/* * super.c - NILFS module and super block management. * * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * * Written by Ryusuke Konishi <ryusuke@osrg.net> */ /* * linux/fs/ext2/super.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/inode.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 */ #include <linux/module.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/blkdev.h> #include <linux/parser.h> #include <linux/random.h> #include <linux/crc32.h> #include <linux/smp_lock.h> #include <linux/vfs.h> #include <linux/writeback.h> #include <linux/kobject.h> #include <linux/exportfs.h> #include "nilfs.h" #include "mdt.h" #include "alloc.h" #include "page.h" #include "cpfile.h" #include "ifile.h" #include "dat.h" #include "segment.h" #include "segbuf.h" MODULE_AUTHOR("NTT Corp."); MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem " "(NILFS)"); MODULE_LICENSE("GPL"); static int nilfs_remount(struct super_block *sb, int *flags, char *data); static int test_exclusive_mount(struct file_system_type *fs_type, struct block_device *bdev, int flags); /** * nilfs_error() - report failure condition on a filesystem * * nilfs_error() sets an ERROR_FS flag on the superblock as well as * reporting an error message. It should be called when NILFS detects * incoherences or defects of meta data on disk. As for sustainable * errors such as a single-shot I/O error, nilfs_warning() or the printk() * function should be used instead. * * The segment constructor must not call this function because it can * kill itself. */ void nilfs_error(struct super_block *sb, const char *function, const char *fmt, ...) { struct nilfs_sb_info *sbi = NILFS_SB(sb); va_list args; va_start(args, fmt); printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function); vprintk(fmt, args); printk("\n"); va_end(args); if (!(sb->s_flags & MS_RDONLY)) { struct the_nilfs *nilfs = sbi->s_nilfs; if (!nilfs_test_opt(sbi, ERRORS_CONT)) nilfs_detach_segment_constructor(sbi); down_write(&nilfs->ns_sem); if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) { nilfs->ns_mount_state |= NILFS_ERROR_FS; nilfs->ns_sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS); nilfs_commit_super(sbi, 1); } up_write(&nilfs->ns_sem); if (nilfs_test_opt(sbi, ERRORS_RO)) { printk(KERN_CRIT "Remounting filesystem read-only\n"); sb->s_flags |= MS_RDONLY; } } if (nilfs_test_opt(sbi, ERRORS_PANIC)) panic("NILFS (device %s): panic forced after error\n", sb->s_id); } void nilfs_warning(struct super_block *sb, const char *function, const char *fmt, ...) { va_list args; va_start(args, fmt); printk(KERN_WARNING "NILFS warning (device %s): %s: ", sb->s_id, function); vprintk(fmt, args); printk("\n"); va_end(args); } static struct kmem_cache *nilfs_inode_cachep; struct inode *nilfs_alloc_inode(struct super_block *sb) { struct nilfs_inode_info *ii; ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS); if (!ii) return NULL; ii->i_bh = NULL; ii->i_state = 0; ii->vfs_inode.i_version = 1; nilfs_btnode_cache_init(&ii->i_btnode_cache); return &ii->vfs_inode; } void nilfs_destroy_inode(struct inode *inode) { kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode)); } static void init_once(void *obj) { struct nilfs_inode_info *ii = obj; INIT_LIST_HEAD(&ii->i_dirty); #ifdef CONFIG_NILFS_XATTR init_rwsem(&ii->xattr_sem); #endif nilfs_btnode_cache_init_once(&ii->i_btnode_cache); ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union; inode_init_once(&ii->vfs_inode); } static int nilfs_init_inode_cache(void) { nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache", sizeof(struct nilfs_inode_info), 0, SLAB_RECLAIM_ACCOUNT, init_once); return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0; } static inline void nilfs_destroy_inode_cache(void) { kmem_cache_destroy(nilfs_inode_cachep); } static void nilfs_clear_inode(struct inode *inode) { struct nilfs_inode_info *ii = NILFS_I(inode); #ifdef CONFIG_NILFS_POSIX_ACL if (ii->i_acl && ii->i_acl != NILFS_ACL_NOT_CACHED) { posix_acl_release(ii->i_acl); ii->i_acl = NILFS_ACL_NOT_CACHED; } if (ii->i_default_acl && ii->i_default_acl != NILFS_ACL_NOT_CACHED) { posix_acl_release(ii->i_default_acl); ii->i_default_acl = NILFS_ACL_NOT_CACHED; } #endif /* * Free resources allocated in nilfs_read_inode(), here. */ BUG_ON(!list_empty(&ii->i_dirty)); brelse(ii->i_bh); ii->i_bh = NULL; if (test_bit(NILFS_I_BMAP, &ii->i_state)) nilfs_bmap_clear(ii->i_bmap); nilfs_btnode_cache_clear(&ii->i_btnode_cache); } static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb) { struct the_nilfs *nilfs = sbi->s_nilfs; int err; int barrier_done = 0; if (nilfs_test_opt(sbi, BARRIER)) { set_buffer_ordered(nilfs->ns_sbh[0]); barrier_done = 1; } retry: set_buffer_dirty(nilfs->ns_sbh[0]); err = sync_dirty_buffer(nilfs->ns_sbh[0]); if (err == -EOPNOTSUPP && barrier_done) { nilfs_warning(sbi->s_super, __func__, "barrier-based sync failed. " "disabling barriers\n"); nilfs_clear_opt(sbi, BARRIER); barrier_done = 0; clear_buffer_ordered(nilfs->ns_sbh[0]); goto retry; } if (unlikely(err)) { printk(KERN_ERR "NILFS: unable to write superblock (err=%d)\n", err); if (err == -EIO && nilfs->ns_sbh[1]) { nilfs_fall_back_super_block(nilfs); goto retry; } } else { struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; /* * The latest segment becomes trailable from the position * written in superblock. */ clear_nilfs_discontinued(nilfs); /* update GC protection for recent segments */ if (nilfs->ns_sbh[1]) { sbp = NULL; if (dupsb) { set_buffer_dirty(nilfs->ns_sbh[1]); if (!sync_dirty_buffer(nilfs->ns_sbh[1])) sbp = nilfs->ns_sbp[1]; } } if (sbp) { spin_lock(&nilfs->ns_last_segment_lock); nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq); spin_unlock(&nilfs->ns_last_segment_lock); } } return err; } int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb) { struct the_nilfs *nilfs = sbi->s_nilfs; struct nilfs_super_block **sbp = nilfs->ns_sbp; sector_t nfreeblocks; time_t t; int err; /* nilfs->sem must be locked by the caller. */ if (sbp[0]->s_magic != NILFS_SUPER_MAGIC) { if (sbp[1] && sbp[1]->s_magic == NILFS_SUPER_MAGIC) nilfs_swap_super_block(nilfs); else { printk(KERN_CRIT "NILFS: superblock broke on dev %s\n", sbi->s_super->s_id); return -EIO; } } err = nilfs_count_free_blocks(nilfs, &nfreeblocks); if (unlikely(err)) { printk(KERN_ERR "NILFS: failed to count free blocks\n"); return err; } spin_lock(&nilfs->ns_last_segment_lock); sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq); sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg); sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno); spin_unlock(&nilfs->ns_last_segment_lock); t = get_seconds(); nilfs->ns_sbwtime[0] = t; sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks); sbp[0]->s_wtime = cpu_to_le64(t); sbp[0]->s_sum = 0; sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, (unsigned char *)sbp[0], nilfs->ns_sbsize)); if (dupsb && sbp[1]) { memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); nilfs->ns_sbwtime[1] = t; } sbi->s_super->s_dirt = 0; return nilfs_sync_super(sbi, dupsb); } static void nilfs_put_super(struct super_block *sb) { struct nilfs_sb_info *sbi = NILFS_SB(sb); struct the_nilfs *nilfs = sbi->s_nilfs; nilfs_detach_segment_constructor(sbi); if (!(sb->s_flags & MS_RDONLY)) { down_write(&nilfs->ns_sem); nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state); nilfs_commit_super(sbi, 1); up_write(&nilfs->ns_sem); } nilfs_detach_checkpoint(sbi); put_nilfs(sbi->s_nilfs); sbi->s_super = NULL; sb->s_fs_info = NULL; kfree(sbi); } /** * nilfs_write_super - write super block(s) of NILFS * @sb: super_block * * nilfs_write_super() gets a fs-dependent lock, writes super block(s), and * clears s_dirt. This function is called in the section protected by * lock_super(). * * The s_dirt flag is managed by each filesystem and we protect it by ns_sem * of the struct the_nilfs. Lock order must be as follows: * * 1. lock_super() * 2. down_write(&nilfs->ns_sem) * * Inside NILFS, locking ns_sem is enough to protect s_dirt and the buffer * of the super block (nilfs->ns_sbp[]). * * In most cases, VFS functions call lock_super() before calling these * methods. So we must be careful not to bring on deadlocks when using * lock_super(); see generic_shutdown_super(), write_super(), and so on. * * Note that order of lock_kernel() and lock_super() depends on contexts * of VFS. We should also note that lock_kernel() can be used in its * protective section and only the outermost one has an effect. */ static void nilfs_write_super(struct super_block *sb) { struct nilfs_sb_info *sbi = NILFS_SB(sb); struct the_nilfs *nilfs = sbi->s_nilfs; down_write(&nilfs->ns_sem); if (!(sb->s_flags & MS_RDONLY)) { struct nilfs_super_block **sbp = nilfs->ns_sbp; u64 t = get_seconds(); int dupsb; if (!nilfs_discontinued(nilfs) && t >= nilfs->ns_sbwtime[0] && t < nilfs->ns_sbwtime[0] + NILFS_SB_FREQ) { up_write(&nilfs->ns_sem); return; } dupsb = sbp[1] && t > nilfs->ns_sbwtime[1] + NILFS_ALTSB_FREQ; nilfs_commit_super(sbi, dupsb); } sb->s_dirt = 0; up_write(&nilfs->ns_sem); } static int nilfs_sync_fs(struct super_block *sb, int wait) { int err = 0; /* This function is called when super block should be written back */ if (wait) err = nilfs_construct_segment(sb); return err; } int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno) { struct the_nilfs *nilfs = sbi->s_nilfs; struct nilfs_checkpoint *raw_cp; struct buffer_head *bh_cp; int err; down_write(&nilfs->ns_sem); list_add(&sbi->s_list, &nilfs->ns_supers); up_write(&nilfs->ns_sem); sbi->s_ifile = nilfs_mdt_new( nilfs, sbi->s_super, NILFS_IFILE_INO, NILFS_IFILE_GFP); if (!sbi->s_ifile) return -ENOMEM; err = nilfs_palloc_init_blockgroup(sbi->s_ifile, nilfs->ns_inode_size); if (unlikely(err)) goto failed; err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp, &bh_cp); if (unlikely(err)) { if (err == -ENOENT || err == -EINVAL) { printk(KERN_ERR "NILFS: Invalid checkpoint " "(checkpoint number=%llu)\n", (unsigned long long)cno); err = -EINVAL; } goto failed; } err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode); if (unlikely(err)) goto failed_bh; atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count)); atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count)); nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); return 0; failed_bh: nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); failed: nilfs_mdt_destroy(sbi->s_ifile); sbi->s_ifile = NULL; down_write(&nilfs->ns_sem); list_del_init(&sbi->s_list); up_write(&nilfs->ns_sem); return err; } void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi) { struct the_nilfs *nilfs = sbi->s_nilfs; nilfs_mdt_clear(sbi->s_ifile); nilfs_mdt_destroy(sbi->s_ifile); sbi->s_ifile = NULL; down_write(&nilfs->ns_sem); list_del_init(&sbi->s_list); up_write(&nilfs->ns_sem); } static int nilfs_mark_recovery_complete(struct nilfs_sb_info *sbi) { struct the_nilfs *nilfs = sbi->s_nilfs; int err = 0; down_write(&nilfs->ns_sem); if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) { nilfs->ns_mount_state |= NILFS_VALID_FS; err = nilfs_commit_super(sbi, 1); if (likely(!err)) printk(KERN_INFO "NILFS: recovery complete.\n"); } up_write(&nilfs->ns_sem); return err; } static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct nilfs_sb_info *sbi = NILFS_SB(sb); struct the_nilfs *nilfs = sbi->s_nilfs; u64 id = huge_encode_dev(sb->s_bdev->bd_dev); unsigned long long blocks; unsigned long overhead; unsigned long nrsvblocks; sector_t nfreeblocks; int err; /* * Compute all of the segment blocks * * The blocks before first segment and after last segment * are excluded. */ blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments - nilfs->ns_first_data_block; nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment; /* * Compute the overhead * * When distributing meta data blocks outside semgent structure, * We must count them as the overhead. */ overhead = 0; err = nilfs_count_free_blocks(nilfs, &nfreeblocks); if (unlikely(err)) return err; buf->f_type = NILFS_SUPER_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = blocks - overhead; buf->f_bfree = nfreeblocks; buf->f_bavail = (buf->f_bfree >= nrsvblocks) ? (buf->f_bfree - nrsvblocks) : 0; buf->f_files = atomic_read(&sbi->s_inodes_count); buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */ buf->f_namelen = NILFS_NAME_LEN; buf->f_fsid.val[0] = (u32)id; buf->f_fsid.val[1] = (u32)(id >> 32); return 0; } static struct super_operations nilfs_sops = { .alloc_inode = nilfs_alloc_inode, .destroy_inode = nilfs_destroy_inode, .dirty_inode = nilfs_dirty_inode, /* .write_inode = nilfs_write_inode, */ /* .put_inode = nilfs_put_inode, */ /* .drop_inode = nilfs_drop_inode, */ .delete_inode = nilfs_delete_inode, .put_super = nilfs_put_super, .write_super = nilfs_write_super, .sync_fs = nilfs_sync_fs, /* .write_super_lockfs */ /* .unlockfs */ .statfs = nilfs_statfs, .remount_fs = nilfs_remount, .clear_inode = nilfs_clear_inode, /* .umount_begin */ /* .show_options */ }; static struct inode * nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct inode *inode; if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO && ino != NILFS_SKETCH_INO) return ERR_PTR(-ESTALE); inode = nilfs_iget(sb, ino); if (IS_ERR(inode)) return ERR_CAST(inode); if (generation && inode->i_generation != generation) { iput(inode); return ERR_PTR(-ESTALE); } return inode; } static struct dentry * nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, nilfs_nfs_get_inode); } static struct dentry * nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, nilfs_nfs_get_inode); } static struct export_operations nilfs_export_ops = { .fh_to_dentry = nilfs_fh_to_dentry, .fh_to_parent = nilfs_fh_to_parent, .get_parent = nilfs_get_parent, }; enum { Opt_err_cont, Opt_err_panic, Opt_err_ro, Opt_barrier, Opt_snapshot, Opt_order, Opt_err, }; static match_table_t tokens = { {Opt_err_cont, "errors=continue"}, {Opt_err_panic, "errors=panic"}, {Opt_err_ro, "errors=remount-ro"}, {Opt_barrier, "barrier=%s"}, {Opt_snapshot, "cp=%u"}, {Opt_order, "order=%s"}, {Opt_err, NULL} }; static int match_bool(substring_t *s, int *result) { int len = s->to - s->from; if (strncmp(s->from, "on", len) == 0) *result = 1; else if (strncmp(s->from, "off", len) == 0) *result = 0; else return 1; return 0; } static int parse_options(char *options, struct super_block *sb) { struct nilfs_sb_info *sbi = NILFS_SB(sb); char *p; substring_t args[MAX_OPT_ARGS]; int option; if (!options) return 1; while ((p = strsep(&options, ",")) != NULL) { int token; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_barrier: if (match_bool(&args[0], &option)) return 0; if (option) nilfs_set_opt(sbi, BARRIER); else nilfs_clear_opt(sbi, BARRIER); break; case Opt_order: if (strcmp(args[0].from, "relaxed") == 0) /* Ordered data semantics */ nilfs_clear_opt(sbi, STRICT_ORDER); else if (strcmp(args[0].from, "strict") == 0) /* Strict in-order semantics */ nilfs_set_opt(sbi, STRICT_ORDER); else return 0; break; case Opt_err_panic: nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC); break; case Opt_err_ro: nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO); break; case Opt_err_cont: nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT); break; case Opt_snapshot: if (match_int(&args[0], &option) || option <= 0) return 0; if (!(sb->s_flags & MS_RDONLY)) return 0; sbi->s_snapshot_cno = option; nilfs_set_opt(sbi, SNAPSHOT); break; default: printk(KERN_ERR "NILFS: Unrecognized mount option \"%s\"\n", p); return 0; } } return 1; } static inline void nilfs_set_default_options(struct nilfs_sb_info *sbi, struct nilfs_super_block *sbp) { sbi->s_mount_opt = NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER; } static int nilfs_setup_super(struct nilfs_sb_info *sbi) { struct the_nilfs *nilfs = sbi->s_nilfs; struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count); int mnt_count = le16_to_cpu(sbp->s_mnt_count); /* nilfs->sem must be locked by the caller. */ if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) { printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n"); } else if (nilfs->ns_mount_state & NILFS_ERROR_FS) { printk(KERN_WARNING "NILFS warning: mounting fs with errors\n"); #if 0 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) { printk(KERN_WARNING "NILFS warning: maximal mount count reached\n"); #endif } if (!max_mnt_count) sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT); sbp->s_mnt_count = cpu_to_le16(mnt_count + 1); sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS); sbp->s_mtime = cpu_to_le64(get_seconds()); return nilfs_commit_super(sbi, 1); } struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb, u64 pos, int blocksize, struct buffer_head **pbh) { unsigned long long sb_index = pos; unsigned long offset; offset = do_div(sb_index, blocksize); *pbh = sb_bread(sb, sb_index); if (!*pbh) return NULL; return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset); } int nilfs_store_magic_and_option(struct super_block *sb, struct nilfs_super_block *sbp, char *data) { struct nilfs_sb_info *sbi = NILFS_SB(sb); sb->s_magic = le16_to_cpu(sbp->s_magic); /* FS independent flags */ #ifdef NILFS_ATIME_DISABLE sb->s_flags |= MS_NOATIME; #endif nilfs_set_default_options(sbi, sbp); sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid); sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid); sbi->s_interval = le32_to_cpu(sbp->s_c_interval); sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max); return !parse_options(data, sb) ? -EINVAL : 0 ; } /** * nilfs_fill_super() - initialize a super block instance * @sb: super_block * @data: mount options * @silent: silent mode flag * @nilfs: the_nilfs struct * * This function is called exclusively by bd_mount_mutex. * So, the recovery process is protected from other simultaneous mounts. */ static int nilfs_fill_super(struct super_block *sb, void *data, int silent, struct the_nilfs *nilfs) { struct nilfs_sb_info *sbi; struct inode *root; __u64 cno; int err; sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); if (!sbi) return -ENOMEM; sb->s_fs_info = sbi; get_nilfs(nilfs); sbi->s_nilfs = nilfs; sbi->s_super = sb; err = init_nilfs(nilfs, sbi, (char *)data); if (err) goto failed_sbi; spin_lock_init(&sbi->s_inode_lock); INIT_LIST_HEAD(&sbi->s_dirty_files); INIT_LIST_HEAD(&sbi->s_list); /* * Following initialization is overlapped because * nilfs_sb_info structure has been cleared at the beginning. * But we reserve them to keep our interest and make ready * for the future change. */ get_random_bytes(&sbi->s_next_generation, sizeof(sbi->s_next_generation)); spin_lock_init(&sbi->s_next_gen_lock); sb->s_op = &nilfs_sops; sb->s_export_op = &nilfs_export_ops; sb->s_root = NULL; sb->s_time_gran = 1; if (!nilfs_loaded(nilfs)) { err = load_nilfs(nilfs, sbi); if (err) goto failed_sbi; } cno = nilfs_last_cno(nilfs); if (sb->s_flags & MS_RDONLY) { if (nilfs_test_opt(sbi, SNAPSHOT)) { err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, sbi->s_snapshot_cno); if (err < 0) goto failed_sbi; if (!err) { printk(KERN_ERR "NILFS: The specified checkpoint is " "not a snapshot " "(checkpoint number=%llu).\n", (unsigned long long)sbi->s_snapshot_cno); err = -EINVAL; goto failed_sbi; } cno = sbi->s_snapshot_cno; } else /* Read-only mount */ sbi->s_snapshot_cno = cno; } err = nilfs_attach_checkpoint(sbi, cno); if (err) { printk(KERN_ERR "NILFS: error loading a checkpoint" " (checkpoint number=%llu).\n", (unsigned long long)cno); goto failed_sbi; } if (!(sb->s_flags & MS_RDONLY)) { err = nilfs_attach_segment_constructor(sbi); if (err) goto failed_checkpoint; } root = nilfs_iget(sb, NILFS_ROOT_INO); if (IS_ERR(root)) { printk(KERN_ERR "NILFS: get root inode failed\n"); err = PTR_ERR(root); goto failed_segctor; } if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { iput(root); printk(KERN_ERR "NILFS: corrupt root inode.\n"); err = -EINVAL; goto failed_segctor; } sb->s_root = d_alloc_root(root); if (!sb->s_root) { iput(root); printk(KERN_ERR "NILFS: get root dentry failed\n"); err = -ENOMEM; goto failed_segctor; } if (!(sb->s_flags & MS_RDONLY)) { down_write(&nilfs->ns_sem); nilfs_setup_super(sbi); up_write(&nilfs->ns_sem); } err = nilfs_mark_recovery_complete(sbi); if (unlikely(err)) { printk(KERN_ERR "NILFS: recovery failed.\n"); goto failed_root; } return 0; failed_root: dput(sb->s_root); sb->s_root = NULL; failed_segctor: nilfs_detach_segment_constructor(sbi); failed_checkpoint: nilfs_detach_checkpoint(sbi); failed_sbi: put_nilfs(nilfs); sb->s_fs_info = NULL; kfree(sbi); return err; } static int nilfs_remount(struct super_block *sb, int *flags, char *data) { struct nilfs_sb_info *sbi = NILFS_SB(sb); struct nilfs_super_block *sbp; struct the_nilfs *nilfs = sbi->s_nilfs; unsigned long old_sb_flags; struct nilfs_mount_options old_opts; int err; old_sb_flags = sb->s_flags; old_opts.mount_opt = sbi->s_mount_opt; old_opts.snapshot_cno = sbi->s_snapshot_cno; if (!parse_options(data, sb)) { err = -EINVAL; goto restore_opts; } sb->s_flags = (sb->s_flags & ~MS_POSIXACL); if ((*flags & MS_RDONLY) && sbi->s_snapshot_cno != old_opts.snapshot_cno) { printk(KERN_WARNING "NILFS (device %s): couldn't " "remount to a different snapshot. \n", sb->s_id); err = -EINVAL; goto restore_opts; } if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) goto out; if (*flags & MS_RDONLY) { /* Shutting down the segment constructor */ nilfs_detach_segment_constructor(sbi); sb->s_flags |= MS_RDONLY; sbi->s_snapshot_cno = nilfs_last_cno(nilfs); /* nilfs_set_opt(sbi, SNAPSHOT); */ /* * Remounting a valid RW partition RDONLY, so set * the RDONLY flag and then mark the partition as valid again. */ down_write(&nilfs->ns_sem); sbp = nilfs->ns_sbp[0]; if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) && (nilfs->ns_mount_state & NILFS_VALID_FS)) sbp->s_state = cpu_to_le16(nilfs->ns_mount_state); sbp->s_mtime = cpu_to_le64(get_seconds()); nilfs_commit_super(sbi, 1); up_write(&nilfs->ns_sem); } else { /* * Mounting a RDONLY partition read-write, so reread and * store the current valid flag. (It may have been changed * by fsck since we originally mounted the partition.) */ down(&sb->s_bdev->bd_mount_sem); /* Check existing RW-mount */ if (test_exclusive_mount(sb->s_type, sb->s_bdev, 0)) { printk(KERN_WARNING "NILFS (device %s): couldn't " "remount because a RW-mount exists.\n", sb->s_id); err = -EBUSY; goto rw_remount_failed; } if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) { printk(KERN_WARNING "NILFS (device %s): couldn't " "remount because the current RO-mount is not " "the latest one.\n", sb->s_id); err = -EINVAL; goto rw_remount_failed; } sb->s_flags &= ~MS_RDONLY; nilfs_clear_opt(sbi, SNAPSHOT); sbi->s_snapshot_cno = 0; err = nilfs_attach_segment_constructor(sbi); if (err) goto rw_remount_failed; down_write(&nilfs->ns_sem); nilfs_setup_super(sbi); up_write(&nilfs->ns_sem); up(&sb->s_bdev->bd_mount_sem); } out: return 0; rw_remount_failed: up(&sb->s_bdev->bd_mount_sem); restore_opts: sb->s_flags = old_sb_flags; sbi->s_mount_opt = old_opts.mount_opt; sbi->s_snapshot_cno = old_opts.snapshot_cno; return err; } struct nilfs_super_data { struct block_device *bdev; __u64 cno; int flags; }; /** * nilfs_identify - pre-read mount options needed to identify mount instance * @data: mount options * @sd: nilfs_super_data */ static int nilfs_identify(char *data, struct nilfs_super_data *sd) { char *p, *options = data; substring_t args[MAX_OPT_ARGS]; int option, token; int ret = 0; do { p = strsep(&options, ","); if (p != NULL && *p) { token = match_token(p, tokens, args); if (token == Opt_snapshot) { if (!(sd->flags & MS_RDONLY)) ret++; else { ret = match_int(&args[0], &option); if (!ret) { if (option > 0) sd->cno = option; else ret++; } } } if (ret) printk(KERN_ERR "NILFS: invalid mount option: %s\n", p); } if (!options) break; BUG_ON(options == data); *(options - 1) = ','; } while (!ret); return ret; } static int nilfs_set_bdev_super(struct super_block *s, void *data) { struct nilfs_super_data *sd = data; s->s_bdev = sd->bdev; s->s_dev = s->s_bdev->bd_dev; return 0; } static int nilfs_test_bdev_super(struct super_block *s, void *data) { struct nilfs_super_data *sd = data; return s->s_bdev == sd->bdev; } static int nilfs_test_bdev_super2(struct super_block *s, void *data) { struct nilfs_super_data *sd = data; int ret; if (s->s_bdev != sd->bdev) return 0; if (!((s->s_flags | sd->flags) & MS_RDONLY)) return 1; /* Reuse an old R/W-mode super_block */ if (s->s_flags & sd->flags & MS_RDONLY) { if (down_read_trylock(&s->s_umount)) { ret = s->s_root && (sd->cno == NILFS_SB(s)->s_snapshot_cno); up_read(&s->s_umount); /* * This path is locked with sb_lock by sget(). * So, drop_super() causes deadlock. */ return ret; } } return 0; } static int nilfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { struct nilfs_super_data sd; struct super_block *s, *s2; struct the_nilfs *nilfs = NULL; int err, need_to_close = 1; sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type); if (IS_ERR(sd.bdev)) return PTR_ERR(sd.bdev); /* * To get mount instance using sget() vfs-routine, NILFS needs * much more information than normal filesystems to identify mount * instance. For snapshot mounts, not only a mount type (ro-mount * or rw-mount) but also a checkpoint number is required. * The results are passed in sget() using nilfs_super_data. */ sd.cno = 0; sd.flags = flags; if (nilfs_identify((char *)data, &sd)) { err = -EINVAL; goto failed; } /* * once the super is inserted into the list by sget, s_umount * will protect the lockfs code from trying to start a snapshot * while we are mounting */ down(&sd.bdev->bd_mount_sem); if (!sd.cno && (err = test_exclusive_mount(fs_type, sd.bdev, flags ^ MS_RDONLY))) { err = (err < 0) ? : -EBUSY; goto failed_unlock; } /* * Phase-1: search any existent instance and get the_nilfs */ s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd); if (IS_ERR(s)) goto error_s; if (!s->s_root) { err = -ENOMEM; nilfs = alloc_nilfs(sd.bdev); if (!nilfs) goto cancel_new; } else { struct nilfs_sb_info *sbi = NILFS_SB(s); /* * s_umount protects super_block from unmount process; * It covers pointers of nilfs_sb_info and the_nilfs. */ nilfs = sbi->s_nilfs; get_nilfs(nilfs); up_write(&s->s_umount); /* * Phase-2: search specified snapshot or R/W mode super_block */ if (!sd.cno) /* trying to get the latest checkpoint. */ sd.cno = nilfs_last_cno(nilfs); s2 = sget(fs_type, nilfs_test_bdev_super2, nilfs_set_bdev_super, &sd); deactivate_super(s); /* * Although deactivate_super() invokes close_bdev_exclusive() at * kill_block_super(). Here, s is an existent mount; we need * one more close_bdev_exclusive() call. */ s = s2; if (IS_ERR(s)) goto error_s; } if (!s->s_root) { char b[BDEVNAME_SIZE]; s->s_flags = flags; strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id)); sb_set_blocksize(s, block_size(sd.bdev)); err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs); if (err) goto cancel_new; s->s_flags |= MS_ACTIVE; need_to_close = 0; } else if (!(s->s_flags & MS_RDONLY)) { err = -EBUSY; } up(&sd.bdev->bd_mount_sem); put_nilfs(nilfs); if (need_to_close) close_bdev_exclusive(sd.bdev, flags); simple_set_mnt(mnt, s); return 0; error_s: up(&sd.bdev->bd_mount_sem); if (nilfs) put_nilfs(nilfs); close_bdev_exclusive(sd.bdev, flags); return PTR_ERR(s); failed_unlock: up(&sd.bdev->bd_mount_sem); failed: close_bdev_exclusive(sd.bdev, flags); return err; cancel_new: /* Abandoning the newly allocated superblock */ up(&sd.bdev->bd_mount_sem); if (nilfs) put_nilfs(nilfs); up_write(&s->s_umount); deactivate_super(s); /* * deactivate_super() invokes close_bdev_exclusive(). * We must finish all post-cleaning before this call; * put_nilfs() and unlocking bd_mount_sem need the block device. */ return err; } static int nilfs_test_bdev_super3(struct super_block *s, void *data) { struct nilfs_super_data *sd = data; int ret; if (s->s_bdev != sd->bdev) return 0; if (down_read_trylock(&s->s_umount)) { ret = (s->s_flags & MS_RDONLY) && s->s_root && nilfs_test_opt(NILFS_SB(s), SNAPSHOT); up_read(&s->s_umount); if (ret) return 0; /* ignore snapshot mounts */ } return !((sd->flags ^ s->s_flags) & MS_RDONLY); } static int __false_bdev_super(struct super_block *s, void *data) { #if 0 /* XXX: workaround for lock debug. This is not good idea */ up_write(&s->s_umount); #endif return -EFAULT; } /** * test_exclusive_mount - check whether an exclusive RW/RO mount exists or not. * fs_type: filesystem type * bdev: block device * flag: 0 (check rw-mount) or MS_RDONLY (check ro-mount) * res: pointer to an integer to store result * * This function must be called within a section protected by bd_mount_mutex. */ static int test_exclusive_mount(struct file_system_type *fs_type, struct block_device *bdev, int flags) { struct super_block *s; struct nilfs_super_data sd = { .flags = flags, .bdev = bdev }; s = sget(fs_type, nilfs_test_bdev_super3, __false_bdev_super, &sd); if (IS_ERR(s)) { if (PTR_ERR(s) != -EFAULT) return PTR_ERR(s); return 0; /* Not found */ } up_write(&s->s_umount); deactivate_super(s); return 1; /* Found */ } struct file_system_type nilfs_fs_type = { .owner = THIS_MODULE, .name = "nilfs2", .get_sb = nilfs_get_sb, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; static int __init init_nilfs_fs(void) { int err; err = nilfs_init_inode_cache(); if (err) goto failed; err = nilfs_init_transaction_cache(); if (err) goto failed_inode_cache; err = nilfs_init_segbuf_cache(); if (err) goto failed_transaction_cache; err = nilfs_btree_path_cache_init(); if (err) goto failed_segbuf_cache; err = register_filesystem(&nilfs_fs_type); if (err) goto failed_btree_path_cache; return 0; failed_btree_path_cache: nilfs_btree_path_cache_destroy(); failed_segbuf_cache: nilfs_destroy_segbuf_cache(); failed_transaction_cache: nilfs_destroy_transaction_cache(); failed_inode_cache: nilfs_destroy_inode_cache(); failed: return err; } static void __exit exit_nilfs_fs(void) { nilfs_destroy_segbuf_cache(); nilfs_destroy_transaction_cache(); nilfs_destroy_inode_cache(); nilfs_btree_path_cache_destroy(); unregister_filesystem(&nilfs_fs_type); } module_init(init_nilfs_fs) module_exit(exit_nilfs_fs)