/* * fs/nfs/nfs4proc.c * * Client-side procedure declarations for NFSv4. * * Copyright (c) 2002 The Regents of the University of Michigan. * All rights reserved. * * Kendrick Smith <kmsmith@umich.edu> * Andy Adamson <andros@umich.edu> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <linux/mm.h> #include <linux/utsname.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/sunrpc/clnt.h> #include <linux/nfs.h> #include <linux/nfs4.h> #include <linux/nfs_fs.h> #include <linux/nfs_page.h> #include <linux/smp_lock.h> #include <linux/namei.h> #include <linux/mount.h> #include "nfs4_fs.h" #include "delegation.h" #define NFSDBG_FACILITY NFSDBG_PROC #define NFS4_POLL_RETRY_MIN (1*HZ) #define NFS4_POLL_RETRY_MAX (15*HZ) static int _nfs4_proc_open_confirm(struct rpc_clnt *clnt, const struct nfs_fh *fh, struct nfs4_state_owner *sp, nfs4_stateid *stateid, struct nfs_seqid *seqid); static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *); static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *); static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry); static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception); extern u32 *nfs4_decode_dirent(u32 *p, struct nfs_entry *entry, int plus); extern struct rpc_procinfo nfs4_procedures[]; /* Prevent leaks of NFSv4 errors into userland */ int nfs4_map_errors(int err) { if (err < -1000) { dprintk("%s could not handle NFSv4 error %d\n", __FUNCTION__, -err); return -EIO; } return err; } /* * This is our standard bitmap for GETATTR requests. */ const u32 nfs4_fattr_bitmap[2] = { FATTR4_WORD0_TYPE | FATTR4_WORD0_CHANGE | FATTR4_WORD0_SIZE | FATTR4_WORD0_FSID | FATTR4_WORD0_FILEID, FATTR4_WORD1_MODE | FATTR4_WORD1_NUMLINKS | FATTR4_WORD1_OWNER | FATTR4_WORD1_OWNER_GROUP | FATTR4_WORD1_RAWDEV | FATTR4_WORD1_SPACE_USED | FATTR4_WORD1_TIME_ACCESS | FATTR4_WORD1_TIME_METADATA | FATTR4_WORD1_TIME_MODIFY }; const u32 nfs4_statfs_bitmap[2] = { FATTR4_WORD0_FILES_AVAIL | FATTR4_WORD0_FILES_FREE | FATTR4_WORD0_FILES_TOTAL, FATTR4_WORD1_SPACE_AVAIL | FATTR4_WORD1_SPACE_FREE | FATTR4_WORD1_SPACE_TOTAL }; const u32 nfs4_pathconf_bitmap[2] = { FATTR4_WORD0_MAXLINK | FATTR4_WORD0_MAXNAME, 0 }; const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE | FATTR4_WORD0_MAXREAD | FATTR4_WORD0_MAXWRITE | FATTR4_WORD0_LEASE_TIME, 0 }; static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry, struct nfs4_readdir_arg *readdir) { u32 *start, *p; BUG_ON(readdir->count < 80); if (cookie > 2) { readdir->cookie = cookie; memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier)); return; } readdir->cookie = 0; memset(&readdir->verifier, 0, sizeof(readdir->verifier)); if (cookie == 2) return; /* * NFSv4 servers do not return entries for '.' and '..' * Therefore, we fake these entries here. We let '.' * have cookie 0 and '..' have cookie 1. Note that * when talking to the server, we always send cookie 0 * instead of 1 or 2. */ start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0); if (cookie == 0) { *p++ = xdr_one; /* next */ *p++ = xdr_zero; /* cookie, first word */ *p++ = xdr_one; /* cookie, second word */ *p++ = xdr_one; /* entry len */ memcpy(p, ".\0\0\0", 4); /* entry */ p++; *p++ = xdr_one; /* bitmap length */ *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ *p++ = htonl(8); /* attribute buffer length */ p = xdr_encode_hyper(p, dentry->d_inode->i_ino); } *p++ = xdr_one; /* next */ *p++ = xdr_zero; /* cookie, first word */ *p++ = xdr_two; /* cookie, second word */ *p++ = xdr_two; /* entry len */ memcpy(p, "..\0\0", 4); /* entry */ p++; *p++ = xdr_one; /* bitmap length */ *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ *p++ = htonl(8); /* attribute buffer length */ p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino); readdir->pgbase = (char *)p - (char *)start; readdir->count -= readdir->pgbase; kunmap_atomic(start, KM_USER0); } static void renew_lease(struct nfs_server *server, unsigned long timestamp) { struct nfs4_client *clp = server->nfs4_state; spin_lock(&clp->cl_lock); if (time_before(clp->cl_last_renewal,timestamp)) clp->cl_last_renewal = timestamp; spin_unlock(&clp->cl_lock); } static void update_changeattr(struct inode *inode, struct nfs4_change_info *cinfo) { struct nfs_inode *nfsi = NFS_I(inode); spin_lock(&inode->i_lock); nfsi->cache_validity |= NFS_INO_INVALID_ATTR; if (cinfo->before == nfsi->change_attr && cinfo->atomic) nfsi->change_attr = cinfo->after; spin_unlock(&inode->i_lock); } /* Helper for asynchronous RPC calls */ static int nfs4_call_async(struct rpc_clnt *clnt, rpc_action tk_begin, rpc_action tk_exit, void *calldata) { struct rpc_task *task; if (!(task = rpc_new_task(clnt, tk_exit, RPC_TASK_ASYNC))) return -ENOMEM; task->tk_calldata = calldata; task->tk_action = tk_begin; rpc_execute(task); return 0; } static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags) { struct inode *inode = state->inode; open_flags &= (FMODE_READ|FMODE_WRITE); /* Protect against nfs4_find_state_byowner() */ spin_lock(&state->owner->so_lock); spin_lock(&inode->i_lock); memcpy(&state->stateid, stateid, sizeof(state->stateid)); if ((open_flags & FMODE_WRITE)) state->nwriters++; if (open_flags & FMODE_READ) state->nreaders++; nfs4_state_set_mode_locked(state, state->state | open_flags); spin_unlock(&inode->i_lock); spin_unlock(&state->owner->so_lock); } /* * OPEN_RECLAIM: * reclaim state on the server after a reboot. */ static int _nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state) { struct inode *inode = state->inode; struct nfs_server *server = NFS_SERVER(inode); struct nfs_delegation *delegation = NFS_I(inode)->delegation; struct nfs_openargs o_arg = { .fh = NFS_FH(inode), .id = sp->so_id, .open_flags = state->state, .clientid = server->nfs4_state->cl_clientid, .claim = NFS4_OPEN_CLAIM_PREVIOUS, .bitmask = server->attr_bitmask, }; struct nfs_openres o_res = { .server = server, /* Grrr */ }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR], .rpc_argp = &o_arg, .rpc_resp = &o_res, .rpc_cred = sp->so_cred, }; int status; if (delegation != NULL) { if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) { memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid)); set_bit(NFS_DELEGATED_STATE, &state->flags); return 0; } o_arg.u.delegation_type = delegation->type; } o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid); if (o_arg.seqid == NULL) return -ENOMEM; status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR); /* Confirm the sequence as being established */ nfs_confirm_seqid(&sp->so_seqid, status); nfs_increment_open_seqid(status, o_arg.seqid); if (status == 0) { memcpy(&state->stateid, &o_res.stateid, sizeof(state->stateid)); if (o_res.delegation_type != 0) { nfs_inode_reclaim_delegation(inode, sp->so_cred, &o_res); /* Did the server issue an immediate delegation recall? */ if (o_res.do_recall) nfs_async_inode_return_delegation(inode, &o_res.stateid); } } nfs_free_seqid(o_arg.seqid); clear_bit(NFS_DELEGATED_STATE, &state->flags); /* Ensure we update the inode attributes */ NFS_CACHEINV(inode); return status; } static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; do { err = _nfs4_open_reclaim(sp, state); if (err != -NFS4ERR_DELAY) break; nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state) { struct nfs4_state_owner *sp = state->owner; struct inode *inode = dentry->d_inode; struct nfs_server *server = NFS_SERVER(inode); struct dentry *parent = dget_parent(dentry); struct nfs_openargs arg = { .fh = NFS_FH(parent->d_inode), .clientid = server->nfs4_state->cl_clientid, .name = &dentry->d_name, .id = sp->so_id, .server = server, .bitmask = server->attr_bitmask, .claim = NFS4_OPEN_CLAIM_DELEGATE_CUR, }; struct nfs_openres res = { .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = sp->so_cred, }; int status = 0; if (!test_bit(NFS_DELEGATED_STATE, &state->flags)) goto out; if (state->state == 0) goto out; arg.seqid = nfs_alloc_seqid(&sp->so_seqid); status = -ENOMEM; if (arg.seqid == NULL) goto out; arg.open_flags = state->state; memcpy(arg.u.delegation.data, state->stateid.data, sizeof(arg.u.delegation.data)); status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR); nfs_increment_open_seqid(status, arg.seqid); if (status != 0) goto out_free; if(res.rflags & NFS4_OPEN_RESULT_CONFIRM) { status = _nfs4_proc_open_confirm(server->client, NFS_FH(inode), sp, &res.stateid, arg.seqid); if (status != 0) goto out_free; } nfs_confirm_seqid(&sp->so_seqid, 0); if (status >= 0) { memcpy(state->stateid.data, res.stateid.data, sizeof(state->stateid.data)); clear_bit(NFS_DELEGATED_STATE, &state->flags); } out_free: nfs_free_seqid(arg.seqid); out: dput(parent); return status; } int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state) { struct nfs4_exception exception = { }; struct nfs_server *server = NFS_SERVER(dentry->d_inode); int err; do { err = _nfs4_open_delegation_recall(dentry, state); switch (err) { case 0: return err; case -NFS4ERR_STALE_CLIENTID: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: /* Don't recall a delegation if it was lost */ nfs4_schedule_state_recovery(server->nfs4_state); return err; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static int _nfs4_proc_open_confirm(struct rpc_clnt *clnt, const struct nfs_fh *fh, struct nfs4_state_owner *sp, nfs4_stateid *stateid, struct nfs_seqid *seqid) { struct nfs_open_confirmargs arg = { .fh = fh, .seqid = seqid, .stateid = *stateid, }; struct nfs_open_confirmres res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = sp->so_cred, }; int status; status = rpc_call_sync(clnt, &msg, RPC_TASK_NOINTR); /* Confirm the sequence as being established */ nfs_confirm_seqid(&sp->so_seqid, status); nfs_increment_open_seqid(status, seqid); if (status >= 0) memcpy(stateid, &res.stateid, sizeof(*stateid)); return status; } static int _nfs4_proc_open(struct inode *dir, struct nfs4_state_owner *sp, struct nfs_openargs *o_arg, struct nfs_openres *o_res) { struct nfs_server *server = NFS_SERVER(dir); struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN], .rpc_argp = o_arg, .rpc_resp = o_res, .rpc_cred = sp->so_cred, }; int status; /* Update sequence id. The caller must serialize! */ o_arg->id = sp->so_id; o_arg->clientid = sp->so_client->cl_clientid; status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR); if (status == 0) { /* OPEN on anything except a regular file is disallowed in NFSv4 */ switch (o_res->f_attr->mode & S_IFMT) { case S_IFREG: break; case S_IFLNK: status = -ELOOP; break; case S_IFDIR: status = -EISDIR; break; default: status = -ENOTDIR; } } nfs_increment_open_seqid(status, o_arg->seqid); if (status != 0) goto out; if (o_arg->open_flags & O_CREAT) { update_changeattr(dir, &o_res->cinfo); nfs_post_op_update_inode(dir, o_res->dir_attr); } else nfs_refresh_inode(dir, o_res->dir_attr); if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) { status = _nfs4_proc_open_confirm(server->client, &o_res->fh, sp, &o_res->stateid, o_arg->seqid); if (status != 0) goto out; } nfs_confirm_seqid(&sp->so_seqid, 0); if (!(o_res->f_attr->valid & NFS_ATTR_FATTR)) status = server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr); out: return status; } static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags) { struct nfs_access_entry cache; int mask = 0; int status; if (openflags & FMODE_READ) mask |= MAY_READ; if (openflags & FMODE_WRITE) mask |= MAY_WRITE; status = nfs_access_get_cached(inode, cred, &cache); if (status == 0) goto out; /* Be clever: ask server to check for all possible rights */ cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; cache.cred = cred; cache.jiffies = jiffies; status = _nfs4_proc_access(inode, &cache); if (status != 0) return status; nfs_access_add_cache(inode, &cache); out: if ((cache.mask & mask) == mask) return 0; return -EACCES; } /* * OPEN_EXPIRED: * reclaim state on the server after a network partition. * Assumes caller holds the appropriate lock */ static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry) { struct dentry *parent = dget_parent(dentry); struct inode *dir = parent->d_inode; struct inode *inode = state->inode; struct nfs_server *server = NFS_SERVER(dir); struct nfs_delegation *delegation = NFS_I(inode)->delegation; struct nfs_fattr f_attr, dir_attr; struct nfs_openargs o_arg = { .fh = NFS_FH(dir), .open_flags = state->state, .name = &dentry->d_name, .bitmask = server->attr_bitmask, .claim = NFS4_OPEN_CLAIM_NULL, }; struct nfs_openres o_res = { .f_attr = &f_attr, .dir_attr = &dir_attr, .server = server, }; int status = 0; if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) { status = _nfs4_do_access(inode, sp->so_cred, state->state); if (status < 0) goto out; memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid)); set_bit(NFS_DELEGATED_STATE, &state->flags); goto out; } o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid); status = -ENOMEM; if (o_arg.seqid == NULL) goto out; nfs_fattr_init(&f_attr); nfs_fattr_init(&dir_attr); status = _nfs4_proc_open(dir, sp, &o_arg, &o_res); if (status != 0) goto out_nodeleg; /* Check if files differ */ if ((f_attr.mode & S_IFMT) != (inode->i_mode & S_IFMT)) goto out_stale; /* Has the file handle changed? */ if (nfs_compare_fh(&o_res.fh, NFS_FH(inode)) != 0) { /* Verify if the change attributes are the same */ if (f_attr.change_attr != NFS_I(inode)->change_attr) goto out_stale; if (nfs_size_to_loff_t(f_attr.size) != inode->i_size) goto out_stale; /* Lets just pretend that this is the same file */ nfs_copy_fh(NFS_FH(inode), &o_res.fh); NFS_I(inode)->fileid = f_attr.fileid; } memcpy(&state->stateid, &o_res.stateid, sizeof(state->stateid)); if (o_res.delegation_type != 0) { if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) nfs_inode_set_delegation(inode, sp->so_cred, &o_res); else nfs_inode_reclaim_delegation(inode, sp->so_cred, &o_res); } out_nodeleg: nfs_free_seqid(o_arg.seqid); clear_bit(NFS_DELEGATED_STATE, &state->flags); out: dput(parent); return status; out_stale: status = -ESTALE; /* Invalidate the state owner so we don't ever use it again */ nfs4_drop_state_owner(sp); d_drop(dentry); /* Should we be trying to close that stateid? */ goto out_nodeleg; } static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry) { struct nfs_server *server = NFS_SERVER(dentry->d_inode); struct nfs4_exception exception = { }; int err; do { err = _nfs4_open_expired(sp, state, dentry); if (err == -NFS4ERR_DELAY) nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state) { struct nfs_inode *nfsi = NFS_I(state->inode); struct nfs_open_context *ctx; int status; spin_lock(&state->inode->i_lock); list_for_each_entry(ctx, &nfsi->open_files, list) { if (ctx->state != state) continue; get_nfs_open_context(ctx); spin_unlock(&state->inode->i_lock); status = nfs4_do_open_expired(sp, state, ctx->dentry); put_nfs_open_context(ctx); return status; } spin_unlock(&state->inode->i_lock); return -ENOENT; } /* * Returns an nfs4_state + an extra reference to the inode */ static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res) { struct nfs_delegation *delegation; struct nfs_server *server = NFS_SERVER(inode); struct nfs4_client *clp = server->nfs4_state; struct nfs_inode *nfsi = NFS_I(inode); struct nfs4_state_owner *sp = NULL; struct nfs4_state *state = NULL; int open_flags = flags & (FMODE_READ|FMODE_WRITE); int err; /* Protect against reboot recovery - NOTE ORDER! */ down_read(&clp->cl_sem); /* Protect against delegation recall */ down_read(&nfsi->rwsem); delegation = NFS_I(inode)->delegation; err = -ENOENT; if (delegation == NULL || (delegation->type & open_flags) != open_flags) goto out_err; err = -ENOMEM; if (!(sp = nfs4_get_state_owner(server, cred))) { dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__); goto out_err; } state = nfs4_get_open_state(inode, sp); if (state == NULL) goto out_err; err = -ENOENT; if ((state->state & open_flags) == open_flags) { spin_lock(&inode->i_lock); if (open_flags & FMODE_READ) state->nreaders++; if (open_flags & FMODE_WRITE) state->nwriters++; spin_unlock(&inode->i_lock); goto out_ok; } else if (state->state != 0) goto out_err; lock_kernel(); err = _nfs4_do_access(inode, cred, open_flags); unlock_kernel(); if (err != 0) goto out_err; set_bit(NFS_DELEGATED_STATE, &state->flags); update_open_stateid(state, &delegation->stateid, open_flags); out_ok: nfs4_put_state_owner(sp); up_read(&nfsi->rwsem); up_read(&clp->cl_sem); igrab(inode); *res = state; return 0; out_err: if (sp != NULL) { if (state != NULL) nfs4_put_open_state(state); nfs4_put_state_owner(sp); } up_read(&nfsi->rwsem); up_read(&clp->cl_sem); if (err != -EACCES) nfs_inode_return_delegation(inode); return err; } static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred) { struct nfs4_exception exception = { }; struct nfs4_state *res; int err; do { err = _nfs4_open_delegated(inode, flags, cred, &res); if (err == 0) break; res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode), err, &exception)); } while (exception.retry); return res; } /* * Returns an nfs4_state + an referenced inode */ static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res) { struct nfs4_state_owner *sp; struct nfs4_state *state = NULL; struct nfs_server *server = NFS_SERVER(dir); struct nfs4_client *clp = server->nfs4_state; struct inode *inode = NULL; int status; struct nfs_fattr f_attr, dir_attr; struct nfs_openargs o_arg = { .fh = NFS_FH(dir), .open_flags = flags, .name = &dentry->d_name, .server = server, .bitmask = server->attr_bitmask, .claim = NFS4_OPEN_CLAIM_NULL, }; struct nfs_openres o_res = { .f_attr = &f_attr, .dir_attr = &dir_attr, .server = server, }; /* Protect against reboot recovery conflicts */ down_read(&clp->cl_sem); status = -ENOMEM; if (!(sp = nfs4_get_state_owner(server, cred))) { dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n"); goto out_err; } if (flags & O_EXCL) { u32 *p = (u32 *) o_arg.u.verifier.data; p[0] = jiffies; p[1] = current->pid; } else o_arg.u.attrs = sattr; /* Serialization for the sequence id */ o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid); if (o_arg.seqid == NULL) return -ENOMEM; nfs_fattr_init(&f_attr); nfs_fattr_init(&dir_attr); status = _nfs4_proc_open(dir, sp, &o_arg, &o_res); if (status != 0) goto out_err; status = -ENOMEM; inode = nfs_fhget(dir->i_sb, &o_res.fh, &f_attr); if (!inode) goto out_err; state = nfs4_get_open_state(inode, sp); if (!state) goto out_err; update_open_stateid(state, &o_res.stateid, flags); if (o_res.delegation_type != 0) nfs_inode_set_delegation(inode, cred, &o_res); nfs_free_seqid(o_arg.seqid); nfs4_put_state_owner(sp); up_read(&clp->cl_sem); *res = state; return 0; out_err: if (sp != NULL) { if (state != NULL) nfs4_put_open_state(state); nfs_free_seqid(o_arg.seqid); nfs4_put_state_owner(sp); } /* Note: clp->cl_sem must be released before nfs4_put_open_state()! */ up_read(&clp->cl_sem); if (inode != NULL) iput(inode); *res = NULL; return status; } static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred) { struct nfs4_exception exception = { }; struct nfs4_state *res; int status; do { status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res); if (status == 0) break; /* NOTE: BAD_SEQID means the server and client disagree about the * book-keeping w.r.t. state-changing operations * (OPEN/CLOSE/LOCK/LOCKU...) * It is actually a sign of a bug on the client or on the server. * * If we receive a BAD_SEQID error in the particular case of * doing an OPEN, we assume that nfs_increment_open_seqid() will * have unhashed the old state_owner for us, and that we can * therefore safely retry using a new one. We should still warn * the user though... */ if (status == -NFS4ERR_BAD_SEQID) { printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n"); exception.retry = 1; continue; } /* * BAD_STATEID on OPEN means that the server cancelled our * state before it received the OPEN_CONFIRM. * Recover by retrying the request as per the discussion * on Page 181 of RFC3530. */ if (status == -NFS4ERR_BAD_STATEID) { exception.retry = 1; continue; } res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir), status, &exception)); } while (exception.retry); return res; } static int _nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr, struct nfs_fh *fhandle, struct iattr *sattr, struct nfs4_state *state) { struct nfs_setattrargs arg = { .fh = fhandle, .iap = sattr, .server = server, .bitmask = server->attr_bitmask, }; struct nfs_setattrres res = { .fattr = fattr, .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR], .rpc_argp = &arg, .rpc_resp = &res, }; int status; nfs_fattr_init(fattr); if (state != NULL) { msg.rpc_cred = state->owner->so_cred; nfs4_copy_stateid(&arg.stateid, state, current->files); } else memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid)); status = rpc_call_sync(server->client, &msg, 0); return status; } static int nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr, struct nfs_fh *fhandle, struct iattr *sattr, struct nfs4_state *state) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_do_setattr(server, fattr, fhandle, sattr, state), &exception); } while (exception.retry); return err; } struct nfs4_closedata { struct inode *inode; struct nfs4_state *state; struct nfs_closeargs arg; struct nfs_closeres res; struct nfs_fattr fattr; }; static void nfs4_free_closedata(struct nfs4_closedata *calldata) { struct nfs4_state *state = calldata->state; struct nfs4_state_owner *sp = state->owner; nfs4_put_open_state(calldata->state); nfs_free_seqid(calldata->arg.seqid); nfs4_put_state_owner(sp); kfree(calldata); } static void nfs4_close_done(struct rpc_task *task) { struct nfs4_closedata *calldata = (struct nfs4_closedata *)task->tk_calldata; struct nfs4_state *state = calldata->state; struct nfs_server *server = NFS_SERVER(calldata->inode); /* hmm. we are done with the inode, and in the process of freeing * the state_owner. we keep this around to process errors */ nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid); switch (task->tk_status) { case 0: memcpy(&state->stateid, &calldata->res.stateid, sizeof(state->stateid)); break; case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: nfs4_schedule_state_recovery(server->nfs4_state); break; default: if (nfs4_async_handle_error(task, server) == -EAGAIN) { rpc_restart_call(task); return; } } nfs_refresh_inode(calldata->inode, calldata->res.fattr); nfs4_free_closedata(calldata); } static void nfs4_close_begin(struct rpc_task *task) { struct nfs4_closedata *calldata = (struct nfs4_closedata *)task->tk_calldata; struct nfs4_state *state = calldata->state; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE], .rpc_argp = &calldata->arg, .rpc_resp = &calldata->res, .rpc_cred = state->owner->so_cred, }; int mode = 0, old_mode; int status; status = nfs_wait_on_sequence(calldata->arg.seqid, task); if (status != 0) return; /* Recalculate the new open mode in case someone reopened the file * while we were waiting in line to be scheduled. */ spin_lock(&state->owner->so_lock); spin_lock(&calldata->inode->i_lock); mode = old_mode = state->state; if (state->nreaders == 0) mode &= ~FMODE_READ; if (state->nwriters == 0) mode &= ~FMODE_WRITE; nfs4_state_set_mode_locked(state, mode); spin_unlock(&calldata->inode->i_lock); spin_unlock(&state->owner->so_lock); if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) { nfs4_free_closedata(calldata); task->tk_exit = NULL; rpc_exit(task, 0); return; } nfs_fattr_init(calldata->res.fattr); if (mode != 0) msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE]; calldata->arg.open_flags = mode; rpc_call_setup(task, &msg, 0); } /* * It is possible for data to be read/written from a mem-mapped file * after the sys_close call (which hits the vfs layer as a flush). * This means that we can't safely call nfsv4 close on a file until * the inode is cleared. This in turn means that we are not good * NFSv4 citizens - we do not indicate to the server to update the file's * share state even when we are done with one of the three share * stateid's in the inode. * * NOTE: Caller must be holding the sp->so_owner semaphore! */ int nfs4_do_close(struct inode *inode, struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_closedata *calldata; int status = -ENOMEM; calldata = kmalloc(sizeof(*calldata), GFP_KERNEL); if (calldata == NULL) goto out; calldata->inode = inode; calldata->state = state; calldata->arg.fh = NFS_FH(inode); calldata->arg.stateid = &state->stateid; /* Serialization for the sequence id */ calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid); if (calldata->arg.seqid == NULL) goto out_free_calldata; calldata->arg.bitmask = server->attr_bitmask; calldata->res.fattr = &calldata->fattr; calldata->res.server = server; status = nfs4_call_async(server->client, nfs4_close_begin, nfs4_close_done, calldata); if (status == 0) goto out; nfs_free_seqid(calldata->arg.seqid); out_free_calldata: kfree(calldata); out: return status; } static void nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state) { struct file *filp; filp = lookup_instantiate_filp(nd, dentry, NULL); if (!IS_ERR(filp)) { struct nfs_open_context *ctx; ctx = (struct nfs_open_context *)filp->private_data; ctx->state = state; } else nfs4_close_state(state, nd->intent.open.flags); } struct dentry * nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd) { struct iattr attr; struct rpc_cred *cred; struct nfs4_state *state; struct dentry *res; if (nd->flags & LOOKUP_CREATE) { attr.ia_mode = nd->intent.open.create_mode; attr.ia_valid = ATTR_MODE; if (!IS_POSIXACL(dir)) attr.ia_mode &= ~current->fs->umask; } else { attr.ia_valid = 0; BUG_ON(nd->intent.open.flags & O_CREAT); } cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0); if (IS_ERR(cred)) return (struct dentry *)cred; state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred); put_rpccred(cred); if (IS_ERR(state)) { if (PTR_ERR(state) == -ENOENT) d_add(dentry, NULL); return (struct dentry *)state; } res = d_add_unique(dentry, state->inode); if (res != NULL) dentry = res; nfs4_intent_set_file(nd, dentry, state); return res; } int nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd) { struct rpc_cred *cred; struct nfs4_state *state; struct inode *inode; cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0); if (IS_ERR(cred)) return PTR_ERR(cred); state = nfs4_open_delegated(dentry->d_inode, openflags, cred); if (IS_ERR(state)) state = nfs4_do_open(dir, dentry, openflags, NULL, cred); put_rpccred(cred); if (IS_ERR(state)) { switch (PTR_ERR(state)) { case -EPERM: case -EACCES: case -EDQUOT: case -ENOSPC: case -EROFS: lookup_instantiate_filp(nd, (struct dentry *)state, NULL); return 1; case -ENOENT: if (dentry->d_inode == NULL) return 1; } goto out_drop; } inode = state->inode; iput(inode); if (inode == dentry->d_inode) { nfs4_intent_set_file(nd, dentry, state); return 1; } nfs4_close_state(state, openflags); out_drop: d_drop(dentry); return 0; } static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) { struct nfs4_server_caps_res res = {}; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS], .rpc_argp = fhandle, .rpc_resp = &res, }; int status; status = rpc_call_sync(server->client, &msg, 0); if (status == 0) { memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask)); if (res.attr_bitmask[0] & FATTR4_WORD0_ACL) server->caps |= NFS_CAP_ACLS; if (res.has_links != 0) server->caps |= NFS_CAP_HARDLINKS; if (res.has_symlinks != 0) server->caps |= NFS_CAP_SYMLINKS; server->acl_bitmask = res.acl_bitmask; } return status; } static int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_server_capabilities(server, fhandle), &exception); } while (exception.retry); return err; } static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs4_lookup_root_arg args = { .bitmask = nfs4_fattr_bitmap, }; struct nfs4_lookup_res res = { .server = server, .fattr = info->fattr, .fh = fhandle, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT], .rpc_argp = &args, .rpc_resp = &res, }; nfs_fattr_init(info->fattr); return rpc_call_sync(server->client, &msg, 0); } static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_lookup_root(server, fhandle, info), &exception); } while (exception.retry); return err; } static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs_fattr * fattr = info->fattr; unsigned char * p; struct qstr q; struct nfs4_lookup_arg args = { .dir_fh = fhandle, .name = &q, .bitmask = nfs4_fattr_bitmap, }; struct nfs4_lookup_res res = { .server = server, .fattr = fattr, .fh = fhandle, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP], .rpc_argp = &args, .rpc_resp = &res, }; int status; /* * Now we do a separate LOOKUP for each component of the mount path. * The LOOKUPs are done separately so that we can conveniently * catch an ERR_WRONGSEC if it occurs along the way... */ status = nfs4_lookup_root(server, fhandle, info); if (status) goto out; p = server->mnt_path; for (;;) { struct nfs4_exception exception = { }; while (*p == '/') p++; if (!*p) break; q.name = p; while (*p && (*p != '/')) p++; q.len = p - q.name; do { nfs_fattr_init(fattr); status = nfs4_handle_exception(server, rpc_call_sync(server->client, &msg, 0), &exception); } while (exception.retry); if (status == 0) continue; if (status == -ENOENT) { printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path); printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n"); } break; } if (status == 0) status = nfs4_server_capabilities(server, fhandle); if (status == 0) status = nfs4_do_fsinfo(server, fhandle, info); out: return status; } static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs4_getattr_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct nfs4_getattr_res res = { .fattr = fattr, .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR], .rpc_argp = &args, .rpc_resp = &res, }; nfs_fattr_init(fattr); return rpc_call_sync(server->client, &msg, 0); } static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_getattr(server, fhandle, fattr), &exception); } while (exception.retry); return err; } /* * The file is not closed if it is opened due to the a request to change * the size of the file. The open call will not be needed once the * VFS layer lookup-intents are implemented. * * Close is called when the inode is destroyed. * If we haven't opened the file for O_WRONLY, we * need to in the size_change case to obtain a stateid. * * Got race? * Because OPEN is always done by name in nfsv4, it is * possible that we opened a different file by the same * name. We can recognize this race condition, but we * can't do anything about it besides returning an error. * * This will be fixed with VFS changes (lookup-intent). */ static int nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr, struct iattr *sattr) { struct rpc_cred *cred; struct inode *inode = dentry->d_inode; struct nfs_open_context *ctx; struct nfs4_state *state = NULL; int status; nfs_fattr_init(fattr); cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0); if (IS_ERR(cred)) return PTR_ERR(cred); /* Search for an existing open(O_WRITE) file */ ctx = nfs_find_open_context(inode, cred, FMODE_WRITE); if (ctx != NULL) state = ctx->state; status = nfs4_do_setattr(NFS_SERVER(inode), fattr, NFS_FH(inode), sattr, state); if (status == 0) nfs_setattr_update_inode(inode, sattr); if (ctx != NULL) put_nfs_open_context(ctx); put_rpccred(cred); return status; } static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { int status; struct nfs_server *server = NFS_SERVER(dir); struct nfs4_lookup_arg args = { .bitmask = server->attr_bitmask, .dir_fh = NFS_FH(dir), .name = name, }; struct nfs4_lookup_res res = { .server = server, .fattr = fattr, .fh = fhandle, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP], .rpc_argp = &args, .rpc_resp = &res, }; nfs_fattr_init(fattr); dprintk("NFS call lookup %s\n", name->name); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); dprintk("NFS reply lookup: %d\n", status); return status; } static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_lookup(dir, name, fhandle, fattr), &exception); } while (exception.retry); return err; } static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) { struct nfs4_accessargs args = { .fh = NFS_FH(inode), }; struct nfs4_accessres res = { 0 }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = entry->cred, }; int mode = entry->mask; int status; /* * Determine which access bits we want to ask for... */ if (mode & MAY_READ) args.access |= NFS4_ACCESS_READ; if (S_ISDIR(inode->i_mode)) { if (mode & MAY_WRITE) args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE; if (mode & MAY_EXEC) args.access |= NFS4_ACCESS_LOOKUP; } else { if (mode & MAY_WRITE) args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND; if (mode & MAY_EXEC) args.access |= NFS4_ACCESS_EXECUTE; } status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); if (!status) { entry->mask = 0; if (res.access & NFS4_ACCESS_READ) entry->mask |= MAY_READ; if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) entry->mask |= MAY_WRITE; if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) entry->mask |= MAY_EXEC; } return status; } static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(inode), _nfs4_proc_access(inode, entry), &exception); } while (exception.retry); return err; } /* * TODO: For the time being, we don't try to get any attributes * along with any of the zero-copy operations READ, READDIR, * READLINK, WRITE. * * In the case of the first three, we want to put the GETATTR * after the read-type operation -- this is because it is hard * to predict the length of a GETATTR response in v4, and thus * align the READ data correctly. This means that the GETATTR * may end up partially falling into the page cache, and we should * shift it into the 'tail' of the xdr_buf before processing. * To do this efficiently, we need to know the total length * of data received, which doesn't seem to be available outside * of the RPC layer. * * In the case of WRITE, we also want to put the GETATTR after * the operation -- in this case because we want to make sure * we get the post-operation mtime and size. This means that * we can't use xdr_encode_pages() as written: we need a variant * of it which would leave room in the 'tail' iovec. * * Both of these changes to the XDR layer would in fact be quite * minor, but I decided to leave them for a subsequent patch. */ static int _nfs4_proc_readlink(struct inode *inode, struct page *page, unsigned int pgbase, unsigned int pglen) { struct nfs4_readlink args = { .fh = NFS_FH(inode), .pgbase = pgbase, .pglen = pglen, .pages = &page, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK], .rpc_argp = &args, .rpc_resp = NULL, }; return rpc_call_sync(NFS_CLIENT(inode), &msg, 0); } static int nfs4_proc_readlink(struct inode *inode, struct page *page, unsigned int pgbase, unsigned int pglen) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(inode), _nfs4_proc_readlink(inode, page, pgbase, pglen), &exception); } while (exception.retry); return err; } static int _nfs4_proc_read(struct nfs_read_data *rdata) { int flags = rdata->flags; struct inode *inode = rdata->inode; struct nfs_fattr *fattr = rdata->res.fattr; struct nfs_server *server = NFS_SERVER(inode); struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ], .rpc_argp = &rdata->args, .rpc_resp = &rdata->res, .rpc_cred = rdata->cred, }; unsigned long timestamp = jiffies; int status; dprintk("NFS call read %d @ %Ld\n", rdata->args.count, (long long) rdata->args.offset); nfs_fattr_init(fattr); status = rpc_call_sync(server->client, &msg, flags); if (!status) renew_lease(server, timestamp); dprintk("NFS reply read: %d\n", status); return status; } static int nfs4_proc_read(struct nfs_read_data *rdata) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(rdata->inode), _nfs4_proc_read(rdata), &exception); } while (exception.retry); return err; } static int _nfs4_proc_write(struct nfs_write_data *wdata) { int rpcflags = wdata->flags; struct inode *inode = wdata->inode; struct nfs_fattr *fattr = wdata->res.fattr; struct nfs_server *server = NFS_SERVER(inode); struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE], .rpc_argp = &wdata->args, .rpc_resp = &wdata->res, .rpc_cred = wdata->cred, }; int status; dprintk("NFS call write %d @ %Ld\n", wdata->args.count, (long long) wdata->args.offset); nfs_fattr_init(fattr); status = rpc_call_sync(server->client, &msg, rpcflags); dprintk("NFS reply write: %d\n", status); return status; } static int nfs4_proc_write(struct nfs_write_data *wdata) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(wdata->inode), _nfs4_proc_write(wdata), &exception); } while (exception.retry); return err; } static int _nfs4_proc_commit(struct nfs_write_data *cdata) { struct inode *inode = cdata->inode; struct nfs_fattr *fattr = cdata->res.fattr; struct nfs_server *server = NFS_SERVER(inode); struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT], .rpc_argp = &cdata->args, .rpc_resp = &cdata->res, .rpc_cred = cdata->cred, }; int status; dprintk("NFS call commit %d @ %Ld\n", cdata->args.count, (long long) cdata->args.offset); nfs_fattr_init(fattr); status = rpc_call_sync(server->client, &msg, 0); dprintk("NFS reply commit: %d\n", status); return status; } static int nfs4_proc_commit(struct nfs_write_data *cdata) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(cdata->inode), _nfs4_proc_commit(cdata), &exception); } while (exception.retry); return err; } /* * Got race? * We will need to arrange for the VFS layer to provide an atomic open. * Until then, this create/open method is prone to inefficiency and race * conditions due to the lookup, create, and open VFS calls from sys_open() * placed on the wire. * * Given the above sorry state of affairs, I'm simply sending an OPEN. * The file will be opened again in the subsequent VFS open call * (nfs4_proc_file_open). * * The open for read will just hang around to be used by any process that * opens the file O_RDONLY. This will all be resolved with the VFS changes. */ static int nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr, int flags, struct nameidata *nd) { struct nfs4_state *state; struct rpc_cred *cred; int status = 0; cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0); if (IS_ERR(cred)) { status = PTR_ERR(cred); goto out; } state = nfs4_do_open(dir, dentry, flags, sattr, cred); put_rpccred(cred); if (IS_ERR(state)) { status = PTR_ERR(state); goto out; } d_instantiate(dentry, state->inode); if (flags & O_EXCL) { struct nfs_fattr fattr; status = nfs4_do_setattr(NFS_SERVER(dir), &fattr, NFS_FH(state->inode), sattr, state); if (status == 0) nfs_setattr_update_inode(state->inode, sattr); } if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN)) nfs4_intent_set_file(nd, dentry, state); else nfs4_close_state(state, flags); out: return status; } static int _nfs4_proc_remove(struct inode *dir, struct qstr *name) { struct nfs_server *server = NFS_SERVER(dir); struct nfs4_remove_arg args = { .fh = NFS_FH(dir), .name = name, .bitmask = server->attr_bitmask, }; struct nfs_fattr dir_attr; struct nfs4_remove_res res = { .server = server, .dir_attr = &dir_attr, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE], .rpc_argp = &args, .rpc_resp = &res, }; int status; nfs_fattr_init(res.dir_attr); status = rpc_call_sync(server->client, &msg, 0); if (status == 0) { update_changeattr(dir, &res.cinfo); nfs_post_op_update_inode(dir, res.dir_attr); } return status; } static int nfs4_proc_remove(struct inode *dir, struct qstr *name) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_remove(dir, name), &exception); } while (exception.retry); return err; } struct unlink_desc { struct nfs4_remove_arg args; struct nfs4_remove_res res; struct nfs_fattr dir_attr; }; static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir, struct qstr *name) { struct nfs_server *server = NFS_SERVER(dir->d_inode); struct unlink_desc *up; up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL); if (!up) return -ENOMEM; up->args.fh = NFS_FH(dir->d_inode); up->args.name = name; up->args.bitmask = server->attr_bitmask; up->res.server = server; up->res.dir_attr = &up->dir_attr; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE]; msg->rpc_argp = &up->args; msg->rpc_resp = &up->res; return 0; } static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task) { struct rpc_message *msg = &task->tk_msg; struct unlink_desc *up; if (msg->rpc_resp != NULL) { up = container_of(msg->rpc_resp, struct unlink_desc, res); update_changeattr(dir->d_inode, &up->res.cinfo); nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr); kfree(up); msg->rpc_resp = NULL; msg->rpc_argp = NULL; } return 0; } static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name, struct inode *new_dir, struct qstr *new_name) { struct nfs_server *server = NFS_SERVER(old_dir); struct nfs4_rename_arg arg = { .old_dir = NFS_FH(old_dir), .new_dir = NFS_FH(new_dir), .old_name = old_name, .new_name = new_name, .bitmask = server->attr_bitmask, }; struct nfs_fattr old_fattr, new_fattr; struct nfs4_rename_res res = { .server = server, .old_fattr = &old_fattr, .new_fattr = &new_fattr, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME], .rpc_argp = &arg, .rpc_resp = &res, }; int status; nfs_fattr_init(res.old_fattr); nfs_fattr_init(res.new_fattr); status = rpc_call_sync(server->client, &msg, 0); if (!status) { update_changeattr(old_dir, &res.old_cinfo); nfs_post_op_update_inode(old_dir, res.old_fattr); update_changeattr(new_dir, &res.new_cinfo); nfs_post_op_update_inode(new_dir, res.new_fattr); } return status; } static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name, struct inode *new_dir, struct qstr *new_name) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(old_dir), _nfs4_proc_rename(old_dir, old_name, new_dir, new_name), &exception); } while (exception.retry); return err; } static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_link_arg arg = { .fh = NFS_FH(inode), .dir_fh = NFS_FH(dir), .name = name, .bitmask = server->attr_bitmask, }; struct nfs_fattr fattr, dir_attr; struct nfs4_link_res res = { .server = server, .fattr = &fattr, .dir_attr = &dir_attr, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK], .rpc_argp = &arg, .rpc_resp = &res, }; int status; nfs_fattr_init(res.fattr); nfs_fattr_init(res.dir_attr); status = rpc_call_sync(server->client, &msg, 0); if (!status) { update_changeattr(dir, &res.cinfo); nfs_post_op_update_inode(dir, res.dir_attr); nfs_refresh_inode(inode, res.fattr); } return status; } static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(inode), _nfs4_proc_link(inode, dir, name), &exception); } while (exception.retry); return err; } static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name, struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs_server *server = NFS_SERVER(dir); struct nfs_fattr dir_fattr; struct nfs4_create_arg arg = { .dir_fh = NFS_FH(dir), .server = server, .name = name, .attrs = sattr, .ftype = NF4LNK, .bitmask = server->attr_bitmask, }; struct nfs4_create_res res = { .server = server, .fh = fhandle, .fattr = fattr, .dir_fattr = &dir_fattr, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK], .rpc_argp = &arg, .rpc_resp = &res, }; int status; if (path->len > NFS4_MAXPATHLEN) return -ENAMETOOLONG; arg.u.symlink = path; nfs_fattr_init(fattr); nfs_fattr_init(&dir_fattr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); if (!status) update_changeattr(dir, &res.dir_cinfo); nfs_post_op_update_inode(dir, res.dir_fattr); return status; } static int nfs4_proc_symlink(struct inode *dir, struct qstr *name, struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_symlink(dir, name, path, sattr, fhandle, fattr), &exception); } while (exception.retry); return err; } static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs_server *server = NFS_SERVER(dir); struct nfs_fh fhandle; struct nfs_fattr fattr, dir_fattr; struct nfs4_create_arg arg = { .dir_fh = NFS_FH(dir), .server = server, .name = &dentry->d_name, .attrs = sattr, .ftype = NF4DIR, .bitmask = server->attr_bitmask, }; struct nfs4_create_res res = { .server = server, .fh = &fhandle, .fattr = &fattr, .dir_fattr = &dir_fattr, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE], .rpc_argp = &arg, .rpc_resp = &res, }; int status; nfs_fattr_init(&fattr); nfs_fattr_init(&dir_fattr); status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); if (!status) { update_changeattr(dir, &res.dir_cinfo); nfs_post_op_update_inode(dir, res.dir_fattr); status = nfs_instantiate(dentry, &fhandle, &fattr); } return status; } static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_mkdir(dir, dentry, sattr), &exception); } while (exception.retry); return err; } static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page *page, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; struct nfs4_readdir_arg args = { .fh = NFS_FH(dir), .pages = &page, .pgbase = 0, .count = count, .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask, }; struct nfs4_readdir_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; int status; dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__, dentry->d_parent->d_name.name, dentry->d_name.name, (unsigned long long)cookie); lock_kernel(); nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args); res.pgbase = args.pgbase; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); if (status == 0) memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE); unlock_kernel(); dprintk("%s: returns %d\n", __FUNCTION__, status); return status; } static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page *page, unsigned int count, int plus) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode), _nfs4_proc_readdir(dentry, cred, cookie, page, count, plus), &exception); } while (exception.retry); return err; } static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct nfs_server *server = NFS_SERVER(dir); struct nfs_fh fh; struct nfs_fattr fattr, dir_fattr; struct nfs4_create_arg arg = { .dir_fh = NFS_FH(dir), .server = server, .name = &dentry->d_name, .attrs = sattr, .bitmask = server->attr_bitmask, }; struct nfs4_create_res res = { .server = server, .fh = &fh, .fattr = &fattr, .dir_fattr = &dir_fattr, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE], .rpc_argp = &arg, .rpc_resp = &res, }; int status; int mode = sattr->ia_mode; nfs_fattr_init(&fattr); nfs_fattr_init(&dir_fattr); BUG_ON(!(sattr->ia_valid & ATTR_MODE)); BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode)); if (S_ISFIFO(mode)) arg.ftype = NF4FIFO; else if (S_ISBLK(mode)) { arg.ftype = NF4BLK; arg.u.device.specdata1 = MAJOR(rdev); arg.u.device.specdata2 = MINOR(rdev); } else if (S_ISCHR(mode)) { arg.ftype = NF4CHR; arg.u.device.specdata1 = MAJOR(rdev); arg.u.device.specdata2 = MINOR(rdev); } else arg.ftype = NF4SOCK; status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0); if (status == 0) { update_changeattr(dir, &res.dir_cinfo); nfs_post_op_update_inode(dir, res.dir_fattr); status = nfs_instantiate(dentry, &fh, &fattr); } return status; } static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_mknod(dir, dentry, sattr, rdev), &exception); } while (exception.retry); return err; } static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat) { struct nfs4_statfs_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS], .rpc_argp = &args, .rpc_resp = fsstat, }; nfs_fattr_init(fsstat->fattr); return rpc_call_sync(server->client, &msg, 0); } static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_statfs(server, fhandle, fsstat), &exception); } while (exception.retry); return err; } static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) { struct nfs4_fsinfo_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO], .rpc_argp = &args, .rpc_resp = fsinfo, }; return rpc_call_sync(server->client, &msg, 0); } static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_do_fsinfo(server, fhandle, fsinfo), &exception); } while (exception.retry); return err; } static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) { nfs_fattr_init(fsinfo->fattr); return nfs4_do_fsinfo(server, fhandle, fsinfo); } static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *pathconf) { struct nfs4_pathconf_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF], .rpc_argp = &args, .rpc_resp = pathconf, }; /* None of the pathconf attributes are mandatory to implement */ if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) { memset(pathconf, 0, sizeof(*pathconf)); return 0; } nfs_fattr_init(pathconf->fattr); return rpc_call_sync(server->client, &msg, 0); } static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *pathconf) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_pathconf(server, fhandle, pathconf), &exception); } while (exception.retry); return err; } static void nfs4_read_done(struct rpc_task *task) { struct nfs_read_data *data = (struct nfs_read_data *) task->tk_calldata; struct inode *inode = data->inode; if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) { rpc_restart_call(task); return; } if (task->tk_status > 0) renew_lease(NFS_SERVER(inode), data->timestamp); /* Call back common NFS readpage processing */ nfs_readpage_result(task); } static void nfs4_proc_read_setup(struct nfs_read_data *data) { struct rpc_task *task = &data->task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ], .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = data->cred, }; struct inode *inode = data->inode; int flags; data->timestamp = jiffies; /* N.B. Do we need to test? Never called for swapfile inode */ flags = RPC_TASK_ASYNC | (IS_SWAPFILE(inode)? NFS_RPC_SWAPFLAGS : 0); /* Finalize the task. */ rpc_init_task(task, NFS_CLIENT(inode), nfs4_read_done, flags); rpc_call_setup(task, &msg, 0); } static void nfs4_write_done(struct rpc_task *task) { struct nfs_write_data *data = (struct nfs_write_data *) task->tk_calldata; struct inode *inode = data->inode; if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) { rpc_restart_call(task); return; } if (task->tk_status >= 0) { renew_lease(NFS_SERVER(inode), data->timestamp); nfs_post_op_update_inode(inode, data->res.fattr); } /* Call back common NFS writeback processing */ nfs_writeback_done(task); } static void nfs4_proc_write_setup(struct nfs_write_data *data, int how) { struct rpc_task *task = &data->task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE], .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = data->cred, }; struct inode *inode = data->inode; struct nfs_server *server = NFS_SERVER(inode); int stable; int flags; if (how & FLUSH_STABLE) { if (!NFS_I(inode)->ncommit) stable = NFS_FILE_SYNC; else stable = NFS_DATA_SYNC; } else stable = NFS_UNSTABLE; data->args.stable = stable; data->args.bitmask = server->attr_bitmask; data->res.server = server; data->timestamp = jiffies; /* Set the initial flags for the task. */ flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; /* Finalize the task. */ rpc_init_task(task, NFS_CLIENT(inode), nfs4_write_done, flags); rpc_call_setup(task, &msg, 0); } static void nfs4_commit_done(struct rpc_task *task) { struct nfs_write_data *data = (struct nfs_write_data *) task->tk_calldata; struct inode *inode = data->inode; if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) { rpc_restart_call(task); return; } if (task->tk_status >= 0) nfs_post_op_update_inode(inode, data->res.fattr); /* Call back common NFS writeback processing */ nfs_commit_done(task); } static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how) { struct rpc_task *task = &data->task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT], .rpc_argp = &data->args, .rpc_resp = &data->res, .rpc_cred = data->cred, }; struct inode *inode = data->inode; struct nfs_server *server = NFS_SERVER(inode); int flags; data->args.bitmask = server->attr_bitmask; data->res.server = server; /* Set the initial flags for the task. */ flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC; /* Finalize the task. */ rpc_init_task(task, NFS_CLIENT(inode), nfs4_commit_done, flags); rpc_call_setup(task, &msg, 0); } /* * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special * standalone procedure for queueing an asynchronous RENEW. */ static void renew_done(struct rpc_task *task) { struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp; unsigned long timestamp = (unsigned long)task->tk_calldata; if (task->tk_status < 0) { switch (task->tk_status) { case -NFS4ERR_STALE_CLIENTID: case -NFS4ERR_EXPIRED: case -NFS4ERR_CB_PATH_DOWN: nfs4_schedule_state_recovery(clp); } return; } spin_lock(&clp->cl_lock); if (time_before(clp->cl_last_renewal,timestamp)) clp->cl_last_renewal = timestamp; spin_unlock(&clp->cl_lock); } int nfs4_proc_async_renew(struct nfs4_client *clp) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], .rpc_argp = clp, .rpc_cred = clp->cl_cred, }; return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT, renew_done, (void *)jiffies); } int nfs4_proc_renew(struct nfs4_client *clp) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], .rpc_argp = clp, .rpc_cred = clp->cl_cred, }; unsigned long now = jiffies; int status; status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); if (status < 0) return status; spin_lock(&clp->cl_lock); if (time_before(clp->cl_last_renewal,now)) clp->cl_last_renewal = now; spin_unlock(&clp->cl_lock); return 0; } static inline int nfs4_server_supports_acls(struct nfs_server *server) { return (server->caps & NFS_CAP_ACLS) && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL) && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL); } /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on * the stack. */ #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT) static void buf_to_pages(const void *buf, size_t buflen, struct page **pages, unsigned int *pgbase) { const void *p = buf; *pgbase = offset_in_page(buf); p -= *pgbase; while (p < buf + buflen) { *(pages++) = virt_to_page(p); p += PAGE_CACHE_SIZE; } } struct nfs4_cached_acl { int cached; size_t len; char data[0]; }; static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl) { struct nfs_inode *nfsi = NFS_I(inode); spin_lock(&inode->i_lock); kfree(nfsi->nfs4_acl); nfsi->nfs4_acl = acl; spin_unlock(&inode->i_lock); } static void nfs4_zap_acl_attr(struct inode *inode) { nfs4_set_cached_acl(inode, NULL); } static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen) { struct nfs_inode *nfsi = NFS_I(inode); struct nfs4_cached_acl *acl; int ret = -ENOENT; spin_lock(&inode->i_lock); acl = nfsi->nfs4_acl; if (acl == NULL) goto out; if (buf == NULL) /* user is just asking for length */ goto out_len; if (acl->cached == 0) goto out; ret = -ERANGE; /* see getxattr(2) man page */ if (acl->len > buflen) goto out; memcpy(buf, acl->data, acl->len); out_len: ret = acl->len; out: spin_unlock(&inode->i_lock); return ret; } static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len) { struct nfs4_cached_acl *acl; if (buf && acl_len <= PAGE_SIZE) { acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL); if (acl == NULL) goto out; acl->cached = 1; memcpy(acl->data, buf, acl_len); } else { acl = kmalloc(sizeof(*acl), GFP_KERNEL); if (acl == NULL) goto out; acl->cached = 0; } acl->len = acl_len; out: nfs4_set_cached_acl(inode, acl); } static inline ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen) { struct page *pages[NFS4ACL_MAXPAGES]; struct nfs_getaclargs args = { .fh = NFS_FH(inode), .acl_pages = pages, .acl_len = buflen, }; size_t resp_len = buflen; void *resp_buf; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL], .rpc_argp = &args, .rpc_resp = &resp_len, }; struct page *localpage = NULL; int ret; if (buflen < PAGE_SIZE) { /* As long as we're doing a round trip to the server anyway, * let's be prepared for a page of acl data. */ localpage = alloc_page(GFP_KERNEL); resp_buf = page_address(localpage); if (localpage == NULL) return -ENOMEM; args.acl_pages[0] = localpage; args.acl_pgbase = 0; resp_len = args.acl_len = PAGE_SIZE; } else { resp_buf = buf; buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase); } ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0); if (ret) goto out_free; if (resp_len > args.acl_len) nfs4_write_cached_acl(inode, NULL, resp_len); else nfs4_write_cached_acl(inode, resp_buf, resp_len); if (buf) { ret = -ERANGE; if (resp_len > buflen) goto out_free; if (localpage) memcpy(buf, resp_buf, resp_len); } ret = resp_len; out_free: if (localpage) __free_page(localpage); return ret; } static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen) { struct nfs_server *server = NFS_SERVER(inode); int ret; if (!nfs4_server_supports_acls(server)) return -EOPNOTSUPP; ret = nfs_revalidate_inode(server, inode); if (ret < 0) return ret; ret = nfs4_read_cached_acl(inode, buf, buflen); if (ret != -ENOENT) return ret; return nfs4_get_acl_uncached(inode, buf, buflen); } static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen) { struct nfs_server *server = NFS_SERVER(inode); struct page *pages[NFS4ACL_MAXPAGES]; struct nfs_setaclargs arg = { .fh = NFS_FH(inode), .acl_pages = pages, .acl_len = buflen, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL], .rpc_argp = &arg, .rpc_resp = NULL, }; int ret; if (!nfs4_server_supports_acls(server)) return -EOPNOTSUPP; nfs_inode_return_delegation(inode); buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase); ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0); if (ret == 0) nfs4_write_cached_acl(inode, buf, buflen); return ret; } static int nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server) { struct nfs4_client *clp = server->nfs4_state; if (!clp || task->tk_status >= 0) return 0; switch(task->tk_status) { case -NFS4ERR_STALE_CLIENTID: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL); nfs4_schedule_state_recovery(clp); if (test_bit(NFS4CLNT_OK, &clp->cl_state)) rpc_wake_up_task(task); task->tk_status = 0; return -EAGAIN; case -NFS4ERR_GRACE: case -NFS4ERR_DELAY: rpc_delay(task, NFS4_POLL_RETRY_MAX); task->tk_status = 0; return -EAGAIN; case -NFS4ERR_OLD_STATEID: task->tk_status = 0; return -EAGAIN; } task->tk_status = nfs4_map_errors(task->tk_status); return 0; } static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp) { DEFINE_WAIT(wait); sigset_t oldset; int interruptible, res = 0; might_sleep(); rpc_clnt_sigmask(clnt, &oldset); interruptible = TASK_UNINTERRUPTIBLE; if (clnt->cl_intr) interruptible = TASK_INTERRUPTIBLE; prepare_to_wait(&clp->cl_waitq, &wait, interruptible); nfs4_schedule_state_recovery(clp); if (clnt->cl_intr && signalled()) res = -ERESTARTSYS; else if (!test_bit(NFS4CLNT_OK, &clp->cl_state)) schedule(); finish_wait(&clp->cl_waitq, &wait); rpc_clnt_sigunmask(clnt, &oldset); return res; } static int nfs4_delay(struct rpc_clnt *clnt, long *timeout) { sigset_t oldset; int res = 0; might_sleep(); if (*timeout <= 0) *timeout = NFS4_POLL_RETRY_MIN; if (*timeout > NFS4_POLL_RETRY_MAX) *timeout = NFS4_POLL_RETRY_MAX; rpc_clnt_sigmask(clnt, &oldset); if (clnt->cl_intr) { schedule_timeout_interruptible(*timeout); if (signalled()) res = -ERESTARTSYS; } else schedule_timeout_uninterruptible(*timeout); rpc_clnt_sigunmask(clnt, &oldset); *timeout <<= 1; return res; } /* This is the error handling routine for processes that are allowed * to sleep. */ int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception) { struct nfs4_client *clp = server->nfs4_state; int ret = errorcode; exception->retry = 0; switch(errorcode) { case 0: return 0; case -NFS4ERR_STALE_CLIENTID: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: ret = nfs4_wait_clnt_recover(server->client, clp); if (ret == 0) exception->retry = 1; break; case -NFS4ERR_GRACE: case -NFS4ERR_DELAY: ret = nfs4_delay(server->client, &exception->timeout); if (ret != 0) break; case -NFS4ERR_OLD_STATEID: exception->retry = 1; } /* We failed to handle the error */ return nfs4_map_errors(ret); } int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port) { nfs4_verifier sc_verifier; struct nfs4_setclientid setclientid = { .sc_verifier = &sc_verifier, .sc_prog = program, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID], .rpc_argp = &setclientid, .rpc_resp = clp, .rpc_cred = clp->cl_cred, }; u32 *p; int loop = 0; int status; p = (u32*)sc_verifier.data; *p++ = htonl((u32)clp->cl_boot_time.tv_sec); *p = htonl((u32)clp->cl_boot_time.tv_nsec); for(;;) { setclientid.sc_name_len = scnprintf(setclientid.sc_name, sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u", clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr), clp->cl_cred->cr_ops->cr_name, clp->cl_id_uniquifier); setclientid.sc_netid_len = scnprintf(setclientid.sc_netid, sizeof(setclientid.sc_netid), "tcp"); setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr, sizeof(setclientid.sc_uaddr), "%s.%d.%d", clp->cl_ipaddr, port >> 8, port & 255); status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); if (status != -NFS4ERR_CLID_INUSE) break; if (signalled()) break; if (loop++ & 1) ssleep(clp->cl_lease_time + 1); else if (++clp->cl_id_uniquifier == 0) break; } return status; } int nfs4_proc_setclientid_confirm(struct nfs4_client *clp) { struct nfs_fsinfo fsinfo; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM], .rpc_argp = clp, .rpc_resp = &fsinfo, .rpc_cred = clp->cl_cred, }; unsigned long now; int status; now = jiffies; status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); if (status == 0) { spin_lock(&clp->cl_lock); clp->cl_lease_time = fsinfo.lease_time * HZ; clp->cl_last_renewal = now; spin_unlock(&clp->cl_lock); } return status; } static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid) { struct nfs4_delegreturnargs args = { .fhandle = NFS_FH(inode), .stateid = stateid, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN], .rpc_argp = &args, .rpc_cred = cred, }; return rpc_call_sync(NFS_CLIENT(inode), &msg, 0); } int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_exception exception = { }; int err; do { err = _nfs4_proc_delegreturn(inode, cred, stateid); switch (err) { case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: nfs4_schedule_state_recovery(server->nfs4_state); case 0: return 0; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } #define NFS4_LOCK_MINTIMEOUT (1 * HZ) #define NFS4_LOCK_MAXTIMEOUT (30 * HZ) /* * sleep, with exponential backoff, and retry the LOCK operation. */ static unsigned long nfs4_set_lock_task_retry(unsigned long timeout) { schedule_timeout_interruptible(timeout); timeout <<= 1; if (timeout > NFS4_LOCK_MAXTIMEOUT) return NFS4_LOCK_MAXTIMEOUT; return timeout; } static inline int nfs4_lck_type(int cmd, struct file_lock *request) { /* set lock type */ switch (request->fl_type) { case F_RDLCK: return IS_SETLKW(cmd) ? NFS4_READW_LT : NFS4_READ_LT; case F_WRLCK: return IS_SETLKW(cmd) ? NFS4_WRITEW_LT : NFS4_WRITE_LT; case F_UNLCK: return NFS4_WRITE_LT; } BUG(); return 0; } static inline uint64_t nfs4_lck_length(struct file_lock *request) { if (request->fl_end == OFFSET_MAX) return ~(uint64_t)0; return request->fl_end - request->fl_start + 1; } static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct inode *inode = state->inode; struct nfs_server *server = NFS_SERVER(inode); struct nfs4_client *clp = server->nfs4_state; struct nfs_lockargs arg = { .fh = NFS_FH(inode), .type = nfs4_lck_type(cmd, request), .offset = request->fl_start, .length = nfs4_lck_length(request), }; struct nfs_lockres res = { .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = state->owner->so_cred, }; struct nfs_lowner nlo; struct nfs4_lock_state *lsp; int status; down_read(&clp->cl_sem); nlo.clientid = clp->cl_clientid; status = nfs4_set_lock_state(state, request); if (status != 0) goto out; lsp = request->fl_u.nfs4_fl.owner; nlo.id = lsp->ls_id; arg.u.lockt = &nlo; status = rpc_call_sync(server->client, &msg, 0); if (!status) { request->fl_type = F_UNLCK; } else if (status == -NFS4ERR_DENIED) { int64_t len, start, end; start = res.u.denied.offset; len = res.u.denied.length; end = start + len - 1; if (end < 0 || len == 0) request->fl_end = OFFSET_MAX; else request->fl_end = (loff_t)end; request->fl_start = (loff_t)start; request->fl_type = F_WRLCK; if (res.u.denied.type & 1) request->fl_type = F_RDLCK; request->fl_pid = 0; status = 0; } out: up_read(&clp->cl_sem); return status; } static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(state->inode), _nfs4_proc_getlk(state, cmd, request), &exception); } while (exception.retry); return err; } static int do_vfs_lock(struct file *file, struct file_lock *fl) { int res = 0; switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { case FL_POSIX: res = posix_lock_file_wait(file, fl); break; case FL_FLOCK: res = flock_lock_file_wait(file, fl); break; default: BUG(); } if (res < 0) printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__); return res; } struct nfs4_unlockdata { struct nfs_lockargs arg; struct nfs_locku_opargs luargs; struct nfs_lockres res; struct nfs4_lock_state *lsp; struct nfs_open_context *ctx; atomic_t refcount; struct completion completion; }; static void nfs4_locku_release_calldata(struct nfs4_unlockdata *calldata) { if (atomic_dec_and_test(&calldata->refcount)) { nfs_free_seqid(calldata->luargs.seqid); nfs4_put_lock_state(calldata->lsp); put_nfs_open_context(calldata->ctx); kfree(calldata); } } static void nfs4_locku_complete(struct nfs4_unlockdata *calldata) { complete(&calldata->completion); nfs4_locku_release_calldata(calldata); } static void nfs4_locku_done(struct rpc_task *task) { struct nfs4_unlockdata *calldata = (struct nfs4_unlockdata *)task->tk_calldata; nfs_increment_lock_seqid(task->tk_status, calldata->luargs.seqid); switch (task->tk_status) { case 0: memcpy(calldata->lsp->ls_stateid.data, calldata->res.u.stateid.data, sizeof(calldata->lsp->ls_stateid.data)); break; case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: nfs4_schedule_state_recovery(calldata->res.server->nfs4_state); break; default: if (nfs4_async_handle_error(task, calldata->res.server) == -EAGAIN) { rpc_restart_call(task); return; } } nfs4_locku_complete(calldata); } static void nfs4_locku_begin(struct rpc_task *task) { struct nfs4_unlockdata *calldata = (struct nfs4_unlockdata *)task->tk_calldata; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU], .rpc_argp = &calldata->arg, .rpc_resp = &calldata->res, .rpc_cred = calldata->lsp->ls_state->owner->so_cred, }; int status; status = nfs_wait_on_sequence(calldata->luargs.seqid, task); if (status != 0) return; if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) { nfs4_locku_complete(calldata); task->tk_exit = NULL; rpc_exit(task, 0); return; } rpc_call_setup(task, &msg, 0); } static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs4_unlockdata *calldata; struct inode *inode = state->inode; struct nfs_server *server = NFS_SERVER(inode); struct nfs4_lock_state *lsp; int status; /* Is this a delegated lock? */ if (test_bit(NFS_DELEGATED_STATE, &state->flags)) return do_vfs_lock(request->fl_file, request); status = nfs4_set_lock_state(state, request); if (status != 0) return status; lsp = request->fl_u.nfs4_fl.owner; /* We might have lost the locks! */ if ((lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) return 0; calldata = kmalloc(sizeof(*calldata), GFP_KERNEL); if (calldata == NULL) return -ENOMEM; calldata->luargs.seqid = nfs_alloc_seqid(&lsp->ls_seqid); if (calldata->luargs.seqid == NULL) { kfree(calldata); return -ENOMEM; } calldata->luargs.stateid = &lsp->ls_stateid; calldata->arg.fh = NFS_FH(inode); calldata->arg.type = nfs4_lck_type(cmd, request); calldata->arg.offset = request->fl_start; calldata->arg.length = nfs4_lck_length(request); calldata->arg.u.locku = &calldata->luargs; calldata->res.server = server; calldata->lsp = lsp; atomic_inc(&lsp->ls_count); /* Ensure we don't close file until we're done freeing locks! */ calldata->ctx = get_nfs_open_context((struct nfs_open_context*)request->fl_file->private_data); atomic_set(&calldata->refcount, 2); init_completion(&calldata->completion); status = nfs4_call_async(NFS_SERVER(inode)->client, nfs4_locku_begin, nfs4_locku_done, calldata); if (status == 0) wait_for_completion_interruptible(&calldata->completion); do_vfs_lock(request->fl_file, request); nfs4_locku_release_calldata(calldata); return status; } static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *request, int reclaim) { struct inode *inode = state->inode; struct nfs_server *server = NFS_SERVER(inode); struct nfs4_lock_state *lsp = request->fl_u.nfs4_fl.owner; struct nfs_lock_opargs largs = { .lock_stateid = &lsp->ls_stateid, .open_stateid = &state->stateid, .lock_owner = { .clientid = server->nfs4_state->cl_clientid, .id = lsp->ls_id, }, .reclaim = reclaim, }; struct nfs_lockargs arg = { .fh = NFS_FH(inode), .type = nfs4_lck_type(cmd, request), .offset = request->fl_start, .length = nfs4_lck_length(request), .u = { .lock = &largs, }, }; struct nfs_lockres res = { .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = state->owner->so_cred, }; int status = -ENOMEM; largs.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid); if (largs.lock_seqid == NULL) return -ENOMEM; if (!(lsp->ls_seqid.flags & NFS_SEQID_CONFIRMED)) { struct nfs4_state_owner *owner = state->owner; largs.open_seqid = nfs_alloc_seqid(&owner->so_seqid); if (largs.open_seqid == NULL) goto out; largs.new_lock_owner = 1; status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR); /* increment open seqid on success, and seqid mutating errors */ if (largs.new_lock_owner != 0) { nfs_increment_open_seqid(status, largs.open_seqid); if (status == 0) nfs_confirm_seqid(&lsp->ls_seqid, 0); } nfs_free_seqid(largs.open_seqid); } else status = rpc_call_sync(server->client, &msg, RPC_TASK_NOINTR); /* increment lock seqid on success, and seqid mutating errors*/ nfs_increment_lock_seqid(status, largs.lock_seqid); /* save the returned stateid. */ if (status == 0) { memcpy(lsp->ls_stateid.data, res.u.stateid.data, sizeof(lsp->ls_stateid.data)); lsp->ls_flags |= NFS_LOCK_INITIALIZED; } else if (status == -NFS4ERR_DENIED) status = -EAGAIN; out: nfs_free_seqid(largs.lock_seqid); return status; } static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; /* Cache the lock if possible... */ if (test_bit(NFS_DELEGATED_STATE, &state->flags)) return 0; do { err = _nfs4_do_setlk(state, F_SETLK, request, 1); if (err != -NFS4ERR_DELAY) break; nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; err = nfs4_set_lock_state(state, request); if (err != 0) return err; do { err = _nfs4_do_setlk(state, F_SETLK, request, 0); if (err != -NFS4ERR_DELAY) break; nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs4_client *clp = state->owner->so_client; int status; down_read(&clp->cl_sem); /* Is this a delegated open? */ if (test_bit(NFS_DELEGATED_STATE, &state->flags)) { /* Yes: cache locks! */ status = do_vfs_lock(request->fl_file, request); /* ...but avoid races with delegation recall... */ if (status < 0 || test_bit(NFS_DELEGATED_STATE, &state->flags)) goto out; } status = nfs4_set_lock_state(state, request); if (status != 0) goto out; status = _nfs4_do_setlk(state, cmd, request, 0); if (status != 0) goto out; /* Note: we always want to sleep here! */ request->fl_flags |= FL_SLEEP; if (do_vfs_lock(request->fl_file, request) < 0) printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__); out: up_read(&clp->cl_sem); return status; } static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(state->inode), _nfs4_proc_setlk(state, cmd, request), &exception); } while (exception.retry); return err; } static int nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request) { struct nfs_open_context *ctx; struct nfs4_state *state; unsigned long timeout = NFS4_LOCK_MINTIMEOUT; int status; /* verify open state */ ctx = (struct nfs_open_context *)filp->private_data; state = ctx->state; if (request->fl_start < 0 || request->fl_end < 0) return -EINVAL; if (IS_GETLK(cmd)) return nfs4_proc_getlk(state, F_GETLK, request); if (!(IS_SETLK(cmd) || IS_SETLKW(cmd))) return -EINVAL; if (request->fl_type == F_UNLCK) return nfs4_proc_unlck(state, cmd, request); do { status = nfs4_proc_setlk(state, cmd, request); if ((status != -EAGAIN) || IS_SETLK(cmd)) break; timeout = nfs4_set_lock_task_retry(timeout); status = -ERESTARTSYS; if (signalled()) break; } while(status < 0); return status; } int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; err = nfs4_set_lock_state(state, fl); if (err != 0) goto out; do { err = _nfs4_do_setlk(state, F_SETLK, fl, 0); if (err != -NFS4ERR_DELAY) break; err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); out: return err; } #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl" int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf, size_t buflen, int flags) { struct inode *inode = dentry->d_inode; if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0) return -EOPNOTSUPP; if (!S_ISREG(inode->i_mode) && (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX)) return -EPERM; return nfs4_proc_set_acl(inode, buf, buflen); } /* The getxattr man page suggests returning -ENODATA for unknown attributes, * and that's what we'll do for e.g. user attributes that haven't been set. * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported * attributes in kernel-managed attribute namespaces. */ ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf, size_t buflen) { struct inode *inode = dentry->d_inode; if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0) return -EOPNOTSUPP; return nfs4_proc_get_acl(inode, buf, buflen); } ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen) { size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1; if (buf && buflen < len) return -ERANGE; if (buf) memcpy(buf, XATTR_NAME_NFSV4_ACL, len); return len; } struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = { .recover_open = nfs4_open_reclaim, .recover_lock = nfs4_lock_reclaim, }; struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = { .recover_open = nfs4_open_expired, .recover_lock = nfs4_lock_expired, }; static struct inode_operations nfs4_file_inode_operations = { .permission = nfs_permission, .getattr = nfs_getattr, .setattr = nfs_setattr, .getxattr = nfs4_getxattr, .setxattr = nfs4_setxattr, .listxattr = nfs4_listxattr, }; struct nfs_rpc_ops nfs_v4_clientops = { .version = 4, /* protocol version */ .dentry_ops = &nfs4_dentry_operations, .dir_inode_ops = &nfs4_dir_inode_operations, .file_inode_ops = &nfs4_file_inode_operations, .getroot = nfs4_proc_get_root, .getattr = nfs4_proc_getattr, .setattr = nfs4_proc_setattr, .lookup = nfs4_proc_lookup, .access = nfs4_proc_access, .readlink = nfs4_proc_readlink, .read = nfs4_proc_read, .write = nfs4_proc_write, .commit = nfs4_proc_commit, .create = nfs4_proc_create, .remove = nfs4_proc_remove, .unlink_setup = nfs4_proc_unlink_setup, .unlink_done = nfs4_proc_unlink_done, .rename = nfs4_proc_rename, .link = nfs4_proc_link, .symlink = nfs4_proc_symlink, .mkdir = nfs4_proc_mkdir, .rmdir = nfs4_proc_remove, .readdir = nfs4_proc_readdir, .mknod = nfs4_proc_mknod, .statfs = nfs4_proc_statfs, .fsinfo = nfs4_proc_fsinfo, .pathconf = nfs4_proc_pathconf, .decode_dirent = nfs4_decode_dirent, .read_setup = nfs4_proc_read_setup, .write_setup = nfs4_proc_write_setup, .commit_setup = nfs4_proc_commit_setup, .file_open = nfs_open, .file_release = nfs_release, .lock = nfs4_proc_lock, .clear_acl_cache = nfs4_zap_acl_attr, }; /* * Local variables: * c-basic-offset: 8 * End: */