/* Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Paul Eggert (eggert@twinsun.com). The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* * dgb 10/02/98: ripped this from glibc source to help convert timestamps to unix time * 10/04/98: added new table-based lookup after seeing how ugly the gnu code is * blf 09/27/99: ripped out all the old code and inserted new table from * John Brockmeyer (without leap second corrections) * rewrote udf_stamp_to_time and fixed timezone accounting in udf_time_to_stamp. */ /* * We don't take into account leap seconds. This may be correct or incorrect. * For more NIST information (especially dealing with leap seconds), see: * http://www.boulder.nist.gov/timefreq/pubs/bulletin/leapsecond.htm */ #include <linux/types.h> #include <linux/kernel.h> #include "udfdecl.h" #define EPOCH_YEAR 1970 #ifndef __isleap /* Nonzero if YEAR is a leap year (every 4 years, except every 100th isn't, and every 400th is). */ #define __isleap(year) \ ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0)) #endif /* How many days come before each month (0-12). */ static const unsigned short int __mon_yday[2][13] = { /* Normal years. */ { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, /* Leap years. */ { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } }; #define MAX_YEAR_SECONDS 69 #define SPD 0x15180 /*3600*24*/ #define SPY(y,l,s) (SPD * (365*y+l)+s) static time_t year_seconds[MAX_YEAR_SECONDS]= { /*1970*/ SPY( 0, 0,0), SPY( 1, 0,0), SPY( 2, 0,0), SPY( 3, 1,0), /*1974*/ SPY( 4, 1,0), SPY( 5, 1,0), SPY( 6, 1,0), SPY( 7, 2,0), /*1978*/ SPY( 8, 2,0), SPY( 9, 2,0), SPY(10, 2,0), SPY(11, 3,0), /*1982*/ SPY(12, 3,0), SPY(13, 3,0), SPY(14, 3,0), SPY(15, 4,0), /*1986*/ SPY(16, 4,0), SPY(17, 4,0), SPY(18, 4,0), SPY(19, 5,0), /*1990*/ SPY(20, 5,0), SPY(21, 5,0), SPY(22, 5,0), SPY(23, 6,0), /*1994*/ SPY(24, 6,0), SPY(25, 6,0), SPY(26, 6,0), SPY(27, 7,0), /*1998*/ SPY(28, 7,0), SPY(29, 7,0), SPY(30, 7,0), SPY(31, 8,0), /*2002*/ SPY(32, 8,0), SPY(33, 8,0), SPY(34, 8,0), SPY(35, 9,0), /*2006*/ SPY(36, 9,0), SPY(37, 9,0), SPY(38, 9,0), SPY(39,10,0), /*2010*/ SPY(40,10,0), SPY(41,10,0), SPY(42,10,0), SPY(43,11,0), /*2014*/ SPY(44,11,0), SPY(45,11,0), SPY(46,11,0), SPY(47,12,0), /*2018*/ SPY(48,12,0), SPY(49,12,0), SPY(50,12,0), SPY(51,13,0), /*2022*/ SPY(52,13,0), SPY(53,13,0), SPY(54,13,0), SPY(55,14,0), /*2026*/ SPY(56,14,0), SPY(57,14,0), SPY(58,14,0), SPY(59,15,0), /*2030*/ SPY(60,15,0), SPY(61,15,0), SPY(62,15,0), SPY(63,16,0), /*2034*/ SPY(64,16,0), SPY(65,16,0), SPY(66,16,0), SPY(67,17,0), /*2038*/ SPY(68,17,0) }; extern struct timezone sys_tz; #define SECS_PER_HOUR (60 * 60) #define SECS_PER_DAY (SECS_PER_HOUR * 24) time_t * udf_stamp_to_time(time_t *dest, long *dest_usec, kernel_timestamp src) { int yday; uint8_t type = src.typeAndTimezone >> 12; int16_t offset; if (type == 1) { offset = src.typeAndTimezone << 4; /* sign extent offset */ offset = (offset >> 4); if (offset == -2047) /* unspecified offset */ offset = 0; } else offset = 0; if ((src.year < EPOCH_YEAR) || (src.year >= EPOCH_YEAR+MAX_YEAR_SECONDS)) { *dest = -1; *dest_usec = -1; return NULL; } *dest = year_seconds[src.year - EPOCH_YEAR]; *dest -= offset * 60; yday = ((__mon_yday[__isleap (src.year)] [src.month-1]) + (src.day-1)); *dest += ( ( (yday* 24) + src.hour ) * 60 + src.minute ) * 60 + src.second; *dest_usec = src.centiseconds * 10000 + src.hundredsOfMicroseconds * 100 + src.microseconds; return dest; } kernel_timestamp * udf_time_to_stamp(kernel_timestamp *dest, struct timespec ts) { long int days, rem, y; const unsigned short int *ip; int16_t offset; offset = -sys_tz.tz_minuteswest; if (!dest) return NULL; dest->typeAndTimezone = 0x1000 | (offset & 0x0FFF); ts.tv_sec += offset * 60; days = ts.tv_sec / SECS_PER_DAY; rem = ts.tv_sec % SECS_PER_DAY; dest->hour = rem / SECS_PER_HOUR; rem %= SECS_PER_HOUR; dest->minute = rem / 60; dest->second = rem % 60; y = 1970; #define DIV(a,b) ((a) / (b) - ((a) % (b) < 0)) #define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400)) while (days < 0 || days >= (__isleap(y) ? 366 : 365)) { long int yg = y + days / 365 - (days % 365 < 0); /* Adjust DAYS and Y to match the guessed year. */ days -= ((yg - y) * 365 + LEAPS_THRU_END_OF (yg - 1) - LEAPS_THRU_END_OF (y - 1)); y = yg; } dest->year = y; ip = __mon_yday[__isleap(y)]; for (y = 11; days < (long int) ip[y]; --y) continue; days -= ip[y]; dest->month = y + 1; dest->day = days + 1; dest->centiseconds = ts.tv_nsec / 10000000; dest->hundredsOfMicroseconds = (ts.tv_nsec / 1000 - dest->centiseconds * 10000) / 100; dest->microseconds = (ts.tv_nsec / 1000 - dest->centiseconds * 10000 - dest->hundredsOfMicroseconds * 100); return dest; } /* EOF */