ufs_sb_private_info *uspi = sbi->s_uspi; struct ufs_buffer_head * ubh; unsigned char * base, * space; unsigned size, blks, i; struct ufs_super_block_third *usb3; UFSD("ENTER\n"); usb3 = ubh_get_usb_third(uspi); /* * Read cs structures from (usually) first data block * on the device. */ size = uspi->s_cssize; blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift; base = space = kmalloc(size, GFP_KERNEL); if (!base) goto failed; sbi->s_csp = (struct ufs_csum *)space; for (i = 0; i < blks; i += uspi->s_fpb) { size = uspi->s_bsize; if (i + uspi->s_fpb > blks) size = (blks - i) * uspi->s_fsize; ubh = ubh_bread(sb, uspi->s_csaddr + i, size); if (!ubh) goto failed; ubh_ubhcpymem (space, ubh, size); space += size; ubh_brelse (ubh); ubh = NULL; } /* * Read cylinder group (we read only first fragment from block * at this time) and prepare internal data structures for cg caching. */ if (!(sbi->s_ucg = kmalloc (sizeof(struct buffer_head *) * uspi->s_ncg, GFP_KERNEL))) goto failed; for (i = 0; i < uspi->s_ncg; i++) sbi->s_ucg[i] = NULL; for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) { sbi->s_ucpi[i] = NULL; sbi->s_cgno[i] = UFS_CGNO_EMPTY; } for (i = 0; i < uspi->s_ncg; i++) { UFSD("read cg %u\n", i); if (!(sbi->s_ucg[i] = sb_bread(sb, ufs_cgcmin(i)))) goto failed; if (!ufs_cg_chkmagic (sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data)) goto failed; ufs_print_cylinder_stuff(sb, (struct ufs_cylinder_group *) sbi->s_ucg[i]->b_data); } for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) { if (!(sbi->s_ucpi[i] = kmalloc (sizeof(struct ufs_cg_private_info), GFP_KERNEL))) goto failed; sbi->s_cgno[i] = UFS_CGNO_EMPTY; } sbi->s_cg_loaded = 0; UFSD("EXIT\n"); return 1; failed: kfree (base); if (sbi->s_ucg) { for (i = 0; i < uspi->s_ncg; i++) if (sbi->s_ucg[i]) brelse (sbi->s_ucg[i]); kfree (sbi->s_ucg); for (i = 0; i < UFS_MAX_GROUP_LOADED; i++) kfree (sbi->s_ucpi[i]); } UFSD("EXIT (FAILED)\n"); return 0; } /* * Sync our internal copy of fs_cstotal with disk */ static void ufs_put_cstotal(struct super_block *sb) { unsigned mtype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct ufs_super_block_first *usb1; struct ufs_super_block_second *usb2; struct ufs_super_block_third *usb3; UFSD("ENTER\n"); usb1 = ubh_get_usb_first(uspi); usb2 = ubh_get_usb_second(uspi); usb3 = ubh_get_usb_third(uspi); if ((mtype == UFS_MOUNT_UFSTYPE_44BSD && (usb1->fs_flags & UFS_FLAGS_UPDATED)) || mtype == UFS_MOUNT_UFSTYPE_UFS2) { /*we have statistic in different place, then usual*/ usb2->fs_un.fs_u2.cs_ndir = cpu_to_fs64(sb, uspi->cs_total.cs_ndir); usb2->fs_un.fs_u2.cs_nbfree = cpu_to_fs64(sb, uspi->cs_total.cs_nbfree); usb3->fs_un1.fs_u2.cs_nifree = cpu_to_fs64(sb, uspi->cs_total.cs_nifree); usb3->fs_un1.fs_u2.cs_nffree = cpu_to_fs64(sb, uspi->cs_total.cs_nffree); } else { usb1->fs_cstotal.cs_ndir = cpu_to_fs32(sb, uspi->cs_total.cs_ndir); usb1->fs_cstotal.cs_nbfree = cpu_to_fs32(sb, uspi->cs_total.cs_nbfree); usb1->fs_cstotal.cs_nifree = cpu_to_fs32(sb, uspi->cs_total.cs_nifree); usb1->fs_cstotal.cs_nffree = cpu_to_fs32(sb, uspi->cs_total.cs_nffree); } ubh_mark_buffer_dirty(USPI_UBH(uspi)); ufs_print_super_stuff(sb, usb1, usb2, usb3); UFSD("EXIT\n"); } /** * ufs_put_super_internal() - put on-disk intrenal structures * @sb: pointer to super_block structure * Put on-disk structures associated with cylinder groups * and write them back to disk, also update cs_total on disk */ static void ufs_put_super_internal(struct super_block *sb) { struct ufs_sb_info *sbi = UFS_SB(sb); struct ufs_sb_private_info *uspi = sbi->s_uspi; struct ufs_buffer_head * ubh; unsigned char * base, * space; unsigned blks, size, i; UFSD("ENTER\n"); ufs_put_cstotal(sb); size = uspi->s_cssize; blks = (size + uspi->s_fsize - 1) >> uspi->s_fshift; base = space = (char*) sbi->s_csp; for (i = 0; i < blks; i += uspi->s_fpb) { size = uspi->s_bsize; if (i + uspi->s_fpb > blks) size = (blks - i) * uspi->s_fsize; ubh = ubh_bread(sb, uspi->s_csaddr + i, size); ubh_memcpyubh (ubh, space, size); space += size; ubh_mark_buffer_uptodate (ubh, 1); ubh_mark_buffer_dirty (ubh); ubh_brelse (ubh); } for (i = 0; i < sbi->s_cg_loaded; i++) { ufs_put_cylinder (sb, i); kfree (sbi->s_ucpi[i]); } for (; i < UFS_MAX_GROUP_LOADED; i++) kfree (sbi->s_ucpi[i]); for (i = 0; i < uspi->s_ncg; i++) brelse (sbi->s_ucg[i]); kfree (sbi->s_ucg); kfree (base); UFSD("EXIT\n"); } static int ufs_fill_super(struct super_block *sb, void *data, int silent) { struct ufs_sb_info * sbi; struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; struct ufs_super_block_second * usb2; struct ufs_super_block_third * usb3; struct ufs_buffer_head * ubh; struct inode *inode; unsigned block_size, super_block_size; unsigned flags; unsigned super_block_offset; int ret = -EINVAL; uspi = NULL; ubh = NULL; flags = 0; UFSD("ENTER\n"); sbi = kzalloc(sizeof(struct ufs_sb_info), GFP_KERNEL); if (!sbi) goto failed_nomem; sb->s_fs_info = sbi; UFSD("flag %u\n", (int)(sb->s_flags & MS_RDONLY)); #ifndef CONFIG_UFS_FS_WRITE if (!(sb->s_flags & MS_RDONLY)) { printk("ufs was compiled with read-only support, " "can't be mounted as read-write\n"); goto failed; } #endif /* * Set default mount options * Parse mount options */ sbi->s_mount_opt = 0; ufs_set_opt (sbi->s_mount_opt, ONERROR_LOCK); if (!ufs_parse_options ((char *) data, &sbi->s_mount_opt)) { printk("wrong mount options\n"); goto failed; } if (!(sbi->s_mount_opt & UFS_MOUNT_UFSTYPE)) { if (!silent) printk("You didn't specify the type of your ufs filesystem\n\n" "mount -t ufs -o ufstype=" "sun|sunx86|44bsd|ufs2|5xbsd|old|hp|nextstep|nextstep-cd|openstep ...\n\n" ">>>WARNING<<< Wrong ufstype may corrupt your filesystem, " "default is ufstype=old\n"); ufs_set_opt (sbi->s_mount_opt, UFSTYPE_OLD); } uspi = kzalloc(sizeof(struct ufs_sb_private_info), GFP_KERNEL); sbi->s_uspi = uspi; if (!uspi) goto failed; uspi->s_dirblksize = UFS_SECTOR_SIZE; super_block_offset=UFS_SBLOCK; /* Keep 2Gig file limit. Some UFS variants need to override this but as I don't know which I'll let those in the know loosen the rules */ switch (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) { case UFS_MOUNT_UFSTYPE_44BSD: UFSD("ufstype=44bsd\n"); uspi->s_fsize = block_size = 512; uspi->s_fmask = ~(512 - 1); uspi->s_fshift = 9; uspi->s_sbsize = super_block_size = 1536; uspi->s_sbbase = 0; flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD; break; case UFS_MOUNT_UFSTYPE_UFS2: UFSD("ufstype=ufs2\n"); super_block_offset=SBLOCK_UFS2; uspi->s_fsize = block_size = 512; uspi->s_fmask = ~(512 - 1); uspi->s_fshift = 9; uspi->s_sbsize = super_block_size = 1536; uspi->s_sbbase = 0; flags |= UFS_TYPE_UFS2 | UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD; break; case UFS_MOUNT_UFSTYPE_SUN: UFSD("ufstype=sun\n"); uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; uspi->s_maxsymlinklen = 0; /* Not supported on disk */ flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUN | UFS_CG_SUN; break; case UFS_MOUNT_UFSTYPE_SUNOS: UFSD(("ufstype=sunos\n")) uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = 2048; super_block_size = 2048; uspi->s_sbbase = 0; uspi->s_maxsymlinklen = 0; /* Not supported on disk */ flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_SUNOS | UFS_CG_SUN; break; case UFS_MOUNT_UFSTYPE_SUNx86: UFSD("ufstype=sunx86\n"); uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; uspi->s_maxsymlinklen = 0; /* Not supported on disk */ flags |= UFS_DE_OLD | UFS_UID_EFT | UFS_ST_SUNx86 | UFS_CG_SUN; break; case UFS_MOUNT_UFSTYPE_OLD: UFSD("ufstype=old\n"); uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD; if (!(sb->s_flags & MS_RDONLY)) { if (!silent) printk(KERN_INFO "ufstype=old is supported read-only\n"); sb->s_flags |= MS_RDONLY; } break; case UFS_MOUNT_UFSTYPE_NEXTSTEP: UFSD("ufstype=nextstep\n"); uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; uspi->s_dirblksize = 1024; flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD; if (!(sb->s_flags & MS_RDONLY)) { if (!silent) printk(KERN_INFO "ufstype=nextstep is supported read-only\n"); sb->s_flags |= MS_RDONLY; } break; case UFS_MOUNT_UFSTYPE_NEXTSTEP_CD: UFSD("ufstype=nextstep-cd\n"); uspi->s_fsize = block_size = 2048; uspi->s_fmask = ~(2048 - 1); uspi->s_fshift = 11; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; uspi->s_dirblksize = 1024; flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD; if (!(sb->s_flags & MS_RDONLY)) { if (!silent) printk(KERN_INFO "ufstype=nextstep-cd is supported read-only\n"); sb->s_flags |= MS_RDONLY; } break; case UFS_MOUNT_UFSTYPE_OPENSTEP: UFSD("ufstype=openstep\n"); uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; uspi->s_dirblksize = 1024; flags |= UFS_DE_44BSD | UFS_UID_44BSD | UFS_ST_44BSD | UFS_CG_44BSD; if (!(sb->s_flags & MS_RDONLY)) { if (!silent) printk(KERN_INFO "ufstype=openstep is supported read-only\n"); sb->s_flags |= MS_RDONLY; } break; case UFS_MOUNT_UFSTYPE_HP: UFSD("ufstype=hp\n"); uspi->s_fsize = block_size = 1024; uspi->s_fmask = ~(1024 - 1); uspi->s_fshift = 10; uspi->s_sbsize = super_block_size = 2048; uspi->s_sbbase = 0; flags |= UFS_DE_OLD | UFS_UID_OLD | UFS_ST_OLD | UFS_CG_OLD; if (!(sb->s_flags & MS_RDONLY)) { if (!silent) printk(KERN_INFO "ufstype=hp is supported read-only\n"); sb->s_flags |= MS_RDONLY; } break; default: if (!silent) printk("unknown ufstype\n"); goto failed; } again: if (!sb_set_blocksize(sb, block_size)) { printk(KERN_ERR "UFS: failed to set blocksize\n"); goto failed; } /* * read ufs super block from device */ ubh = ubh_bread_uspi(uspi, sb, uspi->s_sbbase + super_block_offset/block_size, super_block_size); if (!ubh) goto failed; usb1 = ubh_get_usb_first(uspi); usb2 = ubh_get_usb_second(uspi); usb3 = ubh_get_usb_third(uspi); /* Sort out mod used on SunOS 4.1.3 for fs_state */ uspi->s_postblformat = fs32_to_cpu(sb, usb3->fs_postblformat); if (((flags & UFS_ST_MASK) == UFS_ST_SUNOS) && (uspi->s_postblformat != UFS_42POSTBLFMT)) { flags &= ~UFS_ST_MASK; flags |= UFS_ST_SUN; } /* * Check ufs magic number */ sbi->s_bytesex = BYTESEX_LE; switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) { case UFS_MAGIC: case UFS2_MAGIC: case UFS_MAGIC_LFN: case UFS_MAGIC_FEA: case UFS_MAGIC_4GB: goto magic_found; } sbi->s_bytesex = BYTESEX_BE; switch ((uspi->fs_magic = fs32_to_cpu(sb, usb3->fs_magic))) { case UFS_MAGIC: case UFS2_MAGIC: case UFS_MAGIC_LFN: case UFS_MAGIC_FEA: case UFS_MAGIC_4GB: goto magic_found; } if ((((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP) || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_NEXTSTEP_CD) || ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_OPENSTEP)) && uspi->s_sbbase < 256) { ubh_brelse_uspi(uspi); ubh = NULL; uspi->s_sbbase += 8; goto again; } if (!silent) printk("ufs_read_super: bad magic number\n"); goto failed; magic_found: /* * Check block and fragment sizes */ uspi->s_bsize = fs32_to_cpu(sb, usb1->fs_bsize); uspi->s_fsize = fs32_to_cpu(sb, usb1->fs_fsize); uspi->s_sbsize = fs32_to_cpu(sb, usb1->fs_sbsize); uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask); uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift); if (!is_power_of_2(uspi->s_fsize)) { printk(KERN_ERR "ufs_read_super: fragment size %u is not a power of 2\n", uspi->s_fsize); goto failed; } if (uspi->s_fsize < 512) { printk(KERN_ERR "ufs_read_super: fragment size %u is too small\n", uspi->s_fsize); goto failed; } if (uspi->s_fsize > 4096) { printk(KERN_ERR "ufs_read_super: fragment size %u is too large\n", uspi->s_fsize); goto failed; } if (!is_power_of_2(uspi->s_bsize)) { printk(KERN_ERR "ufs_read_super: block size %u is not a power of 2\n", uspi->s_bsize); goto failed; } if (uspi->s_bsize < 4096) { printk(KERN_ERR "ufs_read_super: block size %u is too small\n", uspi->s_bsize); goto failed; } if (uspi->s_bsize / uspi->s_fsize > 8) { printk(KERN_ERR "ufs_read_super: too many fragments per block (%u)\n", uspi->s_bsize / uspi->s_fsize); goto failed; } if (uspi->s_fsize != block_size || uspi->s_sbsize != super_block_size) { ubh_brelse_uspi(uspi); ubh = NULL; block_size = uspi->s_fsize; super_block_size = uspi->s_sbsize; UFSD("another value of block_size or super_block_size %u, %u\n", block_size, super_block_size); goto again; } sbi->s_flags = flags;/*after that line some functions use s_flags*/ ufs_print_super_stuff(sb, usb1, usb2, usb3); /* * Check, if file system was correctly unmounted. * If not, make it read only. */ if (((flags & UFS_ST_MASK) == UFS_ST_44BSD) || ((flags & UFS_ST_MASK) == UFS_ST_OLD) || (((flags & UFS_ST_MASK) == UFS_ST_SUN || (flags & UFS_ST_MASK) == UFS_ST_SUNOS || (flags & UFS_ST_MASK) == UFS_ST_SUNx86) && (ufs_get_fs_state(sb, usb1, usb3) == (UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time))))) { switch(usb1->fs_clean) { case UFS_FSCLEAN: UFSD("fs is clean\n"); break; case UFS_FSSTABLE: UFSD("fs is stable\n"); break; case UFS_FSOSF1: UFSD("fs is DEC OSF/1\n"); break; case UFS_FSACTIVE: printk("ufs_read_super: fs is active\n"); sb->s_flags |= MS_RDONLY; break; case UFS_FSBAD: printk("ufs_read_super: fs is bad\n"); sb->s_flags |= MS_RDONLY; break; default: printk("ufs_read_super: can't grok fs_clean 0x%x\n", usb1->fs_clean); sb->s_flags |= MS_RDONLY; break; } } else { printk("ufs_read_super: fs needs fsck\n"); sb->s_flags |= MS_RDONLY; } /* * Read ufs_super_block into internal data structures */ sb->s_op = &ufs_super_ops; sb->dq_op = NULL; /***/ sb->s_magic = fs32_to_cpu(sb, usb3->fs_magic); uspi->s_sblkno = fs32_to_cpu(sb, usb1->fs_sblkno); uspi->s_cblkno = fs32_to_cpu(sb, usb1->fs_cblkno); uspi->s_iblkno = fs32_to_cpu(sb, usb1->fs_iblkno); uspi->s_dblkno = fs32_to_cpu(sb, usb1->fs_dblkno); uspi->s_cgoffset = fs32_to_cpu(sb, usb1->fs_cgoffset); uspi->s_cgmask = fs32_to_cpu(sb, usb1->fs_cgmask); if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) { uspi->s_u2_size = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size); uspi->s_u2_dsize = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize); } else { uspi->s_size = fs32_to_cpu(sb, usb1->fs_size); uspi->s_dsize = fs32_to_cpu(sb, usb1->fs_dsize); } uspi->s_ncg = fs32_to_cpu(sb, usb1->fs_ncg); /* s_bsize already set */ /* s_fsize already set */ uspi->s_fpb = fs32_to_cpu(sb, usb1->fs_frag); uspi->s_minfree = fs32_to_cpu(sb, usb1->fs_minfree); uspi->s_bmask = fs32_to_cpu(sb, usb1->fs_bmask); uspi->s_fmask = fs32_to_cpu(sb, usb1->fs_fmask); uspi->s_bshift = fs32_to_cpu(sb, usb1->fs_bshift); uspi->s_fshift = fs32_to_cpu(sb, usb1->fs_fshift); UFSD("uspi->s_bshift = %d,uspi->s_fshift = %d", uspi->s_bshift, uspi->s_fshift); uspi->s_fpbshift = fs32_to_cpu(sb, usb1->fs_fragshift); uspi->s_fsbtodb = fs32_to_cpu(sb, usb1->fs_fsbtodb); /* s_sbsize already set */ uspi->s_csmask = fs32_to_cpu(sb, usb1->fs_csmask); uspi->s_csshift = fs32_to_cpu(sb, usb1->fs_csshift); uspi->s_nindir = fs32_to_cpu(sb, usb1->fs_nindir); uspi->s_inopb = fs32_to_cpu(sb, usb1->fs_inopb); uspi->s_nspf = fs32_to_cpu(sb, usb1->fs_nspf); uspi->s_npsect = ufs_get_fs_npsect(sb, usb1, usb3); uspi->s_interleave = fs32_to_cpu(sb, usb1->fs_interleave); uspi->s_trackskew = fs32_to_cpu(sb, usb1->fs_trackskew); if (uspi->fs_magic == UFS2_MAGIC) uspi->s_csaddr = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_csaddr); else uspi->s_csaddr = fs32_to_cpu(sb, usb1->fs_csaddr); uspi->s_cssize = fs32_to_cpu(sb, usb1->fs_cssize); uspi->s_cgsize = fs32_to_cpu(sb, usb1->fs_cgsize); uspi->s_ntrak = fs32_to_cpu(sb, usb1->fs_ntrak); uspi->s_nsect = fs32_to_cpu(sb, usb1->fs_nsect); uspi->s_spc = fs32_to_cpu(sb, usb1->fs_spc); uspi->s_ipg = fs32_to_cpu(sb, usb1->fs_ipg); uspi->s_fpg = fs32_to_cpu(sb, usb1->fs_fpg); uspi->s_cpc = fs32_to_cpu(sb, usb2->fs_un.fs_u1.fs_cpc); uspi->s_contigsumsize = fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_contigsumsize); uspi->s_qbmask = ufs_get_fs_qbmask(sb, usb3); uspi->s_qfmask = ufs_get_fs_qfmask(sb, usb3); uspi->s_nrpos = fs32_to_cpu(sb, usb3->fs_nrpos); uspi->s_postbloff = fs32_to_cpu(sb, usb3->fs_postbloff); uspi->s_rotbloff = fs32_to_cpu(sb, usb3->fs_rotbloff); /* * Compute another frequently used values */ uspi->s_fpbmask = uspi->s_fpb - 1; if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) uspi->s_apbshift = uspi->s_bshift - 3; else uspi->s_apbshift = uspi->s_bshift - 2; uspi->s_2apbshift = uspi->s_apbshift * 2; uspi->s_3apbshift = uspi->s_apbshift * 3; uspi->s_apb = 1 << uspi->s_apbshift; uspi->s_2apb = 1 << uspi->s_2apbshift; uspi->s_3apb = 1 << uspi->s_3apbshift; uspi->s_apbmask = uspi->s_apb - 1; uspi->s_nspfshift = uspi->s_fshift - UFS_SECTOR_BITS; uspi->s_nspb = uspi->s_nspf << uspi->s_fpbshift; uspi->s_inopf = uspi->s_inopb >> uspi->s_fpbshift; uspi->s_bpf = uspi->s_fsize << 3; uspi->s_bpfshift = uspi->s_fshift + 3; uspi->s_bpfmask = uspi->s_bpf - 1; if ((sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_44BSD || (sbi->s_mount_opt & UFS_MOUNT_UFSTYPE) == UFS_MOUNT_UFSTYPE_UFS2) uspi->s_maxsymlinklen = fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen); inode = ufs_iget(sb, UFS_ROOTINO); if (IS_ERR(inode)) { ret = PTR_ERR(inode); goto failed; } sb->s_root = d_alloc_root(inode); if (!sb->s_root) { ret = -ENOMEM; goto dalloc_failed; } ufs_setup_cstotal(sb); /* * Read cylinder group structures */ if (!(sb->s_flags & MS_RDONLY)) if (!ufs_read_cylinder_structures(sb)) goto failed; UFSD("EXIT\n"); return 0; dalloc_failed: iput(inode); failed: if (ubh) ubh_brelse_uspi (uspi); kfree (uspi); kfree(sbi); sb->s_fs_info = NULL; UFSD("EXIT (FAILED)\n"); return ret; failed_nomem: UFSD("EXIT (NOMEM)\n"); return -ENOMEM; } static void ufs_write_super(struct super_block *sb) { struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; struct ufs_super_block_third * usb3; unsigned flags; lock_kernel(); UFSD("ENTER\n"); flags = UFS_SB(sb)->s_flags; uspi = UFS_SB(sb)->s_uspi; usb1 = ubh_get_usb_first(uspi); usb3 = ubh_get_usb_third(uspi); if (!(sb->s_flags & MS_RDONLY)) { usb1->fs_time = cpu_to_fs32(sb, get_seconds()); if ((flags & UFS_ST_MASK) == UFS_ST_SUN || (flags & UFS_ST_MASK) == UFS_ST_SUNOS || (flags & UFS_ST_MASK) == UFS_ST_SUNx86) ufs_set_fs_state(sb, usb1, usb3, UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time)); ufs_put_cstotal(sb); } sb->s_dirt = 0; UFSD("EXIT\n"); unlock_kernel(); } static void ufs_put_super(struct super_block *sb) { struct ufs_sb_info * sbi = UFS_SB(sb); UFSD("ENTER\n"); if (!(sb->s_flags & MS_RDONLY)) ufs_put_super_internal(sb); ubh_brelse_uspi (sbi->s_uspi); kfree (sbi->s_uspi); kfree (sbi); sb->s_fs_info = NULL; UFSD("EXIT\n"); return; } static int ufs_remount (struct super_block *sb, int *mount_flags, char *data) { struct ufs_sb_private_info * uspi; struct ufs_super_block_first * usb1; struct ufs_super_block_third * usb3; unsigned new_mount_opt, ufstype; unsigned flags; uspi = UFS_SB(sb)->s_uspi; flags = UFS_SB(sb)->s_flags; usb1 = ubh_get_usb_first(uspi); usb3 = ubh_get_usb_third(uspi); /* * Allow the "check" option to be passed as a remount option. * It is not possible to change ufstype option during remount */ ufstype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE; new_mount_opt = 0; ufs_set_opt (new_mount_opt, ONERROR_LOCK); if (!ufs_parse_options (data, &new_mount_opt)) return -EINVAL; if (!(new_mount_opt & UFS_MOUNT_UFSTYPE)) { new_mount_opt |= ufstype; } else if ((new_mount_opt & UFS_MOUNT_UFSTYPE) != ufstype) { printk("ufstype can't be changed during remount\n"); return -EINVAL; } if ((*mount_flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) { UFS_SB(sb)->s_mount_opt = new_mount_opt; return 0; } /* * fs was mouted as rw, remounting ro */ if (*mount_flags & MS_RDONLY) { ufs_put_super_internal(sb); usb1->fs_time = cpu_to_fs32(sb, get_seconds()); if ((flags & UFS_ST_MASK) == UFS_ST_SUN || (flags & UFS_ST_MASK) == UFS_ST_SUNOS || (flags & UFS_ST_MASK) == UFS_ST_SUNx86) ufs_set_fs_state(sb, usb1, usb3, UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time)); ubh_mark_buffer_dirty (USPI_UBH(uspi)); sb->s_dirt = 0; sb->s_flags |= MS_RDONLY; } else { /* * fs was mounted as ro, remounting rw */ #ifndef CONFIG_UFS_FS_WRITE printk("ufs was compiled with read-only support, " "can't be mounted as read-write\n"); return -EINVAL; #else if (ufstype != UFS_MOUNT_UFSTYPE_SUN && ufstype != UFS_MOUNT_UFSTYPE_SUNOS && ufstype != UFS_MOUNT_UFSTYPE_44BSD && ufstype != UFS_MOUNT_UFSTYPE_SUNx86 && ufstype != UFS_MOUNT_UFSTYPE_UFS2) { printk("this ufstype is read-only supported\n"); return -EINVAL; } if (!ufs_read_cylinder_structures(sb)) { printk("failed during remounting\n"); return -EPERM; } sb->s_flags &= ~MS_RDONLY; #endif } UFS_SB(sb)->s_mount_opt = new_mount_opt; return 0; } static int ufs_show_options(struct seq_file *seq, struct vfsmount *vfs) { struct ufs_sb_info *sbi = UFS_SB(vfs->mnt_sb); unsigned mval = sbi->s_mount_opt & UFS_MOUNT_UFSTYPE; struct match_token *tp = tokens; while (tp->token != Opt_onerror_panic && tp->token != mval) ++tp; BUG_ON(tp->token == Opt_onerror_panic); seq_printf(seq, ",%s", tp->pattern); mval = sbi->s_mount_opt & UFS_MOUNT_ONERROR; while (tp->token != Opt_err && tp->token != mval) ++tp; BUG_ON(tp->token == Opt_err); seq_printf(seq, ",%s", tp->pattern); return 0; } static int ufs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct ufs_sb_private_info *uspi= UFS_SB(sb)->s_uspi; unsigned flags = UFS_SB(sb)->s_flags; struct ufs_super_block_first *usb1; struct ufs_super_block_second *usb2; struct ufs_super_block_third *usb3; lock_kernel(); usb1 = ubh_get_usb_first(uspi); usb2 = ubh_get_usb_second(uspi); usb3 = ubh_get_usb_third(uspi); if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) { buf->f_type = UFS2_MAGIC; buf->f_blocks = fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize); } else { buf->f_type = UFS_MAGIC; buf->f_blocks = uspi->s_dsize; } buf->f_bfree = ufs_blkstofrags(uspi->cs_total.cs_nbfree) + uspi->cs_total.cs_nffree; buf->f_ffree = uspi->cs_total.cs_nifree; buf->f_bsize = sb->s_blocksize; buf->f_bavail = (buf->f_bfree > (((long)buf->f_blocks / 100) * uspi->s_minfree)) ? (buf->f_bfree - (((long)buf->f_blocks / 100) * uspi->s_minfree)) : 0; buf->f_files = uspi->s_ncg * uspi->s_ipg; buf->f_namelen = UFS_MAXNAMLEN; unlock_kernel(); return 0; } static struct kmem_cache * ufs_inode_cachep; static struct inode *ufs_alloc_inode(struct super_block *sb) { struct ufs_inode_info *ei; ei = (struct ufs_inode_info *)kmem_cache_alloc(ufs_inode_cachep, GFP_KERNEL); if (!ei) return NULL; ei->vfs_inode.i_version = 1; return &ei->vfs_inode; } static void ufs_destroy_inode(struct inode *inode) { kmem_cache_free(ufs_inode_cachep, UFS_I(inode)); } static void init_once(void *foo) { struct ufs_inode_info *ei = (struct ufs_inode_info *) foo; inode_init_once(&ei->vfs_inode); } static int init_inodecache(void) { ufs_inode_cachep = kmem_cache_create("ufs_inode_cache", sizeof(struct ufs_inode_info), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), init_once); if (ufs_inode_cachep == NULL) return -ENOMEM; return 0; } static void destroy_inodecache(void) { kmem_cache_destroy(ufs_inode_cachep); } #ifdef CONFIG_QUOTA static ssize_t ufs_quota_read(struct super_block *, int, char *,size_t, loff_t); static ssize_t ufs_quota_write(struct super_block *, int, const char *, size_t, loff_t); #endif static const struct super_operations ufs_super_ops = { .alloc_inode = ufs_alloc_inode, .destroy_inode = ufs_destroy_inode, .write_inode = ufs_write_inode, .delete_inode = ufs_delete_inode, .put_super = ufs_put_super, .write_super = ufs_write_super, .statfs = ufs_statfs, .remount_fs = ufs_remount, .show_options = ufs_show_options, #ifdef CONFIG_QUOTA .quota_read = ufs_quota_read, .quota_write = ufs_quota_write, #endif }; #ifdef CONFIG_QUOTA /* Read data from quotafile - avoid pagecache and such because we cannot afford * acquiring the locks... As quota files are never truncated and quota code * itself serializes the operations (and noone else should touch the files) * we don't have to be afraid of races */ static ssize_t ufs_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; sector_t blk = off >> sb->s_blocksize_bits; int err = 0; int offset = off & (sb->s_blocksize - 1); int tocopy; size_t toread; struct buffer_head *bh; loff_t i_size = i_size_read(inode); if (off > i_size) return 0; if (off+len > i_size) len = i_size-off; toread = len; while (toread > 0) { tocopy = sb->s_blocksize - offset < toread ? sb->s_blocksize - offset : toread; bh = ufs_bread(inode, blk, 0, &err); if (err) return err; if (!bh) /* A hole? */ memset(data, 0, tocopy); else { memcpy(data, bh->b_data+offset, tocopy); brelse(bh); } offset = 0; toread -= tocopy; data += tocopy; blk++; } return len; } /* Write to quotafile */ static ssize_t ufs_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; sector_t blk = off >> sb->s_blocksize_bits; int err = 0; int offset = off & (sb->s_blocksize - 1); int tocopy; size_t towrite = len; struct buffer_head *bh; mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); while (towrite > 0) { tocopy = sb->s_blocksize - offset < towrite ? sb->s_blocksize - offset : towrite; bh = ufs_bread(inode, blk, 1, &err); if (!bh) goto out; lock_buffer(bh); memcpy(bh->b_data+offset, data, tocopy); flush_dcache_page(bh->b_page); set_buffer_uptodate(bh); mark_buffer_dirty(bh); unlock_buffer(bh); brelse(bh); offset = 0; towrite -= tocopy; data += tocopy; blk++; } out: if (len == towrite) { mutex_unlock(&inode->i_mutex); return err; } if (inode->i_size < off+len-towrite) i_size_write(inode, off+len-towrite); inode->i_version++; inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; mark_inode_dirty(inode); mutex_unlock(&inode->i_mutex); return len - towrite; } #endif static int ufs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { return get_sb_bdev(fs_type, flags, dev_name, data, ufs_fill_super, mnt); } static struct file_system_type ufs_fs_type = { .owner = THIS_MODULE, .name = "ufs", .get_sb = ufs_get_sb, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; static int __init init_ufs_fs(void) { int err = init_inodecache(); if (err) goto out1; err = register_filesystem(&ufs_fs_type); if (err) goto out; return 0; out: destroy_inodecache(); out1: return err; } static void __exit exit_ufs_fs(void) { unregister_filesystem(&ufs_fs_type); destroy_inodecache(); } module_init(init_ufs_fs) module_exit(exit_ufs_fs) MODULE_LICENSE("GPL");