/* * super.c * * PURPOSE * Super block routines for the OSTA-UDF(tm) filesystem. * * DESCRIPTION * OSTA-UDF(tm) = Optical Storage Technology Association * Universal Disk Format. * * This code is based on version 2.00 of the UDF specification, * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. * http://www.osta.org/ * http://www.ecma.ch/ * http://www.iso.org/ * * COPYRIGHT * This file is distributed under the terms of the GNU General Public * License (GPL). Copies of the GPL can be obtained from: * ftp://prep.ai.mit.edu/pub/gnu/GPL * Each contributing author retains all rights to their own work. * * (C) 1998 Dave Boynton * (C) 1998-2004 Ben Fennema * (C) 2000 Stelias Computing Inc * * HISTORY * * 09/24/98 dgb changed to allow compiling outside of kernel, and * added some debugging. * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 * 10/16/98 attempting some multi-session support * 10/17/98 added freespace count for "df" * 11/11/98 gr added novrs option * 11/26/98 dgb added fileset,anchor mount options * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced vol descs * rewrote option handling based on isofs * 12/20/98 find the free space bitmap (if it exists) */ #include "udfdecl.h" #include <linux/blkdev.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/parser.h> #include <linux/stat.h> #include <linux/cdrom.h> #include <linux/nls.h> #include <linux/smp_lock.h> #include <linux/buffer_head.h> #include <linux/vfs.h> #include <linux/vmalloc.h> #include <asm/byteorder.h> #include <linux/udf_fs.h> #include "udf_sb.h" #include "udf_i.h" #include <linux/init.h> #include <asm/uaccess.h> #define VDS_POS_PRIMARY_VOL_DESC 0 #define VDS_POS_UNALLOC_SPACE_DESC 1 #define VDS_POS_LOGICAL_VOL_DESC 2 #define VDS_POS_PARTITION_DESC 3 #define VDS_POS_IMP_USE_VOL_DESC 4 #define VDS_POS_VOL_DESC_PTR 5 #define VDS_POS_TERMINATING_DESC 6 #define VDS_POS_LENGTH 7 static char error_buf[1024]; /* These are the "meat" - everything else is stuffing */ static int udf_fill_super(struct super_block *, void *, int); static void udf_put_super(struct super_block *); static void udf_write_super(struct super_block *); static int udf_remount_fs(struct super_block *, int *, char *); static int udf_check_valid(struct super_block *, int, int); static int udf_vrs(struct super_block *sb, int silent); static int udf_load_partition(struct super_block *, kernel_lb_addr *); static int udf_load_logicalvol(struct super_block *, struct buffer_head *, kernel_lb_addr *); static void udf_load_logicalvolint(struct super_block *, kernel_extent_ad); static void udf_find_anchor(struct super_block *); static int udf_find_fileset(struct super_block *, kernel_lb_addr *, kernel_lb_addr *); static void udf_load_pvoldesc(struct super_block *, struct buffer_head *); static void udf_load_fileset(struct super_block *, struct buffer_head *, kernel_lb_addr *); static int udf_load_partdesc(struct super_block *, struct buffer_head *); static void udf_open_lvid(struct super_block *); static void udf_close_lvid(struct super_block *); static unsigned int udf_count_free(struct super_block *); static int udf_statfs(struct dentry *, struct kstatfs *); /* UDF filesystem type */ static int udf_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { return get_sb_bdev(fs_type, flags, dev_name, data, udf_fill_super, mnt); } static struct file_system_type udf_fstype = { .owner = THIS_MODULE, .name = "udf", .get_sb = udf_get_sb, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; static struct kmem_cache *udf_inode_cachep; static struct inode *udf_alloc_inode(struct super_block *sb) { struct udf_inode_info *ei; ei = (struct udf_inode_info *)kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); if (!ei) return NULL; ei->i_unique = 0; ei->i_lenExtents = 0; ei->i_next_alloc_block = 0; ei->i_next_alloc_goal = 0; ei->i_strat4096 = 0; return &ei->vfs_inode; } static void udf_destroy_inode(struct inode *inode) { kmem_cache_free(udf_inode_cachep, UDF_I(inode)); } static void init_once(struct kmem_cache *cachep, void *foo) { struct udf_inode_info *ei = (struct udf_inode_info *)foo; ei->i_ext.i_data = NULL; inode_init_once(&ei->vfs_inode); } static int init_inodecache(void) { udf_inode_cachep = kmem_cache_create("udf_inode_cache", sizeof(struct udf_inode_info), 0, (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD), init_once); if (!udf_inode_cachep) return -ENOMEM; return 0; } static void destroy_inodecache(void) { kmem_cache_destroy(udf_inode_cachep); } /* Superblock operations */ static const struct super_operations udf_sb_ops = { .alloc_inode = udf_alloc_inode, .destroy_inode = udf_destroy_inode, .write_inode = udf_write_inode, .delete_inode = udf_delete_inode, .clear_inode = udf_clear_inode, .put_super = udf_put_super, .write_super = udf_write_super, .statfs = udf_statfs, .remount_fs = udf_remount_fs, }; struct udf_options { unsigned char novrs; unsigned int blocksize; unsigned int session; unsigned int lastblock; unsigned int anchor; unsigned int volume; unsigned short partition; unsigned int fileset; unsigned int rootdir; unsigned int flags; mode_t umask; gid_t gid; uid_t uid; struct nls_table *nls_map; }; static int __init init_udf_fs(void) { int err; err = init_inodecache(); if (err) goto out1; err = register_filesystem(&udf_fstype); if (err) goto out; return 0; out: destroy_inodecache(); out1: return err; } static void __exit exit_udf_fs(void) { unregister_filesystem(&udf_fstype); destroy_inodecache(); } module_init(init_udf_fs) module_exit(exit_udf_fs) /* * udf_parse_options * * PURPOSE * Parse mount options. * * DESCRIPTION * The following mount options are supported: * * gid= Set the default group. * umask= Set the default umask. * uid= Set the default user. * bs= Set the block size. * unhide Show otherwise hidden files. * undelete Show deleted files in lists. * adinicb Embed data in the inode (default) * noadinicb Don't embed data in the inode * shortad Use short ad's * longad Use long ad's (default) * nostrict Unset strict conformance * iocharset= Set the NLS character set * * The remaining are for debugging and disaster recovery: * * novrs Skip volume sequence recognition * * The following expect a offset from 0. * * session= Set the CDROM session (default= last session) * anchor= Override standard anchor location. (default= 256) * volume= Override the VolumeDesc location. (unused) * partition= Override the PartitionDesc location. (unused) * lastblock= Set the last block of the filesystem/ * * The following expect a offset from the partition root. * * fileset= Override the fileset block location. (unused) * rootdir= Override the root directory location. (unused) * WARNING: overriding the rootdir to a non-directory may * yield highly unpredictable results. * * PRE-CONDITIONS * options Pointer to mount options string. * uopts Pointer to mount options variable. * * POST-CONDITIONS * <return> 1 Mount options parsed okay. * <return> 0 Error parsing mount options. * * HISTORY * July 1, 1997 - Andrew E. Mileski * Written, tested, and released. */ enum { Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, Opt_rootdir, Opt_utf8, Opt_iocharset, Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore }; static match_table_t tokens = { {Opt_novrs, "novrs"}, {Opt_nostrict, "nostrict"}, {Opt_bs, "bs=%u"}, {Opt_unhide, "unhide"}, {Opt_undelete, "undelete"}, {Opt_noadinicb, "noadinicb"}, {Opt_adinicb, "adinicb"}, {Opt_shortad, "shortad"}, {Opt_longad, "longad"}, {Opt_uforget, "uid=forget"}, {Opt_uignore, "uid=ignore"}, {Opt_gforget, "gid=forget"}, {Opt_gignore, "gid=ignore"}, {Opt_gid, "gid=%u"}, {Opt_uid, "uid=%u"}, {Opt_umask, "umask=%o"}, {Opt_session, "session=%u"}, {Opt_lastblock, "lastblock=%u"}, {Opt_anchor, "anchor=%u"}, {Opt_volume, "volume=%u"}, {Opt_partition, "partition=%u"}, {Opt_fileset, "fileset=%u"}, {Opt_rootdir, "rootdir=%u"}, {Opt_utf8, "utf8"}, {Opt_iocharset, "iocharset=%s"}, {Opt_err, NULL} }; static int udf_parse_options(char *options, struct udf_options *uopt) { char *p; int option; uopt->novrs = 0; uopt->blocksize = 2048; uopt->partition = 0xFFFF; uopt->session = 0xFFFFFFFF; uopt->lastblock = 0; uopt->anchor = 0; uopt->volume = 0xFFFFFFFF; uopt->rootdir = 0xFFFFFFFF; uopt->fileset = 0xFFFFFFFF; uopt->nls_map = NULL; if (!options) return 1; while ((p = strsep(&options, ",")) != NULL) { substring_t args[MAX_OPT_ARGS]; int token; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_novrs: uopt->novrs = 1; case Opt_bs: if (match_int(&args[0], &option)) return 0; uopt->blocksize = option; break; case Opt_unhide: uopt->flags |= (1 << UDF_FLAG_UNHIDE); break; case Opt_undelete: uopt->flags |= (1 << UDF_FLAG_UNDELETE); break; case Opt_noadinicb: uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); break; case Opt_adinicb: uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); break; case Opt_shortad: uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); break; case Opt_longad: uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); break; case Opt_gid: if (match_int(args, &option)) return 0; uopt->gid = option; uopt->flags |= (1 << UDF_FLAG_GID_SET); break; case Opt_uid: if (match_int(args, &option)) return 0; uopt->uid = option; uopt->flags |= (1 << UDF_FLAG_UID_SET); break; case Opt_umask: if (match_octal(args, &option)) return 0; uopt->umask = option; break; case Opt_nostrict: uopt->flags &= ~(1 << UDF_FLAG_STRICT); break; case Opt_session: if (match_int(args, &option)) return 0; uopt->session = option; break; case Opt_lastblock: if (match_int(args, &option)) return 0; uopt->lastblock = option; break; case Opt_anchor: if (match_int(args, &option)) return 0; uopt->anchor = option; break; case Opt_volume: if (match_int(args, &option)) return 0; uopt->volume = option; break; case Opt_partition: if (match_int(args, &option)) return 0; uopt->partition = option; break; case Opt_fileset: if (match_int(args, &option)) return 0; uopt->fileset = option; break; case Opt_rootdir: if (match_int(args, &option)) return 0; uopt->rootdir = option; break; case Opt_utf8: uopt->flags |= (1 << UDF_FLAG_UTF8); break; #ifdef CONFIG_UDF_NLS case Opt_iocharset: uopt->nls_map = load_nls(args[0].from); uopt->flags |= (1 << UDF_FLAG_NLS_MAP); break; #endif case Opt_uignore: uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); break; case Opt_uforget: uopt->flags |= (1 << UDF_FLAG_UID_FORGET); break; case Opt_gignore: uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); break; case Opt_gforget: uopt->flags |= (1 << UDF_FLAG_GID_FORGET); break; default: printk(KERN_ERR "udf: bad mount option \"%s\" " "or missing value\n", p); return 0; } } return 1; } void udf_write_super(struct super_block *sb) { lock_kernel(); if (!(sb->s_flags & MS_RDONLY)) udf_open_lvid(sb); sb->s_dirt = 0; unlock_kernel(); } static int udf_remount_fs(struct super_block *sb, int *flags, char *options) { struct udf_options uopt; uopt.flags = UDF_SB(sb)->s_flags; uopt.uid = UDF_SB(sb)->s_uid; uopt.gid = UDF_SB(sb)->s_gid; uopt.umask = UDF_SB(sb)->s_umask; if (!udf_parse_options(options, &uopt)) return -EINVAL; UDF_SB(sb)->s_flags = uopt.flags; UDF_SB(sb)->s_uid = uopt.uid; UDF_SB(sb)->s_gid = uopt.gid; UDF_SB(sb)->s_umask = uopt.umask; if (UDF_SB_LVIDBH(sb)) { int write_rev = le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFWriteRev); if (write_rev > UDF_MAX_WRITE_VERSION) *flags |= MS_RDONLY; } if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) return 0; if (*flags & MS_RDONLY) udf_close_lvid(sb); else udf_open_lvid(sb); return 0; } /* * udf_set_blocksize * * PURPOSE * Set the block size to be used in all transfers. * * DESCRIPTION * To allow room for a DMA transfer, it is best to guess big when unsure. * This routine picks 2048 bytes as the blocksize when guessing. This * should be adequate until devices with larger block sizes become common. * * Note that the Linux kernel can currently only deal with blocksizes of * 512, 1024, 2048, 4096, and 8192 bytes. * * PRE-CONDITIONS * sb Pointer to _locked_ superblock. * * POST-CONDITIONS * sb->s_blocksize Blocksize. * sb->s_blocksize_bits log2 of blocksize. * <return> 0 Blocksize is valid. * <return> 1 Blocksize is invalid. * * HISTORY * July 1, 1997 - Andrew E. Mileski * Written, tested, and released. */ static int udf_set_blocksize(struct super_block *sb, int bsize) { if (!sb_min_blocksize(sb, bsize)) { udf_debug("Bad block size (%d)\n", bsize); printk(KERN_ERR "udf: bad block size (%d)\n", bsize); return 0; } return sb->s_blocksize; } static int udf_vrs(struct super_block *sb, int silent) { struct volStructDesc *vsd = NULL; int sector = 32768; int sectorsize; struct buffer_head *bh = NULL; int iso9660 = 0; int nsr02 = 0; int nsr03 = 0; /* Block size must be a multiple of 512 */ if (sb->s_blocksize & 511) return 0; if (sb->s_blocksize < sizeof(struct volStructDesc)) sectorsize = sizeof(struct volStructDesc); else sectorsize = sb->s_blocksize; sector += (UDF_SB_SESSION(sb) << sb->s_blocksize_bits); udf_debug("Starting at sector %u (%ld byte sectors)\n", (sector >> sb->s_blocksize_bits), sb->s_blocksize); /* Process the sequence (if applicable) */ for (; !nsr02 && !nsr03; sector += sectorsize) { /* Read a block */ bh = udf_tread(sb, sector >> sb->s_blocksize_bits); if (!bh) break; /* Look for ISO descriptors */ vsd = (struct volStructDesc *)(bh->b_data + (sector & (sb->s_blocksize - 1))); if (vsd->stdIdent[0] == 0) { brelse(bh); break; } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) { iso9660 = sector; switch (vsd->structType) { case 0: udf_debug("ISO9660 Boot Record found\n"); break; case 1: udf_debug ("ISO9660 Primary Volume Descriptor found\n"); break; case 2: udf_debug ("ISO9660 Supplementary Volume Descriptor found\n"); break; case 3: udf_debug ("ISO9660 Volume Partition Descriptor found\n"); break; case 255: udf_debug ("ISO9660 Volume Descriptor Set Terminator found\n"); break; default: udf_debug("ISO9660 VRS (%u) found\n", vsd->structType); break; } } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN)) { } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, VSD_STD_ID_LEN)) { brelse(bh); break; } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN)) { nsr02 = sector; } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN)) { nsr03 = sector; } brelse(bh); } if (nsr03) return nsr03; else if (nsr02) return nsr02; else if (sector - (UDF_SB_SESSION(sb) << sb->s_blocksize_bits) == 32768) return -1; else return 0; } /* * udf_find_anchor * * PURPOSE * Find an anchor volume descriptor. * * PRE-CONDITIONS * sb Pointer to _locked_ superblock. * lastblock Last block on media. * * POST-CONDITIONS * <return> 1 if not found, 0 if ok * * HISTORY * July 1, 1997 - Andrew E. Mileski * Written, tested, and released. */ static void udf_find_anchor(struct super_block *sb) { int lastblock = UDF_SB_LASTBLOCK(sb); struct buffer_head *bh = NULL; uint16_t ident; uint32_t location; int i; if (lastblock) { int varlastblock = udf_variable_to_fixed(lastblock); int last[] = { lastblock, lastblock - 2, lastblock - 150, lastblock - 152, varlastblock, varlastblock - 2, varlastblock - 150, varlastblock - 152 }; lastblock = 0; /* Search for an anchor volume descriptor pointer */ /* according to spec, anchor is in either: * block 256 * lastblock-256 * lastblock * however, if the disc isn't closed, it could be 512 */ for (i = 0; !lastblock && i < ARRAY_SIZE(last); i++) { if (last[i] < 0 || !(bh = sb_bread(sb, last[i]))) { ident = location = 0; } else { ident = le16_to_cpu(((tag *)bh->b_data)->tagIdent); location = le32_to_cpu(((tag *)bh->b_data)->tagLocation); brelse(bh); } if (ident == TAG_IDENT_AVDP) { if (location == last[i] - UDF_SB_SESSION(sb)) { lastblock = UDF_SB_ANCHOR(sb)[0] = last[i] - UDF_SB_SESSION(sb); UDF_SB_ANCHOR(sb)[1] = last[i] - 256 - UDF_SB_SESSION(sb); } else if (location == udf_variable_to_fixed(last[i]) - UDF_SB_SESSION(sb)) { UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); lastblock = UDF_SB_ANCHOR(sb)[0] = udf_variable_to_fixed(last[i]) - UDF_SB_SESSION(sb); UDF_SB_ANCHOR(sb)[1] = lastblock - 256 - UDF_SB_SESSION(sb); } else { udf_debug("Anchor found at block %d, location mismatch %d.\n", last[i], location); } } else if (ident == TAG_IDENT_FE || ident == TAG_IDENT_EFE) { lastblock = last[i]; UDF_SB_ANCHOR(sb)[3] = 512; } else { if (last[i] < 256 || !(bh = sb_bread(sb, last[i] - 256))) { ident = location = 0; } else { ident = le16_to_cpu(((tag *)bh->b_data)->tagIdent); location = le32_to_cpu(((tag *)bh->b_data)->tagLocation); brelse(bh); } if (ident == TAG_IDENT_AVDP && location == last[i] - 256 - UDF_SB_SESSION(sb)) { lastblock = last[i]; UDF_SB_ANCHOR(sb)[1] = last[i] - 256; } else { if (last[i] < 312 + UDF_SB_SESSION(sb) || !(bh = sb_bread(sb, last[i] - 312 - UDF_SB_SESSION(sb)))) { ident = location = 0; } else { ident = le16_to_cpu(((tag *)bh->b_data)->tagIdent); location = le32_to_cpu(((tag *)bh->b_data)->tagLocation); brelse(bh); } if (ident == TAG_IDENT_AVDP && location == udf_variable_to_fixed(last[i]) - 256) { UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); lastblock = udf_variable_to_fixed(last[i]); UDF_SB_ANCHOR(sb)[1] = lastblock - 256; } } } } } if (!lastblock) { /* We havn't found the lastblock. check 312 */ if ((bh = sb_bread(sb, 312 + UDF_SB_SESSION(sb)))) { ident = le16_to_cpu(((tag *)bh->b_data)->tagIdent); location = le32_to_cpu(((tag *)bh->b_data)->tagLocation); brelse(bh); if (ident == TAG_IDENT_AVDP && location == 256) UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); } } for (i = 0; i < ARRAY_SIZE(UDF_SB_ANCHOR(sb)); i++) { if (UDF_SB_ANCHOR(sb)[i]) { if (!(bh = udf_read_tagged(sb, UDF_SB_ANCHOR(sb)[i], UDF_SB_ANCHOR(sb)[i], &ident))) { UDF_SB_ANCHOR(sb)[i] = 0; } else { brelse(bh); if ((ident != TAG_IDENT_AVDP) && (i || (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE))) { UDF_SB_ANCHOR(sb)[i] = 0; } } } } UDF_SB_LASTBLOCK(sb) = lastblock; } static int udf_find_fileset(struct super_block *sb, kernel_lb_addr *fileset, kernel_lb_addr *root) { struct buffer_head *bh = NULL; long lastblock; uint16_t ident; if (fileset->logicalBlockNum != 0xFFFFFFFF || fileset->partitionReferenceNum != 0xFFFF) { bh = udf_read_ptagged(sb, *fileset, 0, &ident); if (!bh) { return 1; } else if (ident != TAG_IDENT_FSD) { brelse(bh); return 1; } } if (!bh) { /* Search backwards through the partitions */ kernel_lb_addr newfileset; /* --> cvg: FIXME - is it reasonable? */ return 1; for (newfileset.partitionReferenceNum = UDF_SB_NUMPARTS(sb) - 1; (newfileset.partitionReferenceNum != 0xFFFF && fileset->logicalBlockNum == 0xFFFFFFFF && fileset->partitionReferenceNum == 0xFFFF); newfileset.partitionReferenceNum--) { lastblock = UDF_SB_PARTLEN(sb, newfileset.partitionReferenceNum); newfileset.logicalBlockNum = 0; do { bh = udf_read_ptagged(sb, newfileset, 0, &ident); if (!bh) { newfileset.logicalBlockNum++; continue; } switch (ident) { case TAG_IDENT_SBD: { struct spaceBitmapDesc *sp; sp = (struct spaceBitmapDesc *)bh->b_data; newfileset.logicalBlockNum += 1 + ((le32_to_cpu(sp->numOfBytes) + sizeof(struct spaceBitmapDesc) - 1) >> sb->s_blocksize_bits); brelse(bh); break; } case TAG_IDENT_FSD: *fileset = newfileset; break; default: newfileset.logicalBlockNum++; brelse(bh); bh = NULL; break; } } while (newfileset.logicalBlockNum < lastblock && fileset->logicalBlockNum == 0xFFFFFFFF && fileset->partitionReferenceNum == 0xFFFF); } } if ((fileset->logicalBlockNum != 0xFFFFFFFF || fileset->partitionReferenceNum != 0xFFFF) && bh) { udf_debug("Fileset at block=%d, partition=%d\n", fileset->logicalBlockNum, fileset->partitionReferenceNum); UDF_SB_PARTITION(sb) = fileset->partitionReferenceNum; udf_load_fileset(sb, bh, root); brelse(bh); return 0; } return 1; } static void udf_load_pvoldesc(struct super_block *sb, struct buffer_head *bh) { struct primaryVolDesc *pvoldesc; time_t recording; long recording_usec; struct ustr instr; struct ustr outstr; pvoldesc = (struct primaryVolDesc *)bh->b_data; if (udf_stamp_to_time(&recording, &recording_usec, lets_to_cpu(pvoldesc->recordingDateAndTime))) { kernel_timestamp ts; ts = lets_to_cpu(pvoldesc->recordingDateAndTime); udf_debug("recording time %ld/%ld, %04u/%02u/%02u %02u:%02u (%x)\n", recording, recording_usec, ts.year, ts.month, ts.day, ts.hour, ts.minute, ts.typeAndTimezone); UDF_SB_RECORDTIME(sb).tv_sec = recording; UDF_SB_RECORDTIME(sb).tv_nsec = recording_usec * 1000; } if (!udf_build_ustr(&instr, pvoldesc->volIdent, 32)) { if (udf_CS0toUTF8(&outstr, &instr)) { strncpy(UDF_SB_VOLIDENT(sb), outstr.u_name, outstr.u_len > 31 ? 31 : outstr.u_len); udf_debug("volIdent[] = '%s'\n", UDF_SB_VOLIDENT(sb)); } } if (!udf_build_ustr(&instr, pvoldesc->volSetIdent, 128)) { if (udf_CS0toUTF8(&outstr, &instr)) udf_debug("volSetIdent[] = '%s'\n", outstr.u_name); } } static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, kernel_lb_addr *root) { struct fileSetDesc *fset; fset = (struct fileSetDesc *)bh->b_data; *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); UDF_SB_SERIALNUM(sb) = le16_to_cpu(fset->descTag.tagSerialNum); udf_debug("Rootdir at block=%d, partition=%d\n", root->logicalBlockNum, root->partitionReferenceNum); } static int udf_load_partdesc(struct super_block *sb, struct buffer_head *bh) { struct partitionDesc *p; int i; p = (struct partitionDesc *)bh->b_data; for (i = 0; i < UDF_SB_NUMPARTS(sb); i++) { udf_debug("Searching map: (%d == %d)\n", UDF_SB_PARTMAPS(sb)[i].s_partition_num, le16_to_cpu(p->partitionNumber)); if (UDF_SB_PARTMAPS(sb)[i].s_partition_num == le16_to_cpu(p->partitionNumber)) { UDF_SB_PARTLEN(sb,i) = le32_to_cpu(p->partitionLength); /* blocks */ UDF_SB_PARTROOT(sb,i) = le32_to_cpu(p->partitionStartingLocation); if (le32_to_cpu(p->accessType) == PD_ACCESS_TYPE_READ_ONLY) UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_READ_ONLY; if (le32_to_cpu(p->accessType) == PD_ACCESS_TYPE_WRITE_ONCE) UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_WRITE_ONCE; if (le32_to_cpu(p->accessType) == PD_ACCESS_TYPE_REWRITABLE) UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_REWRITABLE; if (le32_to_cpu(p->accessType) == PD_ACCESS_TYPE_OVERWRITABLE) UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_OVERWRITABLE; if (!strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) || !strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) { struct partitionHeaderDesc *phd; phd = (struct partitionHeaderDesc *)(p->partitionContentsUse); if (phd->unallocSpaceTable.extLength) { kernel_lb_addr loc = { .logicalBlockNum = le32_to_cpu(phd->unallocSpaceTable.extPosition), .partitionReferenceNum = i, }; UDF_SB_PARTMAPS(sb)[i].s_uspace.s_table = udf_iget(sb, loc); if (!UDF_SB_PARTMAPS(sb)[i].s_uspace.s_table) { udf_debug("cannot load unallocSpaceTable (part %d)\n", i); return 1; } UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_UNALLOC_TABLE; udf_debug("unallocSpaceTable (part %d) @ %ld\n", i, UDF_SB_PARTMAPS(sb)[i].s_uspace.s_table->i_ino); } if (phd->unallocSpaceBitmap.extLength) { UDF_SB_ALLOC_BITMAP(sb, i, s_uspace); if (UDF_SB_PARTMAPS(sb)[i].s_uspace.s_bitmap != NULL) { UDF_SB_PARTMAPS(sb)[i].s_uspace.s_bitmap->s_extLength = le32_to_cpu(phd->unallocSpaceBitmap.extLength); UDF_SB_PARTMAPS(sb)[i].s_uspace.s_bitmap->s_extPosition = le32_to_cpu(phd->unallocSpaceBitmap.extPosition); UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_UNALLOC_BITMAP; udf_debug("unallocSpaceBitmap (part %d) @ %d\n", i, UDF_SB_PARTMAPS(sb)[i].s_uspace.s_bitmap->s_extPosition); } } if (phd->partitionIntegrityTable.extLength) udf_debug("partitionIntegrityTable (part %d)\n", i); if (phd->freedSpaceTable.extLength) { kernel_lb_addr loc = { .logicalBlockNum = le32_to_cpu(phd->freedSpaceTable.extPosition), .partitionReferenceNum = i, }; UDF_SB_PARTMAPS(sb)[i].s_fspace.s_table = udf_iget(sb, loc); if (!UDF_SB_PARTMAPS(sb)[i].s_fspace.s_table) { udf_debug("cannot load freedSpaceTable (part %d)\n", i); return 1; } UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_FREED_TABLE; udf_debug("freedSpaceTable (part %d) @ %ld\n", i, UDF_SB_PARTMAPS(sb)[i].s_fspace.s_table->i_ino); } if (phd->freedSpaceBitmap.extLength) { UDF_SB_ALLOC_BITMAP(sb, i, s_fspace); if (UDF_SB_PARTMAPS(sb)[i].s_fspace.s_bitmap != NULL) { UDF_SB_PARTMAPS(sb)[i].s_fspace.s_bitmap->s_extLength = le32_to_cpu(phd->freedSpaceBitmap.extLength); UDF_SB_PARTMAPS(sb)[i].s_fspace.s_bitmap->s_extPosition = le32_to_cpu(phd->freedSpaceBitmap.extPosition); UDF_SB_PARTFLAGS(sb,i) |= UDF_PART_FLAG_FREED_BITMAP; udf_debug("freedSpaceBitmap (part %d) @ %d\n", i, UDF_SB_PARTMAPS(sb)[i].s_fspace.s_bitmap->s_extPosition); } } } break; } } if (i == UDF_SB_NUMPARTS(sb)) { udf_debug("Partition (%d) not found in partition map\n", le16_to_cpu(p->partitionNumber)); } else { udf_debug("Partition (%d:%d type %x) starts at physical %d, block length %d\n", le16_to_cpu(p->partitionNumber), i, UDF_SB_PARTTYPE(sb,i), UDF_SB_PARTROOT(sb,i), UDF_SB_PARTLEN(sb,i)); } return 0; } static int udf_load_logicalvol(struct super_block *sb, struct buffer_head *bh, kernel_lb_addr *fileset) { struct logicalVolDesc *lvd; int i, j, offset; uint8_t type; lvd = (struct logicalVolDesc *)bh->b_data; UDF_SB_ALLOC_PARTMAPS(sb, le32_to_cpu(lvd->numPartitionMaps)); for (i = 0, offset = 0; i < UDF_SB_NUMPARTS(sb) && offset < le32_to_cpu(lvd->mapTableLength); i++, offset += ((struct genericPartitionMap *)&(lvd->partitionMaps[offset]))->partitionMapLength) { type = ((struct genericPartitionMap *)&(lvd->partitionMaps[offset]))->partitionMapType; if (type == 1) { struct genericPartitionMap1 *gpm1 = (struct genericPartitionMap1 *)&(lvd->partitionMaps[offset]); UDF_SB_PARTTYPE(sb,i) = UDF_TYPE1_MAP15; UDF_SB_PARTVSN(sb,i) = le16_to_cpu(gpm1->volSeqNum); UDF_SB_PARTNUM(sb,i) = le16_to_cpu(gpm1->partitionNum); UDF_SB_PARTFUNC(sb,i) = NULL; } else if (type == 2) { struct udfPartitionMap2 *upm2 = (struct udfPartitionMap2 *)&(lvd->partitionMaps[offset]); if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, strlen(UDF_ID_VIRTUAL))) { if (le16_to_cpu(((__le16 *)upm2->partIdent.identSuffix)[0]) == 0x0150) { UDF_SB_PARTTYPE(sb,i) = UDF_VIRTUAL_MAP15; UDF_SB_PARTFUNC(sb,i) = udf_get_pblock_virt15; } else if (le16_to_cpu(((__le16 *)upm2->partIdent.identSuffix)[0]) == 0x0200) { UDF_SB_PARTTYPE(sb,i) = UDF_VIRTUAL_MAP20; UDF_SB_PARTFUNC(sb,i) = udf_get_pblock_virt20; } } else if (!strncmp(upm2->partIdent.ident, UDF_ID_SPARABLE, strlen(UDF_ID_SPARABLE))) { uint32_t loc; uint16_t ident; struct sparingTable *st; struct sparablePartitionMap *spm = (struct sparablePartitionMap *)&(lvd->partitionMaps[offset]); UDF_SB_PARTTYPE(sb,i) = UDF_SPARABLE_MAP15; UDF_SB_TYPESPAR(sb,i).s_packet_len = le16_to_cpu(spm->packetLength); for (j = 0; j < spm->numSparingTables; j++) { loc = le32_to_cpu(spm->locSparingTable[j]); UDF_SB_TYPESPAR(sb,i).s_spar_map[j] = udf_read_tagged(sb, loc, loc, &ident); if (UDF_SB_TYPESPAR(sb,i).s_spar_map[j] != NULL) { st = (struct sparingTable *)UDF_SB_TYPESPAR(sb,i).s_spar_map[j]->b_data; if (ident != 0 || strncmp(st->sparingIdent.ident, UDF_ID_SPARING, strlen(UDF_ID_SPARING))) { brelse(UDF_SB_TYPESPAR(sb,i).s_spar_map[j]); UDF_SB_TYPESPAR(sb,i).s_spar_map[j] = NULL; } } } UDF_SB_PARTFUNC(sb,i) = udf_get_pblock_spar15; } else { udf_debug("Unknown ident: %s\n", upm2->partIdent.ident); continue; } UDF_SB_PARTVSN(sb,i) = le16_to_cpu(upm2->volSeqNum); UDF_SB_PARTNUM(sb,i) = le16_to_cpu(upm2->partitionNum); } udf_debug("Partition (%d:%d) type %d on volume %d\n", i, UDF_SB_PARTNUM(sb,i), type, UDF_SB_PARTVSN(sb,i)); } if (fileset) { long_ad *la = (long_ad *)&(lvd->logicalVolContentsUse[0]); *fileset = lelb_to_cpu(la->extLocation); udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", fileset->logicalBlockNum, fileset->partitionReferenceNum); } if (lvd->integritySeqExt.extLength) udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); return 0; } /* * udf_load_logicalvolint * */ static void udf_load_logicalvolint(struct super_block *sb, kernel_extent_ad loc) { struct buffer_head *bh = NULL; uint16_t ident; while (loc.extLength > 0 && (bh = udf_read_tagged(sb, loc.extLocation, loc.extLocation, &ident)) && ident == TAG_IDENT_LVID) { UDF_SB_LVIDBH(sb) = bh; if (UDF_SB_LVID(sb)->nextIntegrityExt.extLength) udf_load_logicalvolint(sb, leea_to_cpu(UDF_SB_LVID(sb)->nextIntegrityExt)); if (UDF_SB_LVIDBH(sb) != bh) brelse(bh); loc.extLength -= sb->s_blocksize; loc.extLocation++; } if (UDF_SB_LVIDBH(sb) != bh) brelse(bh); } /* * udf_process_sequence * * PURPOSE * Process a main/reserve volume descriptor sequence. * * PRE-CONDITIONS * sb Pointer to _locked_ superblock. * block First block of first extent of the sequence. * lastblock Lastblock of first extent of the sequence. * * HISTORY * July 1, 1997 - Andrew E. Mileski * Written, tested, and released. */ static int udf_process_sequence(struct super_block *sb, long block, long lastblock, kernel_lb_addr *fileset) { struct buffer_head *bh = NULL; struct udf_vds_record vds[VDS_POS_LENGTH]; struct generic_desc *gd; struct volDescPtr *vdp; int done = 0; int i, j; uint32_t vdsn; uint16_t ident; long next_s = 0, next_e = 0; memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); /* Read the main descriptor sequence */ for (; (!done && block <= lastblock); block++) { bh = udf_read_tagged(sb, block, block, &ident); if (!bh) break; /* Process each descriptor (ISO 13346 3/8.3-8.4) */ gd = (struct generic_desc *)bh->b_data; vdsn = le32_to_cpu(gd->volDescSeqNum); switch (ident) { case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ if (vdsn >= vds[VDS_POS_PRIMARY_VOL_DESC].volDescSeqNum) { vds[VDS_POS_PRIMARY_VOL_DESC].volDescSeqNum = vdsn; vds[VDS_POS_PRIMARY_VOL_DESC].block = block; } break; case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ if (vdsn >= vds[VDS_POS_VOL_DESC_PTR].volDescSeqNum) { vds[VDS_POS_VOL_DESC_PTR].volDescSeqNum = vdsn; vds[VDS_POS_VOL_DESC_PTR].block = block; vdp = (struct volDescPtr *)bh->b_data; next_s = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); next_e = le32_to_cpu(vdp->nextVolDescSeqExt.extLength); next_e = next_e >> sb->s_blocksize_bits; next_e += next_s; } break; case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ if (vdsn >= vds[VDS_POS_IMP_USE_VOL_DESC].volDescSeqNum) { vds[VDS_POS_IMP_USE_VOL_DESC].volDescSeqNum = vdsn; vds[VDS_POS_IMP_USE_VOL_DESC].block = block; } break; case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ if (!vds[VDS_POS_PARTITION_DESC].block) vds[VDS_POS_PARTITION_DESC].block = block; break; case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ if (vdsn >= vds[VDS_POS_LOGICAL_VOL_DESC].volDescSeqNum) { vds[VDS_POS_LOGICAL_VOL_DESC].volDescSeqNum = vdsn; vds[VDS_POS_LOGICAL_VOL_DESC].block = block; } break; case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ if (vdsn >= vds[VDS_POS_UNALLOC_SPACE_DESC].volDescSeqNum) { vds[VDS_POS_UNALLOC_SPACE_DESC].volDescSeqNum = vdsn; vds[VDS_POS_UNALLOC_SPACE_DESC].block = block; } break; case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ vds[VDS_POS_TERMINATING_DESC].block = block; if (next_e) { block = next_s; lastblock = next_e; next_s = next_e = 0; } else { done = 1; } break; } brelse(bh); } for (i = 0; i < VDS_POS_LENGTH; i++) { if (vds[i].block) { bh = udf_read_tagged(sb, vds[i].block, vds[i].block, &ident); if (i == VDS_POS_PRIMARY_VOL_DESC) { udf_load_pvoldesc(sb, bh); } else if (i == VDS_POS_LOGICAL_VOL_DESC) { udf_load_logicalvol(sb, bh, fileset); } else if (i == VDS_POS_PARTITION_DESC) { struct buffer_head *bh2 = NULL; if (udf_load_partdesc(sb, bh)) { brelse(bh); return 1; } for (j = vds[i].block + 1; j < vds[VDS_POS_TERMINATING_DESC].block; j++) { bh2 = udf_read_tagged(sb, j, j, &ident); gd = (struct generic_desc *)bh2->b_data; if (ident == TAG_IDENT_PD) if (udf_load_partdesc(sb, bh2)) { brelse(bh); brelse(bh2); return 1; } brelse(bh2); } } brelse(bh); } } return 0; } /* * udf_check_valid() */ static int udf_check_valid(struct super_block *sb, int novrs, int silent) { long block; if (novrs) { udf_debug("Validity check skipped because of novrs option\n"); return 0; } /* Check that it is NSR02 compliant */ /* Process any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ else if ((block = udf_vrs(sb, silent)) == -1) { udf_debug("Failed to read byte 32768. Assuming open disc. " "Skipping validity check\n"); if (!UDF_SB_LASTBLOCK(sb)) UDF_SB_LASTBLOCK(sb) = udf_get_last_block(sb); return 0; } else { return !block; } } static int udf_load_partition(struct super_block *sb, kernel_lb_addr *fileset) { struct anchorVolDescPtr *anchor; uint16_t ident; struct buffer_head *bh; long main_s, main_e, reserve_s, reserve_e; int i, j; if (!sb) return 1; for (i = 0; i < ARRAY_SIZE(UDF_SB_ANCHOR(sb)); i++) { if (UDF_SB_ANCHOR(sb)[i] && (bh = udf_read_tagged(sb, UDF_SB_ANCHOR(sb)[i], UDF_SB_ANCHOR(sb)[i], &ident))) { anchor = (struct anchorVolDescPtr *)bh->b_data; /* Locate the main sequence */ main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength ); main_e = main_e >> sb->s_blocksize_bits; main_e += main_s; /* Locate the reserve sequence */ reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); reserve_e = reserve_e >> sb->s_blocksize_bits; reserve_e += reserve_s; brelse(bh); /* Process the main & reserve sequences */ /* responsible for finding the PartitionDesc(s) */ if (!(udf_process_sequence(sb, main_s, main_e, fileset) && udf_process_sequence(sb, reserve_s, reserve_e, fileset))) { break; } } } if (i == ARRAY_SIZE(UDF_SB_ANCHOR(sb))) { udf_debug("No Anchor block found\n"); return 1; } else udf_debug("Using anchor in block %d\n", UDF_SB_ANCHOR(sb)[i]); for (i = 0; i < UDF_SB_NUMPARTS(sb); i++) { kernel_lb_addr uninitialized_var(ino); switch (UDF_SB_PARTTYPE(sb, i)) { case UDF_VIRTUAL_MAP15: case UDF_VIRTUAL_MAP20: if (!UDF_SB_LASTBLOCK(sb)) { UDF_SB_LASTBLOCK(sb) = udf_get_last_block(sb); udf_find_anchor(sb); } if (!UDF_SB_LASTBLOCK(sb)) { udf_debug("Unable to determine Lastblock (For " "Virtual Partition)\n"); return 1; } for (j = 0; j < UDF_SB_NUMPARTS(sb); j++) { if (j != i && UDF_SB_PARTVSN(sb, i) == UDF_SB_PARTVSN(sb, j) && UDF_SB_PARTNUM(sb, i) == UDF_SB_PARTNUM(sb, j)) { ino.partitionReferenceNum = j; ino.logicalBlockNum = UDF_SB_LASTBLOCK(sb) - UDF_SB_PARTROOT(sb, j); break; } } if (j == UDF_SB_NUMPARTS(sb)) return 1; if (!(UDF_SB_VAT(sb) = udf_iget(sb, ino))) return 1; if (UDF_SB_PARTTYPE(sb, i) == UDF_VIRTUAL_MAP15) { UDF_SB_TYPEVIRT(sb, i).s_start_offset = udf_ext0_offset(UDF_SB_VAT(sb)); UDF_SB_TYPEVIRT(sb, i).s_num_entries = (UDF_SB_VAT(sb)->i_size - 36) >> 2; } else if (UDF_SB_PARTTYPE(sb, i) == UDF_VIRTUAL_MAP20) { struct buffer_head *bh = NULL; uint32_t pos; pos = udf_block_map(UDF_SB_VAT(sb), 0); bh = sb_bread(sb, pos); if (!bh) return 1; UDF_SB_TYPEVIRT(sb, i).s_start_offset = le16_to_cpu(((struct virtualAllocationTable20 *)bh->b_data + udf_ext0_offset(UDF_SB_VAT(sb)))->lengthHeader) + udf_ext0_offset(UDF_SB_VAT(sb)); UDF_SB_TYPEVIRT(sb, i).s_num_entries = (UDF_SB_VAT(sb)->i_size - UDF_SB_TYPEVIRT(sb, i).s_start_offset) >> 2; brelse(bh); } UDF_SB_PARTROOT(sb, i) = udf_get_pblock(sb, 0, i, 0); UDF_SB_PARTLEN(sb, i) = UDF_SB_PARTLEN(sb, ino.partitionReferenceNum); } } return 0; } static void udf_open_lvid(struct super_block *sb) { if (UDF_SB_LVIDBH(sb)) { int i; kernel_timestamp cpu_time; UDF_SB_LVIDIU(sb)->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; UDF_SB_LVIDIU(sb)->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; if (udf_time_to_stamp(&cpu_time, CURRENT_TIME)) UDF_SB_LVID(sb)->recordingDateAndTime = cpu_to_lets(cpu_time); UDF_SB_LVID(sb)->integrityType = LVID_INTEGRITY_TYPE_OPEN; UDF_SB_LVID(sb)->descTag.descCRC = cpu_to_le16(udf_crc((char *)UDF_SB_LVID(sb) + sizeof(tag), le16_to_cpu(UDF_SB_LVID(sb)->descTag.descCRCLength), 0)); UDF_SB_LVID(sb)->descTag.tagChecksum = 0; for (i = 0; i < 16; i++) if (i != 4) UDF_SB_LVID(sb)->descTag.tagChecksum += ((uint8_t *) &(UDF_SB_LVID(sb)->descTag))[i]; mark_buffer_dirty(UDF_SB_LVIDBH(sb)); } } static void udf_close_lvid(struct super_block *sb) { kernel_timestamp cpu_time; int i; if (UDF_SB_LVIDBH(sb) && UDF_SB_LVID(sb)->integrityType == LVID_INTEGRITY_TYPE_OPEN) { UDF_SB_LVIDIU(sb)->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; UDF_SB_LVIDIU(sb)->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; if (udf_time_to_stamp(&cpu_time, CURRENT_TIME)) UDF_SB_LVID(sb)->recordingDateAndTime = cpu_to_lets(cpu_time); if (UDF_MAX_WRITE_VERSION > le16_to_cpu(UDF_SB_LVIDIU(sb)->maxUDFWriteRev)) UDF_SB_LVIDIU(sb)->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); if (UDF_SB_UDFREV(sb) > le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFReadRev)) UDF_SB_LVIDIU(sb)->minUDFReadRev = cpu_to_le16(UDF_SB_UDFREV(sb)); if (UDF_SB_UDFREV(sb) > le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFWriteRev)) UDF_SB_LVIDIU(sb)->minUDFWriteRev = cpu_to_le16(UDF_SB_UDFREV(sb)); UDF_SB_LVID(sb)->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); UDF_SB_LVID(sb)->descTag.descCRC = cpu_to_le16(udf_crc((char *)UDF_SB_LVID(sb) + sizeof(tag), le16_to_cpu(UDF_SB_LVID(sb)->descTag.descCRCLength), 0)); UDF_SB_LVID(sb)->descTag.tagChecksum = 0; for (i = 0; i < 16; i++) if (i != 4) UDF_SB_LVID(sb)->descTag.tagChecksum += ((uint8_t *)&(UDF_SB_LVID(sb)->descTag))[i]; mark_buffer_dirty(UDF_SB_LVIDBH(sb)); } } /* * udf_read_super * * PURPOSE * Complete the specified super block. * * PRE-CONDITIONS * sb Pointer to superblock to complete - never NULL. * sb->s_dev Device to read suberblock from. * options Pointer to mount options. * silent Silent flag. * * HISTORY * July 1, 1997 - Andrew E. Mileski * Written, tested, and released. */ static int udf_fill_super(struct super_block *sb, void *options, int silent) { int i; struct inode *inode = NULL; struct udf_options uopt; kernel_lb_addr rootdir, fileset; struct udf_sb_info *sbi; uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); uopt.uid = -1; uopt.gid = -1; uopt.umask = 0; sbi = kmalloc(sizeof(struct udf_sb_info), GFP_KERNEL); if (!sbi) return -ENOMEM; sb->s_fs_info = sbi; memset(UDF_SB(sb), 0x00, sizeof(struct udf_sb_info)); mutex_init(&sbi->s_alloc_mutex); if (!udf_parse_options((char *)options, &uopt)) goto error_out; if (uopt.flags & (1 << UDF_FLAG_UTF8) && uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { udf_error(sb, "udf_read_super", "utf8 cannot be combined with iocharset\n"); goto error_out; } #ifdef CONFIG_UDF_NLS if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { uopt.nls_map = load_nls_default(); if (!uopt.nls_map) uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); else udf_debug("Using default NLS map\n"); } #endif if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) uopt.flags |= (1 << UDF_FLAG_UTF8); fileset.logicalBlockNum = 0xFFFFFFFF; fileset.partitionReferenceNum = 0xFFFF; UDF_SB(sb)->s_flags = uopt.flags; UDF_SB(sb)->s_uid = uopt.uid; UDF_SB(sb)->s_gid = uopt.gid; UDF_SB(sb)->s_umask = uopt.umask; UDF_SB(sb)->s_nls_map = uopt.nls_map; /* Set the block size for all transfers */ if (!udf_set_blocksize(sb, uopt.blocksize)) goto error_out; if (uopt.session == 0xFFFFFFFF) UDF_SB_SESSION(sb) = udf_get_last_session(sb); else UDF_SB_SESSION(sb) = uopt.session; udf_debug("Multi-session=%d\n", UDF_SB_SESSION(sb)); UDF_SB_LASTBLOCK(sb) = uopt.lastblock; UDF_SB_ANCHOR(sb)[0] = UDF_SB_ANCHOR(sb)[1] = 0; UDF_SB_ANCHOR(sb)[2] = uopt.anchor; UDF_SB_ANCHOR(sb)[3] = 256; if (udf_check_valid(sb, uopt.novrs, silent)) { /* read volume recognition sequences */ printk("UDF-fs: No VRS found\n"); goto error_out; } udf_find_anchor(sb); /* Fill in the rest of the superblock */ sb->s_op = &udf_sb_ops; sb->dq_op = NULL; sb->s_dirt = 0; sb->s_magic = UDF_SUPER_MAGIC; sb->s_time_gran = 1000; if (udf_load_partition(sb, &fileset)) { printk("UDF-fs: No partition found (1)\n"); goto error_out; } udf_debug("Lastblock=%d\n", UDF_SB_LASTBLOCK(sb)); if (UDF_SB_LVIDBH(sb)) { uint16_t minUDFReadRev = le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFReadRev); uint16_t minUDFWriteRev = le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFWriteRev); /* uint16_t maxUDFWriteRev = le16_to_cpu(UDF_SB_LVIDIU(sb)->maxUDFWriteRev); */ if (minUDFReadRev > UDF_MAX_READ_VERSION) { printk("UDF-fs: minUDFReadRev=%x (max is %x)\n", le16_to_cpu(UDF_SB_LVIDIU(sb)->minUDFReadRev), UDF_MAX_READ_VERSION); goto error_out; } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { sb->s_flags |= MS_RDONLY; } UDF_SB_UDFREV(sb) = minUDFWriteRev; if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); if (minUDFReadRev >= UDF_VERS_USE_STREAMS) UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); } if (!UDF_SB_NUMPARTS(sb)) { printk("UDF-fs: No partition found (2)\n"); goto error_out; } if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_READ_ONLY) { printk("UDF-fs: Partition marked readonly; forcing readonly mount\n"); sb->s_flags |= MS_RDONLY; } if (udf_find_fileset(sb, &fileset, &rootdir)) { printk("UDF-fs: No fileset found\n"); goto error_out; } if (!silent) { kernel_timestamp ts; udf_time_to_stamp(&ts, UDF_SB_RECORDTIME(sb)); udf_info("UDF %s (%s) Mounting volume '%s', " "timestamp %04u/%02u/%02u %02u:%02u (%x)\n", UDFFS_VERSION, UDFFS_DATE, UDF_SB_VOLIDENT(sb), ts.year, ts.month, ts.day, ts.hour, ts.minute, ts.typeAndTimezone); } if (!(sb->s_flags & MS_RDONLY)) udf_open_lvid(sb); /* Assign the root inode */ /* assign inodes by physical block number */ /* perhaps it's not extensible enough, but for now ... */ inode = udf_iget(sb, rootdir); if (!inode) { printk("UDF-fs: Error in udf_iget, block=%d, partition=%d\n", rootdir.logicalBlockNum, rootdir.partitionReferenceNum); goto error_out; } /* Allocate a dentry for the root inode */ sb->s_root = d_alloc_root(inode); if (!sb->s_root) { printk("UDF-fs: Couldn't allocate root dentry\n"); iput(inode); goto error_out; } sb->s_maxbytes = MAX_LFS_FILESIZE; return 0; error_out: if (UDF_SB_VAT(sb)) iput(UDF_SB_VAT(sb)); if (UDF_SB_NUMPARTS(sb)) { if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_TABLE) iput(UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_uspace.s_table); if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_TABLE) iput(UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_fspace.s_table); if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_BITMAP) UDF_SB_FREE_BITMAP(sb,UDF_SB_PARTITION(sb), s_uspace); if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_BITMAP) UDF_SB_FREE_BITMAP(sb,UDF_SB_PARTITION(sb), s_fspace); if (UDF_SB_PARTTYPE(sb, UDF_SB_PARTITION(sb)) == UDF_SPARABLE_MAP15) { for (i = 0; i < 4; i++) brelse(UDF_SB_TYPESPAR(sb, UDF_SB_PARTITION(sb)).s_spar_map[i]); } } #ifdef CONFIG_UDF_NLS if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) unload_nls(UDF_SB(sb)->s_nls_map); #endif if (!(sb->s_flags & MS_RDONLY)) udf_close_lvid(sb); brelse(UDF_SB_LVIDBH(sb)); UDF_SB_FREE(sb); kfree(sbi); sb->s_fs_info = NULL; return -EINVAL; } void udf_error(struct super_block *sb, const char *function, const char *fmt, ...) { va_list args; if (!(sb->s_flags & MS_RDONLY)) { /* mark sb error */ sb->s_dirt = 1; } va_start(args, fmt); vsnprintf(error_buf, sizeof(error_buf), fmt, args); va_end(args); printk (KERN_CRIT "UDF-fs error (device %s): %s: %s\n", sb->s_id, function, error_buf); } void udf_warning(struct super_block *sb, const char *function, const char *fmt, ...) { va_list args; va_start(args, fmt); vsnprintf(error_buf, sizeof(error_buf), fmt, args); va_end(args); printk(KERN_WARNING "UDF-fs warning (device %s): %s: %s\n", sb->s_id, function, error_buf); } /* * udf_put_super * * PURPOSE * Prepare for destruction of the superblock. * * DESCRIPTION * Called before the filesystem is unmounted. * * HISTORY * July 1, 1997 - Andrew E. Mileski * Written, tested, and released. */ static void udf_put_super(struct super_block *sb) { int i; if (UDF_SB_VAT(sb)) iput(UDF_SB_VAT(sb)); if (UDF_SB_NUMPARTS(sb)) { if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_TABLE) iput(UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_uspace.s_table); if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_TABLE) iput(UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_fspace.s_table); if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_BITMAP) UDF_SB_FREE_BITMAP(sb,UDF_SB_PARTITION(sb), s_uspace); if (UDF_SB_PARTFLAGS(sb, UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_BITMAP) UDF_SB_FREE_BITMAP(sb,UDF_SB_PARTITION(sb), s_fspace); if (UDF_SB_PARTTYPE(sb, UDF_SB_PARTITION(sb)) == UDF_SPARABLE_MAP15) { for (i = 0; i < 4; i++) brelse(UDF_SB_TYPESPAR(sb, UDF_SB_PARTITION(sb)).s_spar_map[i]); } } #ifdef CONFIG_UDF_NLS if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) unload_nls(UDF_SB(sb)->s_nls_map); #endif if (!(sb->s_flags & MS_RDONLY)) udf_close_lvid(sb); brelse(UDF_SB_LVIDBH(sb)); UDF_SB_FREE(sb); kfree(sb->s_fs_info); sb->s_fs_info = NULL; } /* * udf_stat_fs * * PURPOSE * Return info about the filesystem. * * DESCRIPTION * Called by sys_statfs() * * HISTORY * July 1, 1997 - Andrew E. Mileski * Written, tested, and released. */ static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; buf->f_type = UDF_SUPER_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = UDF_SB_PARTLEN(sb, UDF_SB_PARTITION(sb)); buf->f_bfree = udf_count_free(sb); buf->f_bavail = buf->f_bfree; buf->f_files = (UDF_SB_LVIDBH(sb) ? (le32_to_cpu(UDF_SB_LVIDIU(sb)->numFiles) + le32_to_cpu(UDF_SB_LVIDIU(sb)->numDirs)) : 0) + buf->f_bfree; buf->f_ffree = buf->f_bfree; /* __kernel_fsid_t f_fsid */ buf->f_namelen = UDF_NAME_LEN - 2; return 0; } static unsigned char udf_bitmap_lookup[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; static unsigned int udf_count_free_bitmap(struct super_block *sb, struct udf_bitmap *bitmap) { struct buffer_head *bh = NULL; unsigned int accum = 0; int index; int block = 0, newblock; kernel_lb_addr loc; uint32_t bytes; uint8_t value; uint8_t *ptr; uint16_t ident; struct spaceBitmapDesc *bm; lock_kernel(); loc.logicalBlockNum = bitmap->s_extPosition; loc.partitionReferenceNum = UDF_SB_PARTITION(sb); bh = udf_read_ptagged(sb, loc, 0, &ident); if (!bh) { printk(KERN_ERR "udf: udf_count_free failed\n"); goto out; } else if (ident != TAG_IDENT_SBD) { brelse(bh); printk(KERN_ERR "udf: udf_count_free failed\n"); goto out; } bm = (struct spaceBitmapDesc *)bh->b_data; bytes = le32_to_cpu(bm->numOfBytes); index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ ptr = (uint8_t *)bh->b_data; while (bytes > 0) { while ((bytes > 0) && (index < sb->s_blocksize)) { value = ptr[index]; accum += udf_bitmap_lookup[value & 0x0f]; accum += udf_bitmap_lookup[value >> 4]; index++; bytes--; } if (bytes) { brelse(bh); newblock = udf_get_lb_pblock(sb, loc, ++block); bh = udf_tread(sb, newblock); if (!bh) { udf_debug("read failed\n"); goto out; } index = 0; ptr = (uint8_t *)bh->b_data; } } brelse(bh); out: unlock_kernel(); return accum; } static unsigned int udf_count_free_table(struct super_block *sb, struct inode *table) { unsigned int accum = 0; uint32_t elen; kernel_lb_addr eloc; int8_t etype; struct extent_position epos; lock_kernel(); epos.block = UDF_I_LOCATION(table); epos.offset = sizeof(struct unallocSpaceEntry); epos.bh = NULL; while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) { accum += (elen >> table->i_sb->s_blocksize_bits); } brelse(epos.bh); unlock_kernel(); return accum; } static unsigned int udf_count_free(struct super_block *sb) { unsigned int accum = 0; if (UDF_SB_LVIDBH(sb)) { if (le32_to_cpu(UDF_SB_LVID(sb)->numOfPartitions) > UDF_SB_PARTITION(sb)) { accum = le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)]); if (accum == 0xFFFFFFFF) accum = 0; } } if (accum) return accum; if (UDF_SB_PARTFLAGS(sb,UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_BITMAP) { accum += udf_count_free_bitmap(sb, UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_uspace.s_bitmap); } if (UDF_SB_PARTFLAGS(sb,UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_BITMAP) { accum += udf_count_free_bitmap(sb, UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_fspace.s_bitmap); } if (accum) return accum; if (UDF_SB_PARTFLAGS(sb,UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_UNALLOC_TABLE) { accum += udf_count_free_table(sb, UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_uspace.s_table); } if (UDF_SB_PARTFLAGS(sb,UDF_SB_PARTITION(sb)) & UDF_PART_FLAG_FREED_TABLE) { accum += udf_count_free_table(sb, UDF_SB_PARTMAPS(sb)[UDF_SB_PARTITION(sb)].s_fspace.s_table); } return accum; }