/* * partition.c * * PURPOSE * Partition handling routines for the OSTA-UDF(tm) filesystem. * * COPYRIGHT * This file is distributed under the terms of the GNU General Public * License (GPL). Copies of the GPL can be obtained from: * ftp://prep.ai.mit.edu/pub/gnu/GPL * Each contributing author retains all rights to their own work. * * (C) 1998-2001 Ben Fennema * * HISTORY * * 12/06/98 blf Created file. * */ #include "udfdecl.h" #include "udf_sb.h" #include "udf_i.h" #include <linux/fs.h> #include <linux/string.h> #include <linux/udf_fs.h> #include <linux/slab.h> #include <linux/buffer_head.h> inline uint32_t udf_get_pblock(struct super_block *sb, uint32_t block, uint16_t partition, uint32_t offset) { if (partition >= UDF_SB_NUMPARTS(sb)) { udf_debug("block=%d, partition=%d, offset=%d: invalid partition\n", block, partition, offset); return 0xFFFFFFFF; } if (UDF_SB_PARTFUNC(sb, partition)) return UDF_SB_PARTFUNC(sb, partition)(sb, block, partition, offset); else return UDF_SB_PARTROOT(sb, partition) + block + offset; } uint32_t udf_get_pblock_virt15(struct super_block *sb, uint32_t block, uint16_t partition, uint32_t offset) { struct buffer_head *bh = NULL; uint32_t newblock; uint32_t index; uint32_t loc; index = (sb->s_blocksize - UDF_SB_TYPEVIRT(sb,partition).s_start_offset) / sizeof(uint32_t); if (block > UDF_SB_TYPEVIRT(sb,partition).s_num_entries) { udf_debug("Trying to access block beyond end of VAT (%d max %d)\n", block, UDF_SB_TYPEVIRT(sb,partition).s_num_entries); return 0xFFFFFFFF; } if (block >= index) { block -= index; newblock = 1 + (block / (sb->s_blocksize / sizeof(uint32_t))); index = block % (sb->s_blocksize / sizeof(uint32_t)); } else { newblock = 0; index = UDF_SB_TYPEVIRT(sb,partition).s_start_offset / sizeof(uint32_t) + block; } loc = udf_block_map(UDF_SB_VAT(sb), newblock); if (!(bh = sb_bread(sb, loc))) { udf_debug("get_pblock(UDF_VIRTUAL_MAP:%p,%d,%d) VAT: %d[%d]\n", sb, block, partition, loc, index); return 0xFFFFFFFF; } loc = le32_to_cpu(((__le32 *)bh->b_data)[index]); brelse(bh); if (UDF_I_LOCATION(UDF_SB_VAT(sb)).partitionReferenceNum == partition) { udf_debug("recursive call to udf_get_pblock!\n"); return 0xFFFFFFFF; } return udf_get_pblock(sb, loc, UDF_I_LOCATION(UDF_SB_VAT(sb)).partitionReferenceNum, offset); } inline uint32_t udf_get_pblock_virt20(struct super_block * sb, uint32_t block, uint16_t partition, uint32_t offset) { return udf_get_pblock_virt15(sb, block, partition, offset); } uint32_t udf_get_pblock_spar15(struct super_block * sb, uint32_t block, uint16_t partition, uint32_t offset) { int i; struct sparingTable *st = NULL; uint32_t packet = (block + offset) & ~(UDF_SB_TYPESPAR(sb,partition).s_packet_len - 1); for (i = 0; i < 4; i++) { if (UDF_SB_TYPESPAR(sb,partition).s_spar_map[i] != NULL) { st = (struct sparingTable *)UDF_SB_TYPESPAR(sb,partition).s_spar_map[i]->b_data; break; } } if (st) { for (i = 0; i < le16_to_cpu(st->reallocationTableLen); i++) { if (le32_to_cpu(st->mapEntry[i].origLocation) >= 0xFFFFFFF0) { break; } else if (le32_to_cpu(st->mapEntry[i].origLocation) == packet) { return le32_to_cpu(st->mapEntry[i].mappedLocation) + ((block + offset) & (UDF_SB_TYPESPAR(sb,partition).s_packet_len - 1)); } else if (le32_to_cpu(st->mapEntry[i].origLocation) > packet) { break; } } } return UDF_SB_PARTROOT(sb,partition) + block + offset; } int udf_relocate_blocks(struct super_block *sb, long old_block, long *new_block) { struct udf_sparing_data *sdata; struct sparingTable *st = NULL; struct sparingEntry mapEntry; uint32_t packet; int i, j, k, l; for (i = 0; i < UDF_SB_NUMPARTS(sb); i++) { if (old_block > UDF_SB_PARTROOT(sb,i) && old_block < UDF_SB_PARTROOT(sb,i) + UDF_SB_PARTLEN(sb,i)) { sdata = &UDF_SB_TYPESPAR(sb,i); packet = (old_block - UDF_SB_PARTROOT(sb,i)) & ~(sdata->s_packet_len - 1); for (j = 0; j < 4; j++) { if (UDF_SB_TYPESPAR(sb,i).s_spar_map[j] != NULL) { st = (struct sparingTable *)sdata->s_spar_map[j]->b_data; break; } } if (!st) return 1; for (k = 0; k < le16_to_cpu(st->reallocationTableLen); k++) { if (le32_to_cpu(st->mapEntry[k].origLocation) == 0xFFFFFFFF) { for (; j < 4; j++) { if (sdata->s_spar_map[j]) { st = (struct sparingTable *)sdata->s_spar_map[j]->b_data; st->mapEntry[k].origLocation = cpu_to_le32(packet); udf_update_tag((char *)st, sizeof(struct sparingTable) + le16_to_cpu(st->reallocationTableLen) * sizeof(struct sparingEntry)); mark_buffer_dirty(sdata->s_spar_map[j]); } } *new_block = le32_to_cpu(st->mapEntry[k].mappedLocation) + ((old_block - UDF_SB_PARTROOT(sb,i)) & (sdata->s_packet_len - 1)); return 0; } else if (le32_to_cpu(st->mapEntry[k].origLocation) == packet) { *new_block = le32_to_cpu(st->mapEntry[k].mappedLocation) + ((old_block - UDF_SB_PARTROOT(sb,i)) & (sdata->s_packet_len - 1)); return 0; } else if (le32_to_cpu(st->mapEntry[k].origLocation) > packet) { break; } } for (l = k; l < le16_to_cpu(st->reallocationTableLen); l++) { if (le32_to_cpu(st->mapEntry[l].origLocation) == 0xFFFFFFFF) { for (; j < 4; j++) { if (sdata->s_spar_map[j]) { st = (struct sparingTable *)sdata->s_spar_map[j]->b_data; mapEntry = st->mapEntry[l]; mapEntry.origLocation = cpu_to_le32(packet); memmove(&st->mapEntry[k + 1], &st->mapEntry[k], (l - k) * sizeof(struct sparingEntry)); st->mapEntry[k] = mapEntry; udf_update_tag((char *)st, sizeof(struct sparingTable) + le16_to_cpu(st->reallocationTableLen) * sizeof(struct sparingEntry)); mark_buffer_dirty(sdata->s_spar_map[j]); } } *new_block = le32_to_cpu(st->mapEntry[k].mappedLocation) + ((old_block - UDF_SB_PARTROOT(sb,i)) & (sdata->s_packet_len - 1)); return 0; } } return 1; } /* if old_block */ } if (i == UDF_SB_NUMPARTS(sb)) { /* outside of partitions */ /* for now, fail =) */ return 1; } return 0; }