/* -*- mode: c; c-basic-offset: 8; -*- * vim: noexpandtab sw=8 ts=8 sts=0: * * journal.c * * Defines functions of journalling api * * Copyright (C) 2003, 2004 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include <linux/fs.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/kthread.h> #define MLOG_MASK_PREFIX ML_JOURNAL #include <cluster/masklog.h> #include "ocfs2.h" #include "alloc.h" #include "dlmglue.h" #include "extent_map.h" #include "heartbeat.h" #include "inode.h" #include "journal.h" #include "localalloc.h" #include "namei.h" #include "slot_map.h" #include "super.h" #include "vote.h" #include "sysfile.h" #include "buffer_head_io.h" DEFINE_SPINLOCK(trans_inc_lock); static int ocfs2_force_read_journal(struct inode *inode); static int ocfs2_recover_node(struct ocfs2_super *osb, int node_num); static int __ocfs2_recovery_thread(void *arg); static int ocfs2_commit_cache(struct ocfs2_super *osb); static int ocfs2_wait_on_mount(struct ocfs2_super *osb); static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal, struct ocfs2_journal_handle *handle); static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle); static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, int dirty); static int ocfs2_trylock_journal(struct ocfs2_super *osb, int slot_num); static int ocfs2_recover_orphans(struct ocfs2_super *osb, int slot); static int ocfs2_commit_thread(void *arg); static int ocfs2_commit_cache(struct ocfs2_super *osb) { int status = 0; unsigned int flushed; unsigned long old_id; struct ocfs2_journal *journal = NULL; mlog_entry_void(); journal = osb->journal; /* Flush all pending commits and checkpoint the journal. */ down_write(&journal->j_trans_barrier); if (atomic_read(&journal->j_num_trans) == 0) { up_write(&journal->j_trans_barrier); mlog(0, "No transactions for me to flush!\n"); goto finally; } journal_lock_updates(journal->j_journal); status = journal_flush(journal->j_journal); journal_unlock_updates(journal->j_journal); if (status < 0) { up_write(&journal->j_trans_barrier); mlog_errno(status); goto finally; } old_id = ocfs2_inc_trans_id(journal); flushed = atomic_read(&journal->j_num_trans); atomic_set(&journal->j_num_trans, 0); up_write(&journal->j_trans_barrier); mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n", journal->j_trans_id, flushed); ocfs2_kick_vote_thread(osb); wake_up(&journal->j_checkpointed); finally: mlog_exit(status); return status; } struct ocfs2_journal_handle *ocfs2_alloc_handle(struct ocfs2_super *osb) { struct ocfs2_journal_handle *retval = NULL; retval = kcalloc(1, sizeof(*retval), GFP_NOFS); if (!retval) { mlog(ML_ERROR, "Failed to allocate memory for journal " "handle!\n"); return NULL; } retval->max_buffs = 0; retval->num_locks = 0; retval->k_handle = NULL; INIT_LIST_HEAD(&retval->locks); INIT_LIST_HEAD(&retval->inode_list); retval->journal = osb->journal; return retval; } /* pass it NULL and it will allocate a new handle object for you. If * you pass it a handle however, it may still return error, in which * case it has free'd the passed handle for you. */ struct ocfs2_journal_handle *ocfs2_start_trans(struct ocfs2_super *osb, struct ocfs2_journal_handle *handle, int max_buffs) { int ret; journal_t *journal = osb->journal->j_journal; mlog_entry("(max_buffs = %d)\n", max_buffs); BUG_ON(!osb || !osb->journal->j_journal); if (ocfs2_is_hard_readonly(osb)) { ret = -EROFS; goto done_free; } BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE); BUG_ON(max_buffs <= 0); /* JBD might support this, but our journalling code doesn't yet. */ if (journal_current_handle()) { mlog(ML_ERROR, "Recursive transaction attempted!\n"); BUG(); } if (!handle) handle = ocfs2_alloc_handle(osb); if (!handle) { ret = -ENOMEM; mlog(ML_ERROR, "Failed to allocate memory for journal " "handle!\n"); goto done_free; } handle->max_buffs = max_buffs; down_read(&osb->journal->j_trans_barrier); /* actually start the transaction now */ handle->k_handle = journal_start(journal, max_buffs); if (IS_ERR(handle->k_handle)) { up_read(&osb->journal->j_trans_barrier); ret = PTR_ERR(handle->k_handle); handle->k_handle = NULL; mlog_errno(ret); if (is_journal_aborted(journal)) { ocfs2_abort(osb->sb, "Detected aborted journal"); ret = -EROFS; } goto done_free; } atomic_inc(&(osb->journal->j_num_trans)); handle->flags |= OCFS2_HANDLE_STARTED; mlog_exit_ptr(handle); return handle; done_free: if (handle) ocfs2_commit_unstarted_handle(handle); /* will kfree handle */ mlog_exit(ret); return ERR_PTR(ret); } void ocfs2_handle_add_inode(struct ocfs2_journal_handle *handle, struct inode *inode) { BUG_ON(!handle); BUG_ON(!inode); atomic_inc(&inode->i_count); /* we're obviously changing it... */ mutex_lock(&inode->i_mutex); /* sanity check */ BUG_ON(OCFS2_I(inode)->ip_handle); BUG_ON(!list_empty(&OCFS2_I(inode)->ip_handle_list)); OCFS2_I(inode)->ip_handle = handle; list_move_tail(&(OCFS2_I(inode)->ip_handle_list), &(handle->inode_list)); } static void ocfs2_handle_unlock_inodes(struct ocfs2_journal_handle *handle) { struct list_head *p, *n; struct inode *inode; struct ocfs2_inode_info *oi; list_for_each_safe(p, n, &handle->inode_list) { oi = list_entry(p, struct ocfs2_inode_info, ip_handle_list); inode = &oi->vfs_inode; OCFS2_I(inode)->ip_handle = NULL; list_del_init(&OCFS2_I(inode)->ip_handle_list); mutex_unlock(&inode->i_mutex); iput(inode); } } /* This is trivial so we do it out of the main commit * paths. Beware, it can be called from start_trans too! */ static void ocfs2_commit_unstarted_handle(struct ocfs2_journal_handle *handle) { mlog_entry_void(); BUG_ON(handle->flags & OCFS2_HANDLE_STARTED); ocfs2_handle_unlock_inodes(handle); /* You are allowed to add journal locks before the transaction * has started. */ ocfs2_handle_cleanup_locks(handle->journal, handle); kfree(handle); mlog_exit_void(); } void ocfs2_commit_trans(struct ocfs2_journal_handle *handle) { handle_t *jbd_handle; int retval; struct ocfs2_journal *journal = handle->journal; mlog_entry_void(); BUG_ON(!handle); if (!(handle->flags & OCFS2_HANDLE_STARTED)) { ocfs2_commit_unstarted_handle(handle); mlog_exit_void(); return; } /* release inode semaphores we took during this transaction */ ocfs2_handle_unlock_inodes(handle); /* ocfs2_extend_trans may have had to call journal_restart * which will always commit the transaction, but may return * error for any number of reasons. If this is the case, we * clear k_handle as it's not valid any more. */ if (handle->k_handle) { jbd_handle = handle->k_handle; if (handle->flags & OCFS2_HANDLE_SYNC) jbd_handle->h_sync = 1; else jbd_handle->h_sync = 0; /* actually stop the transaction. if we've set h_sync, * it'll have been committed when we return */ retval = journal_stop(jbd_handle); if (retval < 0) { mlog_errno(retval); mlog(ML_ERROR, "Could not commit transaction\n"); BUG(); } handle->k_handle = NULL; /* it's been free'd in journal_stop */ } ocfs2_handle_cleanup_locks(journal, handle); up_read(&journal->j_trans_barrier); kfree(handle); mlog_exit_void(); } /* * 'nblocks' is what you want to add to the current * transaction. extend_trans will either extend the current handle by * nblocks, or commit it and start a new one with nblocks credits. * * WARNING: This will not release any semaphores or disk locks taken * during the transaction, so make sure they were taken *before* * start_trans or we'll have ordering deadlocks. * * WARNING2: Note that we do *not* drop j_trans_barrier here. This is * good because transaction ids haven't yet been recorded on the * cluster locks associated with this handle. */ int ocfs2_extend_trans(struct ocfs2_journal_handle *handle, int nblocks) { int status; BUG_ON(!handle); BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED)); BUG_ON(!nblocks); mlog_entry_void(); mlog(0, "Trying to extend transaction by %d blocks\n", nblocks); status = journal_extend(handle->k_handle, nblocks); if (status < 0) { mlog_errno(status); goto bail; } if (status > 0) { mlog(0, "journal_extend failed, trying journal_restart\n"); status = journal_restart(handle->k_handle, nblocks); if (status < 0) { handle->k_handle = NULL; mlog_errno(status); goto bail; } handle->max_buffs = nblocks; } else handle->max_buffs += nblocks; status = 0; bail: mlog_exit(status); return status; } int ocfs2_journal_access(struct ocfs2_journal_handle *handle, struct inode *inode, struct buffer_head *bh, int type) { int status; BUG_ON(!inode); BUG_ON(!handle); BUG_ON(!bh); BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED)); mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n", (unsigned long long)bh->b_blocknr, type, (type == OCFS2_JOURNAL_ACCESS_CREATE) ? "OCFS2_JOURNAL_ACCESS_CREATE" : "OCFS2_JOURNAL_ACCESS_WRITE", bh->b_size); /* we can safely remove this assertion after testing. */ if (!buffer_uptodate(bh)) { mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n"); mlog(ML_ERROR, "b_blocknr=%llu\n", (unsigned long long)bh->b_blocknr); BUG(); } /* Set the current transaction information on the inode so * that the locking code knows whether it can drop it's locks * on this inode or not. We're protected from the commit * thread updating the current transaction id until * ocfs2_commit_trans() because ocfs2_start_trans() took * j_trans_barrier for us. */ ocfs2_set_inode_lock_trans(OCFS2_SB(inode->i_sb)->journal, inode); mutex_lock(&OCFS2_I(inode)->ip_io_mutex); switch (type) { case OCFS2_JOURNAL_ACCESS_CREATE: case OCFS2_JOURNAL_ACCESS_WRITE: status = journal_get_write_access(handle->k_handle, bh); break; case OCFS2_JOURNAL_ACCESS_UNDO: status = journal_get_undo_access(handle->k_handle, bh); break; default: status = -EINVAL; mlog(ML_ERROR, "Uknown access type!\n"); } mutex_unlock(&OCFS2_I(inode)->ip_io_mutex); if (status < 0) mlog(ML_ERROR, "Error %d getting %d access to buffer!\n", status, type); mlog_exit(status); return status; } int ocfs2_journal_dirty(struct ocfs2_journal_handle *handle, struct buffer_head *bh) { int status; BUG_ON(!(handle->flags & OCFS2_HANDLE_STARTED)); mlog_entry("(bh->b_blocknr=%llu)\n", (unsigned long long)bh->b_blocknr); status = journal_dirty_metadata(handle->k_handle, bh); if (status < 0) mlog(ML_ERROR, "Could not dirty metadata buffer. " "(bh->b_blocknr=%llu)\n", (unsigned long long)bh->b_blocknr); mlog_exit(status); return status; } int ocfs2_journal_dirty_data(handle_t *handle, struct buffer_head *bh) { int err = journal_dirty_data(handle, bh); if (err) mlog_errno(err); /* TODO: When we can handle it, abort the handle and go RO on * error here. */ return err; } /* We always assume you're adding a metadata lock at level 'ex' */ int ocfs2_handle_add_lock(struct ocfs2_journal_handle *handle, struct inode *inode) { int status; struct ocfs2_journal_lock *lock; BUG_ON(!inode); lock = kmem_cache_alloc(ocfs2_lock_cache, GFP_NOFS); if (!lock) { status = -ENOMEM; mlog_errno(-ENOMEM); goto bail; } if (!igrab(inode)) BUG(); lock->jl_inode = inode; list_add_tail(&(lock->jl_lock_list), &(handle->locks)); handle->num_locks++; status = 0; bail: mlog_exit(status); return status; } static void ocfs2_handle_cleanup_locks(struct ocfs2_journal *journal, struct ocfs2_journal_handle *handle) { struct list_head *p, *n; struct ocfs2_journal_lock *lock; struct inode *inode; list_for_each_safe(p, n, &(handle->locks)) { lock = list_entry(p, struct ocfs2_journal_lock, jl_lock_list); list_del(&lock->jl_lock_list); handle->num_locks--; inode = lock->jl_inode; ocfs2_meta_unlock(inode, 1); if (atomic_read(&inode->i_count) == 1) mlog(ML_ERROR, "Inode %llu, I'm doing a last iput for!", (unsigned long long)OCFS2_I(inode)->ip_blkno); iput(inode); kmem_cache_free(ocfs2_lock_cache, lock); } } #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5) void ocfs2_set_journal_params(struct ocfs2_super *osb) { journal_t *journal = osb->journal->j_journal; spin_lock(&journal->j_state_lock); journal->j_commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL; if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER) journal->j_flags |= JFS_BARRIER; else journal->j_flags &= ~JFS_BARRIER; spin_unlock(&journal->j_state_lock); } int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty) { int status = -1; struct inode *inode = NULL; /* the journal inode */ journal_t *j_journal = NULL; struct ocfs2_dinode *di = NULL; struct buffer_head *bh = NULL; struct ocfs2_super *osb; int meta_lock = 0; mlog_entry_void(); BUG_ON(!journal); osb = journal->j_osb; /* already have the inode for our journal */ inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, osb->slot_num); if (inode == NULL) { status = -EACCES; mlog_errno(status); goto done; } if (is_bad_inode(inode)) { mlog(ML_ERROR, "access error (bad inode)\n"); iput(inode); inode = NULL; status = -EACCES; goto done; } SET_INODE_JOURNAL(inode); OCFS2_I(inode)->ip_open_count++; /* Skip recovery waits here - journal inode metadata never * changes in a live cluster so it can be considered an * exception to the rule. */ status = ocfs2_meta_lock_full(inode, NULL, &bh, 1, OCFS2_META_LOCK_RECOVERY); if (status < 0) { if (status != -ERESTARTSYS) mlog(ML_ERROR, "Could not get lock on journal!\n"); goto done; } meta_lock = 1; di = (struct ocfs2_dinode *)bh->b_data; if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) { mlog(ML_ERROR, "Journal file size (%lld) is too small!\n", inode->i_size); status = -EINVAL; goto done; } mlog(0, "inode->i_size = %lld\n", inode->i_size); mlog(0, "inode->i_blocks = %llu\n", (unsigned long long)inode->i_blocks); mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters); /* call the kernels journal init function now */ j_journal = journal_init_inode(inode); if (j_journal == NULL) { mlog(ML_ERROR, "Linux journal layer error\n"); status = -EINVAL; goto done; } mlog(0, "Returned from journal_init_inode\n"); mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen); *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) & OCFS2_JOURNAL_DIRTY_FL); journal->j_journal = j_journal; journal->j_inode = inode; journal->j_bh = bh; ocfs2_set_journal_params(osb); journal->j_state = OCFS2_JOURNAL_LOADED; status = 0; done: if (status < 0) { if (meta_lock) ocfs2_meta_unlock(inode, 1); if (bh != NULL) brelse(bh); if (inode) { OCFS2_I(inode)->ip_open_count--; iput(inode); } } mlog_exit(status); return status; } static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb, int dirty) { int status; unsigned int flags; struct ocfs2_journal *journal = osb->journal; struct buffer_head *bh = journal->j_bh; struct ocfs2_dinode *fe; mlog_entry_void(); fe = (struct ocfs2_dinode *)bh->b_data; if (!OCFS2_IS_VALID_DINODE(fe)) { /* This is called from startup/shutdown which will * handle the errors in a specific manner, so no need * to call ocfs2_error() here. */ mlog(ML_ERROR, "Journal dinode %llu has invalid " "signature: %.*s", (unsigned long long)fe->i_blkno, 7, fe->i_signature); status = -EIO; goto out; } flags = le32_to_cpu(fe->id1.journal1.ij_flags); if (dirty) flags |= OCFS2_JOURNAL_DIRTY_FL; else flags &= ~OCFS2_JOURNAL_DIRTY_FL; fe->id1.journal1.ij_flags = cpu_to_le32(flags); status = ocfs2_write_block(osb, bh, journal->j_inode); if (status < 0) mlog_errno(status); out: mlog_exit(status); return status; } /* * If the journal has been kmalloc'd it needs to be freed after this * call. */ void ocfs2_journal_shutdown(struct ocfs2_super *osb) { struct ocfs2_journal *journal = NULL; int status = 0; struct inode *inode = NULL; int num_running_trans = 0; mlog_entry_void(); BUG_ON(!osb); journal = osb->journal; if (!journal) goto done; inode = journal->j_inode; if (journal->j_state != OCFS2_JOURNAL_LOADED) goto done; /* need to inc inode use count as journal_destroy will iput. */ if (!igrab(inode)) BUG(); num_running_trans = atomic_read(&(osb->journal->j_num_trans)); if (num_running_trans > 0) mlog(0, "Shutting down journal: must wait on %d " "running transactions!\n", num_running_trans); /* Do a commit_cache here. It will flush our journal, *and* * release any locks that are still held. * set the SHUTDOWN flag and release the trans lock. * the commit thread will take the trans lock for us below. */ journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN; /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not * drop the trans_lock (which we want to hold until we * completely destroy the journal. */ if (osb->commit_task) { /* Wait for the commit thread */ mlog(0, "Waiting for ocfs2commit to exit....\n"); kthread_stop(osb->commit_task); osb->commit_task = NULL; } BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0); status = ocfs2_journal_toggle_dirty(osb, 0); if (status < 0) mlog_errno(status); /* Shutdown the kernel journal system */ journal_destroy(journal->j_journal); OCFS2_I(inode)->ip_open_count--; /* unlock our journal */ ocfs2_meta_unlock(inode, 1); brelse(journal->j_bh); journal->j_bh = NULL; journal->j_state = OCFS2_JOURNAL_FREE; // up_write(&journal->j_trans_barrier); done: if (inode) iput(inode); mlog_exit_void(); } static void ocfs2_clear_journal_error(struct super_block *sb, journal_t *journal, int slot) { int olderr; olderr = journal_errno(journal); if (olderr) { mlog(ML_ERROR, "File system error %d recorded in " "journal %u.\n", olderr, slot); mlog(ML_ERROR, "File system on device %s needs checking.\n", sb->s_id); journal_ack_err(journal); journal_clear_err(journal); } } int ocfs2_journal_load(struct ocfs2_journal *journal) { int status = 0; struct ocfs2_super *osb; mlog_entry_void(); if (!journal) BUG(); osb = journal->j_osb; status = journal_load(journal->j_journal); if (status < 0) { mlog(ML_ERROR, "Failed to load journal!\n"); goto done; } ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num); status = ocfs2_journal_toggle_dirty(osb, 1); if (status < 0) { mlog_errno(status); goto done; } /* Launch the commit thread */ osb->commit_task = kthread_run(ocfs2_commit_thread, osb, "ocfs2cmt"); if (IS_ERR(osb->commit_task)) { status = PTR_ERR(osb->commit_task); osb->commit_task = NULL; mlog(ML_ERROR, "unable to launch ocfs2commit thread, error=%d", status); goto done; } done: mlog_exit(status); return status; } /* 'full' flag tells us whether we clear out all blocks or if we just * mark the journal clean */ int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full) { int status; mlog_entry_void(); BUG_ON(!journal); status = journal_wipe(journal->j_journal, full); if (status < 0) { mlog_errno(status); goto bail; } status = ocfs2_journal_toggle_dirty(journal->j_osb, 0); if (status < 0) mlog_errno(status); bail: mlog_exit(status); return status; } /* * JBD Might read a cached version of another nodes journal file. We * don't want this as this file changes often and we get no * notification on those changes. The only way to be sure that we've * got the most up to date version of those blocks then is to force * read them off disk. Just searching through the buffer cache won't * work as there may be pages backing this file which are still marked * up to date. We know things can't change on this file underneath us * as we have the lock by now :) */ static int ocfs2_force_read_journal(struct inode *inode) { int status = 0; int i, p_blocks; u64 v_blkno, p_blkno; #define CONCURRENT_JOURNAL_FILL 32 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL]; mlog_entry_void(); BUG_ON(inode->i_blocks != ocfs2_align_bytes_to_sectors(i_size_read(inode))); memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL); mlog(0, "Force reading %llu blocks\n", (unsigned long long)(inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))); v_blkno = 0; while (v_blkno < (inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9))) { status = ocfs2_extent_map_get_blocks(inode, v_blkno, 1, &p_blkno, &p_blocks); if (status < 0) { mlog_errno(status); goto bail; } if (p_blocks > CONCURRENT_JOURNAL_FILL) p_blocks = CONCURRENT_JOURNAL_FILL; /* We are reading journal data which should not * be put in the uptodate cache */ status = ocfs2_read_blocks(OCFS2_SB(inode->i_sb), p_blkno, p_blocks, bhs, 0, NULL); if (status < 0) { mlog_errno(status); goto bail; } for(i = 0; i < p_blocks; i++) { brelse(bhs[i]); bhs[i] = NULL; } v_blkno += p_blocks; } bail: for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++) if (bhs[i]) brelse(bhs[i]); mlog_exit(status); return status; } struct ocfs2_la_recovery_item { struct list_head lri_list; int lri_slot; struct ocfs2_dinode *lri_la_dinode; struct ocfs2_dinode *lri_tl_dinode; }; /* Does the second half of the recovery process. By this point, the * node is marked clean and can actually be considered recovered, * hence it's no longer in the recovery map, but there's still some * cleanup we can do which shouldn't happen within the recovery thread * as locking in that context becomes very difficult if we are to take * recovering nodes into account. * * NOTE: This function can and will sleep on recovery of other nodes * during cluster locking, just like any other ocfs2 process. */ void ocfs2_complete_recovery(void *data) { int ret; struct ocfs2_super *osb = data; struct ocfs2_journal *journal = osb->journal; struct ocfs2_dinode *la_dinode, *tl_dinode; struct ocfs2_la_recovery_item *item; struct list_head *p, *n; LIST_HEAD(tmp_la_list); mlog_entry_void(); mlog(0, "completing recovery from keventd\n"); spin_lock(&journal->j_lock); list_splice_init(&journal->j_la_cleanups, &tmp_la_list); spin_unlock(&journal->j_lock); list_for_each_safe(p, n, &tmp_la_list) { item = list_entry(p, struct ocfs2_la_recovery_item, lri_list); list_del_init(&item->lri_list); mlog(0, "Complete recovery for slot %d\n", item->lri_slot); la_dinode = item->lri_la_dinode; if (la_dinode) { mlog(0, "Clean up local alloc %llu\n", (unsigned long long)la_dinode->i_blkno); ret = ocfs2_complete_local_alloc_recovery(osb, la_dinode); if (ret < 0) mlog_errno(ret); kfree(la_dinode); } tl_dinode = item->lri_tl_dinode; if (tl_dinode) { mlog(0, "Clean up truncate log %llu\n", (unsigned long long)tl_dinode->i_blkno); ret = ocfs2_complete_truncate_log_recovery(osb, tl_dinode); if (ret < 0) mlog_errno(ret); kfree(tl_dinode); } ret = ocfs2_recover_orphans(osb, item->lri_slot); if (ret < 0) mlog_errno(ret); kfree(item); } mlog(0, "Recovery completion\n"); mlog_exit_void(); } /* NOTE: This function always eats your references to la_dinode and * tl_dinode, either manually on error, or by passing them to * ocfs2_complete_recovery */ static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal, int slot_num, struct ocfs2_dinode *la_dinode, struct ocfs2_dinode *tl_dinode) { struct ocfs2_la_recovery_item *item; item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS); if (!item) { /* Though we wish to avoid it, we are in fact safe in * skipping local alloc cleanup as fsck.ocfs2 is more * than capable of reclaiming unused space. */ if (la_dinode) kfree(la_dinode); if (tl_dinode) kfree(tl_dinode); mlog_errno(-ENOMEM); return; } INIT_LIST_HEAD(&item->lri_list); item->lri_la_dinode = la_dinode; item->lri_slot = slot_num; item->lri_tl_dinode = tl_dinode; spin_lock(&journal->j_lock); list_add_tail(&item->lri_list, &journal->j_la_cleanups); queue_work(ocfs2_wq, &journal->j_recovery_work); spin_unlock(&journal->j_lock); } /* Called by the mount code to queue recovery the last part of * recovery for it's own slot. */ void ocfs2_complete_mount_recovery(struct ocfs2_super *osb) { struct ocfs2_journal *journal = osb->journal; if (osb->dirty) { /* No need to queue up our truncate_log as regular * cleanup will catch that. */ ocfs2_queue_recovery_completion(journal, osb->slot_num, osb->local_alloc_copy, NULL); ocfs2_schedule_truncate_log_flush(osb, 0); osb->local_alloc_copy = NULL; osb->dirty = 0; } } static int __ocfs2_recovery_thread(void *arg) { int status, node_num; struct ocfs2_super *osb = arg; mlog_entry_void(); status = ocfs2_wait_on_mount(osb); if (status < 0) { goto bail; } restart: status = ocfs2_super_lock(osb, 1); if (status < 0) { mlog_errno(status); goto bail; } while(!ocfs2_node_map_is_empty(osb, &osb->recovery_map)) { node_num = ocfs2_node_map_first_set_bit(osb, &osb->recovery_map); if (node_num == O2NM_INVALID_NODE_NUM) { mlog(0, "Out of nodes to recover.\n"); break; } status = ocfs2_recover_node(osb, node_num); if (status < 0) { mlog(ML_ERROR, "Error %d recovering node %d on device (%u,%u)!\n", status, node_num, MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); mlog(ML_ERROR, "Volume requires unmount.\n"); continue; } ocfs2_recovery_map_clear(osb, node_num); } ocfs2_super_unlock(osb, 1); /* We always run recovery on our own orphan dir - the dead * node(s) may have voted "no" on an inode delete earlier. A * revote is therefore required. */ ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL, NULL); bail: mutex_lock(&osb->recovery_lock); if (!status && !ocfs2_node_map_is_empty(osb, &osb->recovery_map)) { mutex_unlock(&osb->recovery_lock); goto restart; } osb->recovery_thread_task = NULL; mb(); /* sync with ocfs2_recovery_thread_running */ wake_up(&osb->recovery_event); mutex_unlock(&osb->recovery_lock); mlog_exit(status); /* no one is callint kthread_stop() for us so the kthread() api * requires that we call do_exit(). And it isn't exported, but * complete_and_exit() seems to be a minimal wrapper around it. */ complete_and_exit(NULL, status); return status; } void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num) { mlog_entry("(node_num=%d, osb->node_num = %d)\n", node_num, osb->node_num); mutex_lock(&osb->recovery_lock); if (osb->disable_recovery) goto out; /* People waiting on recovery will wait on * the recovery map to empty. */ if (!ocfs2_recovery_map_set(osb, node_num)) mlog(0, "node %d already be in recovery.\n", node_num); mlog(0, "starting recovery thread...\n"); if (osb->recovery_thread_task) goto out; osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb, "ocfs2rec"); if (IS_ERR(osb->recovery_thread_task)) { mlog_errno((int)PTR_ERR(osb->recovery_thread_task)); osb->recovery_thread_task = NULL; } out: mutex_unlock(&osb->recovery_lock); wake_up(&osb->recovery_event); mlog_exit_void(); } /* Does the actual journal replay and marks the journal inode as * clean. Will only replay if the journal inode is marked dirty. */ static int ocfs2_replay_journal(struct ocfs2_super *osb, int node_num, int slot_num) { int status; int got_lock = 0; unsigned int flags; struct inode *inode = NULL; struct ocfs2_dinode *fe; journal_t *journal = NULL; struct buffer_head *bh = NULL; inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, slot_num); if (inode == NULL) { status = -EACCES; mlog_errno(status); goto done; } if (is_bad_inode(inode)) { status = -EACCES; iput(inode); inode = NULL; mlog_errno(status); goto done; } SET_INODE_JOURNAL(inode); status = ocfs2_meta_lock_full(inode, NULL, &bh, 1, OCFS2_META_LOCK_RECOVERY); if (status < 0) { mlog(0, "status returned from ocfs2_meta_lock=%d\n", status); if (status != -ERESTARTSYS) mlog(ML_ERROR, "Could not lock journal!\n"); goto done; } got_lock = 1; fe = (struct ocfs2_dinode *) bh->b_data; flags = le32_to_cpu(fe->id1.journal1.ij_flags); if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) { mlog(0, "No recovery required for node %d\n", node_num); goto done; } mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev)); OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters); status = ocfs2_force_read_journal(inode); if (status < 0) { mlog_errno(status); goto done; } mlog(0, "calling journal_init_inode\n"); journal = journal_init_inode(inode); if (journal == NULL) { mlog(ML_ERROR, "Linux journal layer error\n"); status = -EIO; goto done; } status = journal_load(journal); if (status < 0) { mlog_errno(status); if (!igrab(inode)) BUG(); journal_destroy(journal); goto done; } ocfs2_clear_journal_error(osb->sb, journal, slot_num); /* wipe the journal */ mlog(0, "flushing the journal.\n"); journal_lock_updates(journal); status = journal_flush(journal); journal_unlock_updates(journal); if (status < 0) mlog_errno(status); /* This will mark the node clean */ flags = le32_to_cpu(fe->id1.journal1.ij_flags); flags &= ~OCFS2_JOURNAL_DIRTY_FL; fe->id1.journal1.ij_flags = cpu_to_le32(flags); status = ocfs2_write_block(osb, bh, inode); if (status < 0) mlog_errno(status); if (!igrab(inode)) BUG(); journal_destroy(journal); done: /* drop the lock on this nodes journal */ if (got_lock) ocfs2_meta_unlock(inode, 1); if (inode) iput(inode); if (bh) brelse(bh); mlog_exit(status); return status; } /* * Do the most important parts of node recovery: * - Replay it's journal * - Stamp a clean local allocator file * - Stamp a clean truncate log * - Mark the node clean * * If this function completes without error, a node in OCFS2 can be * said to have been safely recovered. As a result, failure during the * second part of a nodes recovery process (local alloc recovery) is * far less concerning. */ static int ocfs2_recover_node(struct ocfs2_super *osb, int node_num) { int status = 0; int slot_num; struct ocfs2_slot_info *si = osb->slot_info; struct ocfs2_dinode *la_copy = NULL; struct ocfs2_dinode *tl_copy = NULL; mlog_entry("(node_num=%d, osb->node_num = %d)\n", node_num, osb->node_num); mlog(0, "checking node %d\n", node_num); /* Should not ever be called to recover ourselves -- in that * case we should've called ocfs2_journal_load instead. */ BUG_ON(osb->node_num == node_num); slot_num = ocfs2_node_num_to_slot(si, node_num); if (slot_num == OCFS2_INVALID_SLOT) { status = 0; mlog(0, "no slot for this node, so no recovery required.\n"); goto done; } mlog(0, "node %d was using slot %d\n", node_num, slot_num); status = ocfs2_replay_journal(osb, node_num, slot_num); if (status < 0) { mlog_errno(status); goto done; } /* Stamp a clean local alloc file AFTER recovering the journal... */ status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy); if (status < 0) { mlog_errno(status); goto done; } /* An error from begin_truncate_log_recovery is not * serious enough to warrant halting the rest of * recovery. */ status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy); if (status < 0) mlog_errno(status); /* Likewise, this would be a strange but ultimately not so * harmful place to get an error... */ ocfs2_clear_slot(si, slot_num); status = ocfs2_update_disk_slots(osb, si); if (status < 0) mlog_errno(status); /* This will kfree the memory pointed to by la_copy and tl_copy */ ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy, tl_copy); status = 0; done: mlog_exit(status); return status; } /* Test node liveness by trylocking his journal. If we get the lock, * we drop it here. Return 0 if we got the lock, -EAGAIN if node is * still alive (we couldn't get the lock) and < 0 on error. */ static int ocfs2_trylock_journal(struct ocfs2_super *osb, int slot_num) { int status, flags; struct inode *inode = NULL; inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, slot_num); if (inode == NULL) { mlog(ML_ERROR, "access error\n"); status = -EACCES; goto bail; } if (is_bad_inode(inode)) { mlog(ML_ERROR, "access error (bad inode)\n"); iput(inode); inode = NULL; status = -EACCES; goto bail; } SET_INODE_JOURNAL(inode); flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE; status = ocfs2_meta_lock_full(inode, NULL, NULL, 1, flags); if (status < 0) { if (status != -EAGAIN) mlog_errno(status); goto bail; } ocfs2_meta_unlock(inode, 1); bail: if (inode) iput(inode); return status; } /* Call this underneath ocfs2_super_lock. It also assumes that the * slot info struct has been updated from disk. */ int ocfs2_mark_dead_nodes(struct ocfs2_super *osb) { int status, i, node_num; struct ocfs2_slot_info *si = osb->slot_info; /* This is called with the super block cluster lock, so we * know that the slot map can't change underneath us. */ spin_lock(&si->si_lock); for(i = 0; i < si->si_num_slots; i++) { if (i == osb->slot_num) continue; if (ocfs2_is_empty_slot(si, i)) continue; node_num = si->si_global_node_nums[i]; if (ocfs2_node_map_test_bit(osb, &osb->recovery_map, node_num)) continue; spin_unlock(&si->si_lock); /* Ok, we have a slot occupied by another node which * is not in the recovery map. We trylock his journal * file here to test if he's alive. */ status = ocfs2_trylock_journal(osb, i); if (!status) { /* Since we're called from mount, we know that * the recovery thread can't race us on * setting / checking the recovery bits. */ ocfs2_recovery_thread(osb, node_num); } else if ((status < 0) && (status != -EAGAIN)) { mlog_errno(status); goto bail; } spin_lock(&si->si_lock); } spin_unlock(&si->si_lock); status = 0; bail: mlog_exit(status); return status; } static int ocfs2_queue_orphans(struct ocfs2_super *osb, int slot, struct inode **head) { int status; struct inode *orphan_dir_inode = NULL; struct inode *iter; unsigned long offset, blk, local; struct buffer_head *bh = NULL; struct ocfs2_dir_entry *de; struct super_block *sb = osb->sb; orphan_dir_inode = ocfs2_get_system_file_inode(osb, ORPHAN_DIR_SYSTEM_INODE, slot); if (!orphan_dir_inode) { status = -ENOENT; mlog_errno(status); return status; } mutex_lock(&orphan_dir_inode->i_mutex); status = ocfs2_meta_lock(orphan_dir_inode, NULL, NULL, 0); if (status < 0) { mlog_errno(status); goto out; } offset = 0; iter = NULL; while(offset < i_size_read(orphan_dir_inode)) { blk = offset >> sb->s_blocksize_bits; bh = ocfs2_bread(orphan_dir_inode, blk, &status, 0); if (!bh) status = -EINVAL; if (status < 0) { if (bh) brelse(bh); mlog_errno(status); goto out_unlock; } local = 0; while(offset < i_size_read(orphan_dir_inode) && local < sb->s_blocksize) { de = (struct ocfs2_dir_entry *) (bh->b_data + local); if (!ocfs2_check_dir_entry(orphan_dir_inode, de, bh, local)) { status = -EINVAL; mlog_errno(status); brelse(bh); goto out_unlock; } local += le16_to_cpu(de->rec_len); offset += le16_to_cpu(de->rec_len); /* I guess we silently fail on no inode? */ if (!le64_to_cpu(de->inode)) continue; if (de->file_type > OCFS2_FT_MAX) { mlog(ML_ERROR, "block %llu contains invalid de: " "inode = %llu, rec_len = %u, " "name_len = %u, file_type = %u, " "name='%.*s'\n", (unsigned long long)bh->b_blocknr, (unsigned long long)le64_to_cpu(de->inode), le16_to_cpu(de->rec_len), de->name_len, de->file_type, de->name_len, de->name); continue; } if (de->name_len == 1 && !strncmp(".", de->name, 1)) continue; if (de->name_len == 2 && !strncmp("..", de->name, 2)) continue; iter = ocfs2_iget(osb, le64_to_cpu(de->inode)); if (IS_ERR(iter)) continue; mlog(0, "queue orphan %llu\n", (unsigned long long)OCFS2_I(iter)->ip_blkno); /* No locking is required for the next_orphan * queue as there is only ever a single * process doing orphan recovery. */ OCFS2_I(iter)->ip_next_orphan = *head; *head = iter; } brelse(bh); } out_unlock: ocfs2_meta_unlock(orphan_dir_inode, 0); out: mutex_unlock(&orphan_dir_inode->i_mutex); iput(orphan_dir_inode); return status; } static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb, int slot) { int ret; spin_lock(&osb->osb_lock); ret = !osb->osb_orphan_wipes[slot]; spin_unlock(&osb->osb_lock); return ret; } static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb, int slot) { spin_lock(&osb->osb_lock); /* Mark ourselves such that new processes in delete_inode() * know to quit early. */ ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot); while (osb->osb_orphan_wipes[slot]) { /* If any processes are already in the middle of an * orphan wipe on this dir, then we need to wait for * them. */ spin_unlock(&osb->osb_lock); wait_event_interruptible(osb->osb_wipe_event, ocfs2_orphan_recovery_can_continue(osb, slot)); spin_lock(&osb->osb_lock); } spin_unlock(&osb->osb_lock); } static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb, int slot) { ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot); } /* * Orphan recovery. Each mounted node has it's own orphan dir which we * must run during recovery. Our strategy here is to build a list of * the inodes in the orphan dir and iget/iput them. The VFS does * (most) of the rest of the work. * * Orphan recovery can happen at any time, not just mount so we have a * couple of extra considerations. * * - We grab as many inodes as we can under the orphan dir lock - * doing iget() outside the orphan dir risks getting a reference on * an invalid inode. * - We must be sure not to deadlock with other processes on the * system wanting to run delete_inode(). This can happen when they go * to lock the orphan dir and the orphan recovery process attempts to * iget() inside the orphan dir lock. This can be avoided by * advertising our state to ocfs2_delete_inode(). */ static int ocfs2_recover_orphans(struct ocfs2_super *osb, int slot) { int ret = 0; struct inode *inode = NULL; struct inode *iter; struct ocfs2_inode_info *oi; mlog(0, "Recover inodes from orphan dir in slot %d\n", slot); ocfs2_mark_recovering_orphan_dir(osb, slot); ret = ocfs2_queue_orphans(osb, slot, &inode); ocfs2_clear_recovering_orphan_dir(osb, slot); /* Error here should be noted, but we want to continue with as * many queued inodes as we've got. */ if (ret) mlog_errno(ret); while (inode) { oi = OCFS2_I(inode); mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno); iter = oi->ip_next_orphan; spin_lock(&oi->ip_lock); /* Delete voting may have set these on the assumption * that the other node would wipe them successfully. * If they are still in the node's orphan dir, we need * to reset that state. */ oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE); /* Set the proper information to get us going into * ocfs2_delete_inode. */ oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED; oi->ip_orphaned_slot = slot; spin_unlock(&oi->ip_lock); iput(inode); inode = iter; } return ret; } static int ocfs2_wait_on_mount(struct ocfs2_super *osb) { /* This check is good because ocfs2 will wait on our recovery * thread before changing it to something other than MOUNTED * or DISABLED. */ wait_event(osb->osb_mount_event, atomic_read(&osb->vol_state) == VOLUME_MOUNTED || atomic_read(&osb->vol_state) == VOLUME_DISABLED); /* If there's an error on mount, then we may never get to the * MOUNTED flag, but this is set right before * dismount_volume() so we can trust it. */ if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) { mlog(0, "mount error, exiting!\n"); return -EBUSY; } return 0; } static int ocfs2_commit_thread(void *arg) { int status; struct ocfs2_super *osb = arg; struct ocfs2_journal *journal = osb->journal; /* we can trust j_num_trans here because _should_stop() is only set in * shutdown and nobody other than ourselves should be able to start * transactions. committing on shutdown might take a few iterations * as final transactions put deleted inodes on the list */ while (!(kthread_should_stop() && atomic_read(&journal->j_num_trans) == 0)) { wait_event_interruptible(osb->checkpoint_event, atomic_read(&journal->j_num_trans) || kthread_should_stop()); status = ocfs2_commit_cache(osb); if (status < 0) mlog_errno(status); if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){ mlog(ML_KTHREAD, "commit_thread: %u transactions pending on " "shutdown\n", atomic_read(&journal->j_num_trans)); } } return 0; } /* Look for a dirty journal without taking any cluster locks. Used for * hard readonly access to determine whether the file system journals * require recovery. */ int ocfs2_check_journals_nolocks(struct ocfs2_super *osb) { int ret = 0; unsigned int slot; struct buffer_head *di_bh; struct ocfs2_dinode *di; struct inode *journal = NULL; for(slot = 0; slot < osb->max_slots; slot++) { journal = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE, slot); if (!journal || is_bad_inode(journal)) { ret = -EACCES; mlog_errno(ret); goto out; } di_bh = NULL; ret = ocfs2_read_block(osb, OCFS2_I(journal)->ip_blkno, &di_bh, 0, journal); if (ret < 0) { mlog_errno(ret); goto out; } di = (struct ocfs2_dinode *) di_bh->b_data; if (le32_to_cpu(di->id1.journal1.ij_flags) & OCFS2_JOURNAL_DIRTY_FL) ret = -EROFS; brelse(di_bh); if (ret) break; } out: if (journal) iput(journal); return ret; }