/* * fs/nfs/nfs4proc.c * * Client-side procedure declarations for NFSv4. * * Copyright (c) 2002 The Regents of the University of Michigan. * All rights reserved. * * Kendrick Smith <kmsmith@umich.edu> * Andy Adamson <andros@umich.edu> * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <linux/mm.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/sunrpc/clnt.h> #include <linux/nfs.h> #include <linux/nfs4.h> #include <linux/nfs_fs.h> #include <linux/nfs_page.h> #include <linux/namei.h> #include <linux/mount.h> #include <linux/module.h> #include <linux/sunrpc/bc_xprt.h> #include "nfs4_fs.h" #include "delegation.h" #include "internal.h" #include "iostat.h" #include "callback.h" #include "pnfs.h" #define NFSDBG_FACILITY NFSDBG_PROC #define NFS4_POLL_RETRY_MIN (HZ/10) #define NFS4_POLL_RETRY_MAX (15*HZ) #define NFS4_MAX_LOOP_ON_RECOVER (10) struct nfs4_opendata; static int _nfs4_proc_open(struct nfs4_opendata *data); static int _nfs4_recover_proc_open(struct nfs4_opendata *data); static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *); static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *, struct nfs4_state *); static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr); static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr); static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred, struct nfs_fattr *fattr, struct iattr *sattr, struct nfs4_state *state); /* Prevent leaks of NFSv4 errors into userland */ static int nfs4_map_errors(int err) { if (err >= -1000) return err; switch (err) { case -NFS4ERR_RESOURCE: return -EREMOTEIO; default: dprintk("%s could not handle NFSv4 error %d\n", __func__, -err); break; } return -EIO; } /* * This is our standard bitmap for GETATTR requests. */ const u32 nfs4_fattr_bitmap[2] = { FATTR4_WORD0_TYPE | FATTR4_WORD0_CHANGE | FATTR4_WORD0_SIZE | FATTR4_WORD0_FSID | FATTR4_WORD0_FILEID, FATTR4_WORD1_MODE | FATTR4_WORD1_NUMLINKS | FATTR4_WORD1_OWNER | FATTR4_WORD1_OWNER_GROUP | FATTR4_WORD1_RAWDEV | FATTR4_WORD1_SPACE_USED | FATTR4_WORD1_TIME_ACCESS | FATTR4_WORD1_TIME_METADATA | FATTR4_WORD1_TIME_MODIFY }; const u32 nfs4_statfs_bitmap[2] = { FATTR4_WORD0_FILES_AVAIL | FATTR4_WORD0_FILES_FREE | FATTR4_WORD0_FILES_TOTAL, FATTR4_WORD1_SPACE_AVAIL | FATTR4_WORD1_SPACE_FREE | FATTR4_WORD1_SPACE_TOTAL }; const u32 nfs4_pathconf_bitmap[2] = { FATTR4_WORD0_MAXLINK | FATTR4_WORD0_MAXNAME, 0 }; const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE | FATTR4_WORD0_MAXREAD | FATTR4_WORD0_MAXWRITE | FATTR4_WORD0_LEASE_TIME, FATTR4_WORD1_TIME_DELTA | FATTR4_WORD1_FS_LAYOUT_TYPES }; const u32 nfs4_fs_locations_bitmap[2] = { FATTR4_WORD0_TYPE | FATTR4_WORD0_CHANGE | FATTR4_WORD0_SIZE | FATTR4_WORD0_FSID | FATTR4_WORD0_FILEID | FATTR4_WORD0_FS_LOCATIONS, FATTR4_WORD1_MODE | FATTR4_WORD1_NUMLINKS | FATTR4_WORD1_OWNER | FATTR4_WORD1_OWNER_GROUP | FATTR4_WORD1_RAWDEV | FATTR4_WORD1_SPACE_USED | FATTR4_WORD1_TIME_ACCESS | FATTR4_WORD1_TIME_METADATA | FATTR4_WORD1_TIME_MODIFY | FATTR4_WORD1_MOUNTED_ON_FILEID }; static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry, struct nfs4_readdir_arg *readdir) { __be32 *start, *p; BUG_ON(readdir->count < 80); if (cookie > 2) { readdir->cookie = cookie; memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier)); return; } readdir->cookie = 0; memset(&readdir->verifier, 0, sizeof(readdir->verifier)); if (cookie == 2) return; /* * NFSv4 servers do not return entries for '.' and '..' * Therefore, we fake these entries here. We let '.' * have cookie 0 and '..' have cookie 1. Note that * when talking to the server, we always send cookie 0 * instead of 1 or 2. */ start = p = kmap_atomic(*readdir->pages, KM_USER0); if (cookie == 0) { *p++ = xdr_one; /* next */ *p++ = xdr_zero; /* cookie, first word */ *p++ = xdr_one; /* cookie, second word */ *p++ = xdr_one; /* entry len */ memcpy(p, ".\0\0\0", 4); /* entry */ p++; *p++ = xdr_one; /* bitmap length */ *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ *p++ = htonl(8); /* attribute buffer length */ p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_inode)); } *p++ = xdr_one; /* next */ *p++ = xdr_zero; /* cookie, first word */ *p++ = xdr_two; /* cookie, second word */ *p++ = xdr_two; /* entry len */ memcpy(p, "..\0\0", 4); /* entry */ p++; *p++ = xdr_one; /* bitmap length */ *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */ *p++ = htonl(8); /* attribute buffer length */ p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_parent->d_inode)); readdir->pgbase = (char *)p - (char *)start; readdir->count -= readdir->pgbase; kunmap_atomic(start, KM_USER0); } static int nfs4_wait_clnt_recover(struct nfs_client *clp) { int res; might_sleep(); res = wait_on_bit(&clp->cl_state, NFS4CLNT_MANAGER_RUNNING, nfs_wait_bit_killable, TASK_KILLABLE); return res; } static int nfs4_delay(struct rpc_clnt *clnt, long *timeout) { int res = 0; might_sleep(); if (*timeout <= 0) *timeout = NFS4_POLL_RETRY_MIN; if (*timeout > NFS4_POLL_RETRY_MAX) *timeout = NFS4_POLL_RETRY_MAX; schedule_timeout_killable(*timeout); if (fatal_signal_pending(current)) res = -ERESTARTSYS; *timeout <<= 1; return res; } /* This is the error handling routine for processes that are allowed * to sleep. */ static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception) { struct nfs_client *clp = server->nfs_client; struct nfs4_state *state = exception->state; int ret = errorcode; exception->retry = 0; switch(errorcode) { case 0: return 0; case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: case -NFS4ERR_OPENMODE: if (state == NULL) break; nfs4_state_mark_reclaim_nograce(clp, state); goto do_state_recovery; case -NFS4ERR_STALE_STATEID: case -NFS4ERR_STALE_CLIENTID: case -NFS4ERR_EXPIRED: goto do_state_recovery; #if defined(CONFIG_NFS_V4_1) case -NFS4ERR_BADSESSION: case -NFS4ERR_BADSLOT: case -NFS4ERR_BAD_HIGH_SLOT: case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION: case -NFS4ERR_DEADSESSION: case -NFS4ERR_SEQ_FALSE_RETRY: case -NFS4ERR_SEQ_MISORDERED: dprintk("%s ERROR: %d Reset session\n", __func__, errorcode); nfs4_schedule_state_recovery(clp); exception->retry = 1; break; #endif /* defined(CONFIG_NFS_V4_1) */ case -NFS4ERR_FILE_OPEN: if (exception->timeout > HZ) { /* We have retried a decent amount, time to * fail */ ret = -EBUSY; break; } case -NFS4ERR_GRACE: case -NFS4ERR_DELAY: case -EKEYEXPIRED: ret = nfs4_delay(server->client, &exception->timeout); if (ret != 0) break; case -NFS4ERR_OLD_STATEID: exception->retry = 1; } /* We failed to handle the error */ return nfs4_map_errors(ret); do_state_recovery: nfs4_schedule_state_recovery(clp); ret = nfs4_wait_clnt_recover(clp); if (ret == 0) exception->retry = 1; return ret; } static void do_renew_lease(struct nfs_client *clp, unsigned long timestamp) { spin_lock(&clp->cl_lock); if (time_before(clp->cl_last_renewal,timestamp)) clp->cl_last_renewal = timestamp; spin_unlock(&clp->cl_lock); } static void renew_lease(const struct nfs_server *server, unsigned long timestamp) { do_renew_lease(server->nfs_client, timestamp); } #if defined(CONFIG_NFS_V4_1) /* * nfs4_free_slot - free a slot and efficiently update slot table. * * freeing a slot is trivially done by clearing its respective bit * in the bitmap. * If the freed slotid equals highest_used_slotid we want to update it * so that the server would be able to size down the slot table if needed, * otherwise we know that the highest_used_slotid is still in use. * When updating highest_used_slotid there may be "holes" in the bitmap * so we need to scan down from highest_used_slotid to 0 looking for the now * highest slotid in use. * If none found, highest_used_slotid is set to -1. * * Must be called while holding tbl->slot_tbl_lock */ static void nfs4_free_slot(struct nfs4_slot_table *tbl, struct nfs4_slot *free_slot) { int free_slotid = free_slot - tbl->slots; int slotid = free_slotid; BUG_ON(slotid < 0 || slotid >= NFS4_MAX_SLOT_TABLE); /* clear used bit in bitmap */ __clear_bit(slotid, tbl->used_slots); /* update highest_used_slotid when it is freed */ if (slotid == tbl->highest_used_slotid) { slotid = find_last_bit(tbl->used_slots, tbl->max_slots); if (slotid < tbl->max_slots) tbl->highest_used_slotid = slotid; else tbl->highest_used_slotid = -1; } dprintk("%s: free_slotid %u highest_used_slotid %d\n", __func__, free_slotid, tbl->highest_used_slotid); } /* * Signal state manager thread if session is drained */ static void nfs41_check_drain_session_complete(struct nfs4_session *ses) { struct rpc_task *task; if (!test_bit(NFS4_SESSION_DRAINING, &ses->session_state)) { task = rpc_wake_up_next(&ses->fc_slot_table.slot_tbl_waitq); if (task) rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED); return; } if (ses->fc_slot_table.highest_used_slotid != -1) return; dprintk("%s COMPLETE: Session Drained\n", __func__); complete(&ses->complete); } static void nfs41_sequence_free_slot(struct nfs4_sequence_res *res) { struct nfs4_slot_table *tbl; tbl = &res->sr_session->fc_slot_table; if (!res->sr_slot) { /* just wake up the next guy waiting since * we may have not consumed a slot after all */ dprintk("%s: No slot\n", __func__); return; } spin_lock(&tbl->slot_tbl_lock); nfs4_free_slot(tbl, res->sr_slot); nfs41_check_drain_session_complete(res->sr_session); spin_unlock(&tbl->slot_tbl_lock); res->sr_slot = NULL; } static int nfs41_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res) { unsigned long timestamp; struct nfs_client *clp; /* * sr_status remains 1 if an RPC level error occurred. The server * may or may not have processed the sequence operation.. * Proceed as if the server received and processed the sequence * operation. */ if (res->sr_status == 1) res->sr_status = NFS_OK; /* -ERESTARTSYS can result in skipping nfs41_sequence_setup */ if (!res->sr_slot) goto out; /* Check the SEQUENCE operation status */ switch (res->sr_status) { case 0: /* Update the slot's sequence and clientid lease timer */ ++res->sr_slot->seq_nr; timestamp = res->sr_renewal_time; clp = res->sr_session->clp; do_renew_lease(clp, timestamp); /* Check sequence flags */ if (atomic_read(&clp->cl_count) > 1) nfs41_handle_sequence_flag_errors(clp, res->sr_status_flags); break; case -NFS4ERR_DELAY: /* The server detected a resend of the RPC call and * returned NFS4ERR_DELAY as per Section 2.10.6.2 * of RFC5661. */ dprintk("%s: slot=%td seq=%d: Operation in progress\n", __func__, res->sr_slot - res->sr_session->fc_slot_table.slots, res->sr_slot->seq_nr); goto out_retry; default: /* Just update the slot sequence no. */ ++res->sr_slot->seq_nr; } out: /* The session may be reset by one of the error handlers. */ dprintk("%s: Error %d free the slot \n", __func__, res->sr_status); nfs41_sequence_free_slot(res); return 1; out_retry: if (!rpc_restart_call(task)) goto out; rpc_delay(task, NFS4_POLL_RETRY_MAX); return 0; } static int nfs4_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res) { if (res->sr_session == NULL) return 1; return nfs41_sequence_done(task, res); } /* * nfs4_find_slot - efficiently look for a free slot * * nfs4_find_slot looks for an unset bit in the used_slots bitmap. * If found, we mark the slot as used, update the highest_used_slotid, * and respectively set up the sequence operation args. * The slot number is returned if found, or NFS4_MAX_SLOT_TABLE otherwise. * * Note: must be called with under the slot_tbl_lock. */ static u8 nfs4_find_slot(struct nfs4_slot_table *tbl) { int slotid; u8 ret_id = NFS4_MAX_SLOT_TABLE; BUILD_BUG_ON((u8)NFS4_MAX_SLOT_TABLE != (int)NFS4_MAX_SLOT_TABLE); dprintk("--> %s used_slots=%04lx highest_used=%d max_slots=%d\n", __func__, tbl->used_slots[0], tbl->highest_used_slotid, tbl->max_slots); slotid = find_first_zero_bit(tbl->used_slots, tbl->max_slots); if (slotid >= tbl->max_slots) goto out; __set_bit(slotid, tbl->used_slots); if (slotid > tbl->highest_used_slotid) tbl->highest_used_slotid = slotid; ret_id = slotid; out: dprintk("<-- %s used_slots=%04lx highest_used=%d slotid=%d \n", __func__, tbl->used_slots[0], tbl->highest_used_slotid, ret_id); return ret_id; } static int nfs41_setup_sequence(struct nfs4_session *session, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, int cache_reply, struct rpc_task *task) { struct nfs4_slot *slot; struct nfs4_slot_table *tbl; u8 slotid; dprintk("--> %s\n", __func__); /* slot already allocated? */ if (res->sr_slot != NULL) return 0; tbl = &session->fc_slot_table; spin_lock(&tbl->slot_tbl_lock); if (test_bit(NFS4_SESSION_DRAINING, &session->session_state) && !rpc_task_has_priority(task, RPC_PRIORITY_PRIVILEGED)) { /* * The state manager will wait until the slot table is empty. * Schedule the reset thread */ rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL); spin_unlock(&tbl->slot_tbl_lock); dprintk("%s Schedule Session Reset\n", __func__); return -EAGAIN; } if (!rpc_queue_empty(&tbl->slot_tbl_waitq) && !rpc_task_has_priority(task, RPC_PRIORITY_PRIVILEGED)) { rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL); spin_unlock(&tbl->slot_tbl_lock); dprintk("%s enforce FIFO order\n", __func__); return -EAGAIN; } slotid = nfs4_find_slot(tbl); if (slotid == NFS4_MAX_SLOT_TABLE) { rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL); spin_unlock(&tbl->slot_tbl_lock); dprintk("<-- %s: no free slots\n", __func__); return -EAGAIN; } spin_unlock(&tbl->slot_tbl_lock); rpc_task_set_priority(task, RPC_PRIORITY_NORMAL); slot = tbl->slots + slotid; args->sa_session = session; args->sa_slotid = slotid; args->sa_cache_this = cache_reply; dprintk("<-- %s slotid=%d seqid=%d\n", __func__, slotid, slot->seq_nr); res->sr_session = session; res->sr_slot = slot; res->sr_renewal_time = jiffies; res->sr_status_flags = 0; /* * sr_status is only set in decode_sequence, and so will remain * set to 1 if an rpc level failure occurs. */ res->sr_status = 1; return 0; } int nfs4_setup_sequence(const struct nfs_server *server, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, int cache_reply, struct rpc_task *task) { struct nfs4_session *session = nfs4_get_session(server); int ret = 0; if (session == NULL) { args->sa_session = NULL; res->sr_session = NULL; goto out; } dprintk("--> %s clp %p session %p sr_slot %td\n", __func__, session->clp, session, res->sr_slot ? res->sr_slot - session->fc_slot_table.slots : -1); ret = nfs41_setup_sequence(session, args, res, cache_reply, task); out: dprintk("<-- %s status=%d\n", __func__, ret); return ret; } struct nfs41_call_sync_data { const struct nfs_server *seq_server; struct nfs4_sequence_args *seq_args; struct nfs4_sequence_res *seq_res; int cache_reply; }; static void nfs41_call_sync_prepare(struct rpc_task *task, void *calldata) { struct nfs41_call_sync_data *data = calldata; dprintk("--> %s data->seq_server %p\n", __func__, data->seq_server); if (nfs4_setup_sequence(data->seq_server, data->seq_args, data->seq_res, data->cache_reply, task)) return; rpc_call_start(task); } static void nfs41_call_priv_sync_prepare(struct rpc_task *task, void *calldata) { rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED); nfs41_call_sync_prepare(task, calldata); } static void nfs41_call_sync_done(struct rpc_task *task, void *calldata) { struct nfs41_call_sync_data *data = calldata; nfs41_sequence_done(task, data->seq_res); } struct rpc_call_ops nfs41_call_sync_ops = { .rpc_call_prepare = nfs41_call_sync_prepare, .rpc_call_done = nfs41_call_sync_done, }; struct rpc_call_ops nfs41_call_priv_sync_ops = { .rpc_call_prepare = nfs41_call_priv_sync_prepare, .rpc_call_done = nfs41_call_sync_done, }; static int nfs4_call_sync_sequence(struct nfs_server *server, struct rpc_message *msg, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, int cache_reply, int privileged) { int ret; struct rpc_task *task; struct nfs41_call_sync_data data = { .seq_server = server, .seq_args = args, .seq_res = res, .cache_reply = cache_reply, }; struct rpc_task_setup task_setup = { .rpc_client = server->client, .rpc_message = msg, .callback_ops = &nfs41_call_sync_ops, .callback_data = &data }; res->sr_slot = NULL; if (privileged) task_setup.callback_ops = &nfs41_call_priv_sync_ops; task = rpc_run_task(&task_setup); if (IS_ERR(task)) ret = PTR_ERR(task); else { ret = task->tk_status; rpc_put_task(task); } return ret; } int _nfs4_call_sync_session(struct nfs_server *server, struct rpc_message *msg, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, int cache_reply) { return nfs4_call_sync_sequence(server, msg, args, res, cache_reply, 0); } #else static int nfs4_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res) { return 1; } #endif /* CONFIG_NFS_V4_1 */ int _nfs4_call_sync(struct nfs_server *server, struct rpc_message *msg, struct nfs4_sequence_args *args, struct nfs4_sequence_res *res, int cache_reply) { args->sa_session = res->sr_session = NULL; return rpc_call_sync(server->client, msg, 0); } #define nfs4_call_sync(server, msg, args, res, cache_reply) \ (server)->nfs_client->cl_mvops->call_sync((server), (msg), &(args)->seq_args, \ &(res)->seq_res, (cache_reply)) static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo) { struct nfs_inode *nfsi = NFS_I(dir); spin_lock(&dir->i_lock); nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA; if (!cinfo->atomic || cinfo->before != nfsi->change_attr) nfs_force_lookup_revalidate(dir); nfsi->change_attr = cinfo->after; spin_unlock(&dir->i_lock); } struct nfs4_opendata { struct kref kref; struct nfs_openargs o_arg; struct nfs_openres o_res; struct nfs_open_confirmargs c_arg; struct nfs_open_confirmres c_res; struct nfs_fattr f_attr; struct nfs_fattr dir_attr; struct path path; struct dentry *dir; struct nfs4_state_owner *owner; struct nfs4_state *state; struct iattr attrs; unsigned long timestamp; unsigned int rpc_done : 1; int rpc_status; int cancelled; }; static void nfs4_init_opendata_res(struct nfs4_opendata *p) { p->o_res.f_attr = &p->f_attr; p->o_res.dir_attr = &p->dir_attr; p->o_res.seqid = p->o_arg.seqid; p->c_res.seqid = p->c_arg.seqid; p->o_res.server = p->o_arg.server; nfs_fattr_init(&p->f_attr); nfs_fattr_init(&p->dir_attr); } static struct nfs4_opendata *nfs4_opendata_alloc(struct path *path, struct nfs4_state_owner *sp, fmode_t fmode, int flags, const struct iattr *attrs, gfp_t gfp_mask) { struct dentry *parent = dget_parent(path->dentry); struct inode *dir = parent->d_inode; struct nfs_server *server = NFS_SERVER(dir); struct nfs4_opendata *p; p = kzalloc(sizeof(*p), gfp_mask); if (p == NULL) goto err; p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid, gfp_mask); if (p->o_arg.seqid == NULL) goto err_free; path_get(path); p->path = *path; p->dir = parent; p->owner = sp; atomic_inc(&sp->so_count); p->o_arg.fh = NFS_FH(dir); p->o_arg.open_flags = flags; p->o_arg.fmode = fmode & (FMODE_READ|FMODE_WRITE); p->o_arg.clientid = server->nfs_client->cl_clientid; p->o_arg.id = sp->so_owner_id.id; p->o_arg.name = &p->path.dentry->d_name; p->o_arg.server = server; p->o_arg.bitmask = server->attr_bitmask; p->o_arg.claim = NFS4_OPEN_CLAIM_NULL; if (flags & O_CREAT) { u32 *s; p->o_arg.u.attrs = &p->attrs; memcpy(&p->attrs, attrs, sizeof(p->attrs)); s = (u32 *) p->o_arg.u.verifier.data; s[0] = jiffies; s[1] = current->pid; } p->c_arg.fh = &p->o_res.fh; p->c_arg.stateid = &p->o_res.stateid; p->c_arg.seqid = p->o_arg.seqid; nfs4_init_opendata_res(p); kref_init(&p->kref); return p; err_free: kfree(p); err: dput(parent); return NULL; } static void nfs4_opendata_free(struct kref *kref) { struct nfs4_opendata *p = container_of(kref, struct nfs4_opendata, kref); nfs_free_seqid(p->o_arg.seqid); if (p->state != NULL) nfs4_put_open_state(p->state); nfs4_put_state_owner(p->owner); dput(p->dir); path_put(&p->path); kfree(p); } static void nfs4_opendata_put(struct nfs4_opendata *p) { if (p != NULL) kref_put(&p->kref, nfs4_opendata_free); } static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task) { int ret; ret = rpc_wait_for_completion_task(task); return ret; } static int can_open_cached(struct nfs4_state *state, fmode_t mode, int open_mode) { int ret = 0; if (open_mode & O_EXCL) goto out; switch (mode & (FMODE_READ|FMODE_WRITE)) { case FMODE_READ: ret |= test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0 && state->n_rdonly != 0; break; case FMODE_WRITE: ret |= test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0 && state->n_wronly != 0; break; case FMODE_READ|FMODE_WRITE: ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0 && state->n_rdwr != 0; } out: return ret; } static int can_open_delegated(struct nfs_delegation *delegation, fmode_t fmode) { if ((delegation->type & fmode) != fmode) return 0; if (test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags)) return 0; nfs_mark_delegation_referenced(delegation); return 1; } static void update_open_stateflags(struct nfs4_state *state, fmode_t fmode) { switch (fmode) { case FMODE_WRITE: state->n_wronly++; break; case FMODE_READ: state->n_rdonly++; break; case FMODE_READ|FMODE_WRITE: state->n_rdwr++; } nfs4_state_set_mode_locked(state, state->state | fmode); } static void nfs_set_open_stateid_locked(struct nfs4_state *state, nfs4_stateid *stateid, fmode_t fmode) { if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0) memcpy(state->stateid.data, stateid->data, sizeof(state->stateid.data)); memcpy(state->open_stateid.data, stateid->data, sizeof(state->open_stateid.data)); switch (fmode) { case FMODE_READ: set_bit(NFS_O_RDONLY_STATE, &state->flags); break; case FMODE_WRITE: set_bit(NFS_O_WRONLY_STATE, &state->flags); break; case FMODE_READ|FMODE_WRITE: set_bit(NFS_O_RDWR_STATE, &state->flags); } } static void nfs_set_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, fmode_t fmode) { write_seqlock(&state->seqlock); nfs_set_open_stateid_locked(state, stateid, fmode); write_sequnlock(&state->seqlock); } static void __update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, const nfs4_stateid *deleg_stateid, fmode_t fmode) { /* * Protect the call to nfs4_state_set_mode_locked and * serialise the stateid update */ write_seqlock(&state->seqlock); if (deleg_stateid != NULL) { memcpy(state->stateid.data, deleg_stateid->data, sizeof(state->stateid.data)); set_bit(NFS_DELEGATED_STATE, &state->flags); } if (open_stateid != NULL) nfs_set_open_stateid_locked(state, open_stateid, fmode); write_sequnlock(&state->seqlock); spin_lock(&state->owner->so_lock); update_open_stateflags(state, fmode); spin_unlock(&state->owner->so_lock); } static int update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, nfs4_stateid *delegation, fmode_t fmode) { struct nfs_inode *nfsi = NFS_I(state->inode); struct nfs_delegation *deleg_cur; int ret = 0; fmode &= (FMODE_READ|FMODE_WRITE); rcu_read_lock(); deleg_cur = rcu_dereference(nfsi->delegation); if (deleg_cur == NULL) goto no_delegation; spin_lock(&deleg_cur->lock); if (nfsi->delegation != deleg_cur || (deleg_cur->type & fmode) != fmode) goto no_delegation_unlock; if (delegation == NULL) delegation = &deleg_cur->stateid; else if (memcmp(deleg_cur->stateid.data, delegation->data, NFS4_STATEID_SIZE) != 0) goto no_delegation_unlock; nfs_mark_delegation_referenced(deleg_cur); __update_open_stateid(state, open_stateid, &deleg_cur->stateid, fmode); ret = 1; no_delegation_unlock: spin_unlock(&deleg_cur->lock); no_delegation: rcu_read_unlock(); if (!ret && open_stateid != NULL) { __update_open_stateid(state, open_stateid, NULL, fmode); ret = 1; } return ret; } static void nfs4_return_incompatible_delegation(struct inode *inode, fmode_t fmode) { struct nfs_delegation *delegation; rcu_read_lock(); delegation = rcu_dereference(NFS_I(inode)->delegation); if (delegation == NULL || (delegation->type & fmode) == fmode) { rcu_read_unlock(); return; } rcu_read_unlock(); nfs_inode_return_delegation(inode); } static struct nfs4_state *nfs4_try_open_cached(struct nfs4_opendata *opendata) { struct nfs4_state *state = opendata->state; struct nfs_inode *nfsi = NFS_I(state->inode); struct nfs_delegation *delegation; int open_mode = opendata->o_arg.open_flags & O_EXCL; fmode_t fmode = opendata->o_arg.fmode; nfs4_stateid stateid; int ret = -EAGAIN; for (;;) { if (can_open_cached(state, fmode, open_mode)) { spin_lock(&state->owner->so_lock); if (can_open_cached(state, fmode, open_mode)) { update_open_stateflags(state, fmode); spin_unlock(&state->owner->so_lock); goto out_return_state; } spin_unlock(&state->owner->so_lock); } rcu_read_lock(); delegation = rcu_dereference(nfsi->delegation); if (delegation == NULL || !can_open_delegated(delegation, fmode)) { rcu_read_unlock(); break; } /* Save the delegation */ memcpy(stateid.data, delegation->stateid.data, sizeof(stateid.data)); rcu_read_unlock(); ret = nfs_may_open(state->inode, state->owner->so_cred, open_mode); if (ret != 0) goto out; ret = -EAGAIN; /* Try to update the stateid using the delegation */ if (update_open_stateid(state, NULL, &stateid, fmode)) goto out_return_state; } out: return ERR_PTR(ret); out_return_state: atomic_inc(&state->count); return state; } static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data) { struct inode *inode; struct nfs4_state *state = NULL; struct nfs_delegation *delegation; int ret; if (!data->rpc_done) { state = nfs4_try_open_cached(data); goto out; } ret = -EAGAIN; if (!(data->f_attr.valid & NFS_ATTR_FATTR)) goto err; inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr); ret = PTR_ERR(inode); if (IS_ERR(inode)) goto err; ret = -ENOMEM; state = nfs4_get_open_state(inode, data->owner); if (state == NULL) goto err_put_inode; if (data->o_res.delegation_type != 0) { int delegation_flags = 0; rcu_read_lock(); delegation = rcu_dereference(NFS_I(inode)->delegation); if (delegation) delegation_flags = delegation->flags; rcu_read_unlock(); if ((delegation_flags & 1UL<<NFS_DELEGATION_NEED_RECLAIM) == 0) nfs_inode_set_delegation(state->inode, data->owner->so_cred, &data->o_res); else nfs_inode_reclaim_delegation(state->inode, data->owner->so_cred, &data->o_res); } update_open_stateid(state, &data->o_res.stateid, NULL, data->o_arg.fmode); iput(inode); out: return state; err_put_inode: iput(inode); err: return ERR_PTR(ret); } static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state) { struct nfs_inode *nfsi = NFS_I(state->inode); struct nfs_open_context *ctx; spin_lock(&state->inode->i_lock); list_for_each_entry(ctx, &nfsi->open_files, list) { if (ctx->state != state) continue; get_nfs_open_context(ctx); spin_unlock(&state->inode->i_lock); return ctx; } spin_unlock(&state->inode->i_lock); return ERR_PTR(-ENOENT); } static struct nfs4_opendata *nfs4_open_recoverdata_alloc(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs4_opendata *opendata; opendata = nfs4_opendata_alloc(&ctx->path, state->owner, 0, 0, NULL, GFP_NOFS); if (opendata == NULL) return ERR_PTR(-ENOMEM); opendata->state = state; atomic_inc(&state->count); return opendata; } static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, fmode_t fmode, struct nfs4_state **res) { struct nfs4_state *newstate; int ret; opendata->o_arg.open_flags = 0; opendata->o_arg.fmode = fmode; memset(&opendata->o_res, 0, sizeof(opendata->o_res)); memset(&opendata->c_res, 0, sizeof(opendata->c_res)); nfs4_init_opendata_res(opendata); ret = _nfs4_recover_proc_open(opendata); if (ret != 0) return ret; newstate = nfs4_opendata_to_nfs4_state(opendata); if (IS_ERR(newstate)) return PTR_ERR(newstate); nfs4_close_state(&opendata->path, newstate, fmode); *res = newstate; return 0; } static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state) { struct nfs4_state *newstate; int ret; /* memory barrier prior to reading state->n_* */ clear_bit(NFS_DELEGATED_STATE, &state->flags); smp_rmb(); if (state->n_rdwr != 0) { clear_bit(NFS_O_RDWR_STATE, &state->flags); ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &newstate); if (ret != 0) return ret; if (newstate != state) return -ESTALE; } if (state->n_wronly != 0) { clear_bit(NFS_O_WRONLY_STATE, &state->flags); ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &newstate); if (ret != 0) return ret; if (newstate != state) return -ESTALE; } if (state->n_rdonly != 0) { clear_bit(NFS_O_RDONLY_STATE, &state->flags); ret = nfs4_open_recover_helper(opendata, FMODE_READ, &newstate); if (ret != 0) return ret; if (newstate != state) return -ESTALE; } /* * We may have performed cached opens for all three recoveries. * Check if we need to update the current stateid. */ if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0 && memcmp(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data)) != 0) { write_seqlock(&state->seqlock); if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0) memcpy(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data)); write_sequnlock(&state->seqlock); } return 0; } /* * OPEN_RECLAIM: * reclaim state on the server after a reboot. */ static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs_delegation *delegation; struct nfs4_opendata *opendata; fmode_t delegation_type = 0; int status; opendata = nfs4_open_recoverdata_alloc(ctx, state); if (IS_ERR(opendata)) return PTR_ERR(opendata); opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS; opendata->o_arg.fh = NFS_FH(state->inode); rcu_read_lock(); delegation = rcu_dereference(NFS_I(state->inode)->delegation); if (delegation != NULL && test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags) != 0) delegation_type = delegation->type; rcu_read_unlock(); opendata->o_arg.u.delegation_type = delegation_type; status = nfs4_open_recover(opendata, state); nfs4_opendata_put(opendata); return status; } static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; do { err = _nfs4_do_open_reclaim(ctx, state); if (err != -NFS4ERR_DELAY) break; nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state) { struct nfs_open_context *ctx; int ret; ctx = nfs4_state_find_open_context(state); if (IS_ERR(ctx)) return PTR_ERR(ctx); ret = nfs4_do_open_reclaim(ctx, state); put_nfs_open_context(ctx); return ret; } static int _nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid) { struct nfs4_opendata *opendata; int ret; opendata = nfs4_open_recoverdata_alloc(ctx, state); if (IS_ERR(opendata)) return PTR_ERR(opendata); opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR; memcpy(opendata->o_arg.u.delegation.data, stateid->data, sizeof(opendata->o_arg.u.delegation.data)); ret = nfs4_open_recover(opendata, state); nfs4_opendata_put(opendata); return ret; } int nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid) { struct nfs4_exception exception = { }; struct nfs_server *server = NFS_SERVER(state->inode); int err; do { err = _nfs4_open_delegation_recall(ctx, state, stateid); switch (err) { case 0: case -ENOENT: case -ESTALE: goto out; case -NFS4ERR_BADSESSION: case -NFS4ERR_BADSLOT: case -NFS4ERR_BAD_HIGH_SLOT: case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION: case -NFS4ERR_DEADSESSION: nfs4_schedule_state_recovery( server->nfs_client); goto out; case -NFS4ERR_STALE_CLIENTID: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: /* Don't recall a delegation if it was lost */ nfs4_schedule_state_recovery(server->nfs_client); goto out; case -ERESTARTSYS: /* * The show must go on: exit, but mark the * stateid as needing recovery. */ case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: nfs4_state_mark_reclaim_nograce(server->nfs_client, state); case -EKEYEXPIRED: /* * User RPCSEC_GSS context has expired. * We cannot recover this stateid now, so * skip it and allow recovery thread to * proceed. */ case -ENOMEM: err = 0; goto out; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); out: return err; } static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata) { struct nfs4_opendata *data = calldata; data->rpc_status = task->tk_status; if (data->rpc_status == 0) { memcpy(data->o_res.stateid.data, data->c_res.stateid.data, sizeof(data->o_res.stateid.data)); nfs_confirm_seqid(&data->owner->so_seqid, 0); renew_lease(data->o_res.server, data->timestamp); data->rpc_done = 1; } } static void nfs4_open_confirm_release(void *calldata) { struct nfs4_opendata *data = calldata; struct nfs4_state *state = NULL; /* If this request hasn't been cancelled, do nothing */ if (data->cancelled == 0) goto out_free; /* In case of error, no cleanup! */ if (!data->rpc_done) goto out_free; state = nfs4_opendata_to_nfs4_state(data); if (!IS_ERR(state)) nfs4_close_state(&data->path, state, data->o_arg.fmode); out_free: nfs4_opendata_put(data); } static const struct rpc_call_ops nfs4_open_confirm_ops = { .rpc_call_done = nfs4_open_confirm_done, .rpc_release = nfs4_open_confirm_release, }; /* * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata */ static int _nfs4_proc_open_confirm(struct nfs4_opendata *data) { struct nfs_server *server = NFS_SERVER(data->dir->d_inode); struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM], .rpc_argp = &data->c_arg, .rpc_resp = &data->c_res, .rpc_cred = data->owner->so_cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_open_confirm_ops, .callback_data = data, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; int status; kref_get(&data->kref); data->rpc_done = 0; data->rpc_status = 0; data->timestamp = jiffies; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); status = nfs4_wait_for_completion_rpc_task(task); if (status != 0) { data->cancelled = 1; smp_wmb(); } else status = data->rpc_status; rpc_put_task(task); return status; } static void nfs4_open_prepare(struct rpc_task *task, void *calldata) { struct nfs4_opendata *data = calldata; struct nfs4_state_owner *sp = data->owner; if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0) return; /* * Check if we still need to send an OPEN call, or if we can use * a delegation instead. */ if (data->state != NULL) { struct nfs_delegation *delegation; if (can_open_cached(data->state, data->o_arg.fmode, data->o_arg.open_flags)) goto out_no_action; rcu_read_lock(); delegation = rcu_dereference(NFS_I(data->state->inode)->delegation); if (delegation != NULL && test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags) == 0) { rcu_read_unlock(); goto out_no_action; } rcu_read_unlock(); } /* Update sequence id. */ data->o_arg.id = sp->so_owner_id.id; data->o_arg.clientid = sp->so_server->nfs_client->cl_clientid; if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS) { task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR]; nfs_copy_fh(&data->o_res.fh, data->o_arg.fh); } data->timestamp = jiffies; if (nfs4_setup_sequence(data->o_arg.server, &data->o_arg.seq_args, &data->o_res.seq_res, 1, task)) return; rpc_call_start(task); return; out_no_action: task->tk_action = NULL; } static void nfs4_recover_open_prepare(struct rpc_task *task, void *calldata) { rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED); nfs4_open_prepare(task, calldata); } static void nfs4_open_done(struct rpc_task *task, void *calldata) { struct nfs4_opendata *data = calldata; data->rpc_status = task->tk_status; if (!nfs4_sequence_done(task, &data->o_res.seq_res)) return; if (task->tk_status == 0) { switch (data->o_res.f_attr->mode & S_IFMT) { case S_IFREG: break; case S_IFLNK: data->rpc_status = -ELOOP; break; case S_IFDIR: data->rpc_status = -EISDIR; break; default: data->rpc_status = -ENOTDIR; } renew_lease(data->o_res.server, data->timestamp); if (!(data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)) nfs_confirm_seqid(&data->owner->so_seqid, 0); } data->rpc_done = 1; } static void nfs4_open_release(void *calldata) { struct nfs4_opendata *data = calldata; struct nfs4_state *state = NULL; /* If this request hasn't been cancelled, do nothing */ if (data->cancelled == 0) goto out_free; /* In case of error, no cleanup! */ if (data->rpc_status != 0 || !data->rpc_done) goto out_free; /* In case we need an open_confirm, no cleanup! */ if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM) goto out_free; state = nfs4_opendata_to_nfs4_state(data); if (!IS_ERR(state)) nfs4_close_state(&data->path, state, data->o_arg.fmode); out_free: nfs4_opendata_put(data); } static const struct rpc_call_ops nfs4_open_ops = { .rpc_call_prepare = nfs4_open_prepare, .rpc_call_done = nfs4_open_done, .rpc_release = nfs4_open_release, }; static const struct rpc_call_ops nfs4_recover_open_ops = { .rpc_call_prepare = nfs4_recover_open_prepare, .rpc_call_done = nfs4_open_done, .rpc_release = nfs4_open_release, }; static int nfs4_run_open_task(struct nfs4_opendata *data, int isrecover) { struct inode *dir = data->dir->d_inode; struct nfs_server *server = NFS_SERVER(dir); struct nfs_openargs *o_arg = &data->o_arg; struct nfs_openres *o_res = &data->o_res; struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN], .rpc_argp = o_arg, .rpc_resp = o_res, .rpc_cred = data->owner->so_cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_open_ops, .callback_data = data, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; int status; kref_get(&data->kref); data->rpc_done = 0; data->rpc_status = 0; data->cancelled = 0; if (isrecover) task_setup_data.callback_ops = &nfs4_recover_open_ops; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); status = nfs4_wait_for_completion_rpc_task(task); if (status != 0) { data->cancelled = 1; smp_wmb(); } else status = data->rpc_status; rpc_put_task(task); return status; } static int _nfs4_recover_proc_open(struct nfs4_opendata *data) { struct inode *dir = data->dir->d_inode; struct nfs_openres *o_res = &data->o_res; int status; status = nfs4_run_open_task(data, 1); if (status != 0 || !data->rpc_done) return status; nfs_refresh_inode(dir, o_res->dir_attr); if (o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) { status = _nfs4_proc_open_confirm(data); if (status != 0) return status; } return status; } /* * Note: On error, nfs4_proc_open will free the struct nfs4_opendata */ static int _nfs4_proc_open(struct nfs4_opendata *data) { struct inode *dir = data->dir->d_inode; struct nfs_server *server = NFS_SERVER(dir); struct nfs_openargs *o_arg = &data->o_arg; struct nfs_openres *o_res = &data->o_res; int status; status = nfs4_run_open_task(data, 0); if (status != 0 || !data->rpc_done) return status; if (o_arg->open_flags & O_CREAT) { update_changeattr(dir, &o_res->cinfo); nfs_post_op_update_inode(dir, o_res->dir_attr); } else nfs_refresh_inode(dir, o_res->dir_attr); if ((o_res->rflags & NFS4_OPEN_RESULT_LOCKTYPE_POSIX) == 0) server->caps &= ~NFS_CAP_POSIX_LOCK; if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) { status = _nfs4_proc_open_confirm(data); if (status != 0) return status; } if (!(o_res->f_attr->valid & NFS_ATTR_FATTR)) _nfs4_proc_getattr(server, &o_res->fh, o_res->f_attr); return 0; } static int nfs4_recover_expired_lease(struct nfs_server *server) { struct nfs_client *clp = server->nfs_client; unsigned int loop; int ret; for (loop = NFS4_MAX_LOOP_ON_RECOVER; loop != 0; loop--) { ret = nfs4_wait_clnt_recover(clp); if (ret != 0) break; if (!test_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state) && !test_bit(NFS4CLNT_CHECK_LEASE,&clp->cl_state)) break; nfs4_schedule_state_recovery(clp); ret = -EIO; } return ret; } /* * OPEN_EXPIRED: * reclaim state on the server after a network partition. * Assumes caller holds the appropriate lock */ static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs4_opendata *opendata; int ret; opendata = nfs4_open_recoverdata_alloc(ctx, state); if (IS_ERR(opendata)) return PTR_ERR(opendata); ret = nfs4_open_recover(opendata, state); if (ret == -ESTALE) d_drop(ctx->path.dentry); nfs4_opendata_put(opendata); return ret; } static int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; do { err = _nfs4_open_expired(ctx, state); switch (err) { default: goto out; case -NFS4ERR_GRACE: case -NFS4ERR_DELAY: nfs4_handle_exception(server, err, &exception); err = 0; } } while (exception.retry); out: return err; } static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state) { struct nfs_open_context *ctx; int ret; ctx = nfs4_state_find_open_context(state); if (IS_ERR(ctx)) return PTR_ERR(ctx); ret = nfs4_do_open_expired(ctx, state); put_nfs_open_context(ctx); return ret; } /* * on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-* * fields corresponding to attributes that were used to store the verifier. * Make sure we clobber those fields in the later setattr call */ static inline void nfs4_exclusive_attrset(struct nfs4_opendata *opendata, struct iattr *sattr) { if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_ACCESS) && !(sattr->ia_valid & ATTR_ATIME_SET)) sattr->ia_valid |= ATTR_ATIME; if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_MODIFY) && !(sattr->ia_valid & ATTR_MTIME_SET)) sattr->ia_valid |= ATTR_MTIME; } /* * Returns a referenced nfs4_state */ static int _nfs4_do_open(struct inode *dir, struct path *path, fmode_t fmode, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res) { struct nfs4_state_owner *sp; struct nfs4_state *state = NULL; struct nfs_server *server = NFS_SERVER(dir); struct nfs4_opendata *opendata; int status; /* Protect against reboot recovery conflicts */ status = -ENOMEM; if (!(sp = nfs4_get_state_owner(server, cred))) { dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n"); goto out_err; } status = nfs4_recover_expired_lease(server); if (status != 0) goto err_put_state_owner; if (path->dentry->d_inode != NULL) nfs4_return_incompatible_delegation(path->dentry->d_inode, fmode); status = -ENOMEM; opendata = nfs4_opendata_alloc(path, sp, fmode, flags, sattr, GFP_KERNEL); if (opendata == NULL) goto err_put_state_owner; if (path->dentry->d_inode != NULL) opendata->state = nfs4_get_open_state(path->dentry->d_inode, sp); status = _nfs4_proc_open(opendata); if (status != 0) goto err_opendata_put; state = nfs4_opendata_to_nfs4_state(opendata); status = PTR_ERR(state); if (IS_ERR(state)) goto err_opendata_put; if (server->caps & NFS_CAP_POSIX_LOCK) set_bit(NFS_STATE_POSIX_LOCKS, &state->flags); if (opendata->o_arg.open_flags & O_EXCL) { nfs4_exclusive_attrset(opendata, sattr); nfs_fattr_init(opendata->o_res.f_attr); status = nfs4_do_setattr(state->inode, cred, opendata->o_res.f_attr, sattr, state); if (status == 0) nfs_setattr_update_inode(state->inode, sattr); nfs_post_op_update_inode(state->inode, opendata->o_res.f_attr); } nfs4_opendata_put(opendata); nfs4_put_state_owner(sp); *res = state; return 0; err_opendata_put: nfs4_opendata_put(opendata); err_put_state_owner: nfs4_put_state_owner(sp); out_err: *res = NULL; return status; } static struct nfs4_state *nfs4_do_open(struct inode *dir, struct path *path, fmode_t fmode, int flags, struct iattr *sattr, struct rpc_cred *cred) { struct nfs4_exception exception = { }; struct nfs4_state *res; int status; do { status = _nfs4_do_open(dir, path, fmode, flags, sattr, cred, &res); if (status == 0) break; /* NOTE: BAD_SEQID means the server and client disagree about the * book-keeping w.r.t. state-changing operations * (OPEN/CLOSE/LOCK/LOCKU...) * It is actually a sign of a bug on the client or on the server. * * If we receive a BAD_SEQID error in the particular case of * doing an OPEN, we assume that nfs_increment_open_seqid() will * have unhashed the old state_owner for us, and that we can * therefore safely retry using a new one. We should still warn * the user though... */ if (status == -NFS4ERR_BAD_SEQID) { printk(KERN_WARNING "NFS: v4 server %s " " returned a bad sequence-id error!\n", NFS_SERVER(dir)->nfs_client->cl_hostname); exception.retry = 1; continue; } /* * BAD_STATEID on OPEN means that the server cancelled our * state before it received the OPEN_CONFIRM. * Recover by retrying the request as per the discussion * on Page 181 of RFC3530. */ if (status == -NFS4ERR_BAD_STATEID) { exception.retry = 1; continue; } if (status == -EAGAIN) { /* We must have found a delegation */ exception.retry = 1; continue; } res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir), status, &exception)); } while (exception.retry); return res; } static int _nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred, struct nfs_fattr *fattr, struct iattr *sattr, struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(inode); struct nfs_setattrargs arg = { .fh = NFS_FH(inode), .iap = sattr, .server = server, .bitmask = server->attr_bitmask, }; struct nfs_setattrres res = { .fattr = fattr, .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = cred, }; unsigned long timestamp = jiffies; int status; nfs_fattr_init(fattr); if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) { /* Use that stateid */ } else if (state != NULL) { nfs4_copy_stateid(&arg.stateid, state, current->files, current->tgid); } else memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid)); status = nfs4_call_sync(server, &msg, &arg, &res, 1); if (status == 0 && state != NULL) renew_lease(server, timestamp); return status; } static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred, struct nfs_fattr *fattr, struct iattr *sattr, struct nfs4_state *state) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_do_setattr(inode, cred, fattr, sattr, state), &exception); } while (exception.retry); return err; } struct nfs4_closedata { struct path path; struct inode *inode; struct nfs4_state *state; struct nfs_closeargs arg; struct nfs_closeres res; struct nfs_fattr fattr; unsigned long timestamp; }; static void nfs4_free_closedata(void *data) { struct nfs4_closedata *calldata = data; struct nfs4_state_owner *sp = calldata->state->owner; nfs4_put_open_state(calldata->state); nfs_free_seqid(calldata->arg.seqid); nfs4_put_state_owner(sp); path_put(&calldata->path); kfree(calldata); } static void nfs4_close_clear_stateid_flags(struct nfs4_state *state, fmode_t fmode) { spin_lock(&state->owner->so_lock); if (!(fmode & FMODE_READ)) clear_bit(NFS_O_RDONLY_STATE, &state->flags); if (!(fmode & FMODE_WRITE)) clear_bit(NFS_O_WRONLY_STATE, &state->flags); clear_bit(NFS_O_RDWR_STATE, &state->flags); spin_unlock(&state->owner->so_lock); } static void nfs4_close_done(struct rpc_task *task, void *data) { struct nfs4_closedata *calldata = data; struct nfs4_state *state = calldata->state; struct nfs_server *server = NFS_SERVER(calldata->inode); if (!nfs4_sequence_done(task, &calldata->res.seq_res)) return; /* hmm. we are done with the inode, and in the process of freeing * the state_owner. we keep this around to process errors */ switch (task->tk_status) { case 0: nfs_set_open_stateid(state, &calldata->res.stateid, 0); renew_lease(server, calldata->timestamp); nfs4_close_clear_stateid_flags(state, calldata->arg.fmode); break; case -NFS4ERR_STALE_STATEID: case -NFS4ERR_OLD_STATEID: case -NFS4ERR_BAD_STATEID: case -NFS4ERR_EXPIRED: if (calldata->arg.fmode == 0) break; default: if (nfs4_async_handle_error(task, server, state) == -EAGAIN) rpc_restart_call_prepare(task); } nfs_release_seqid(calldata->arg.seqid); nfs_refresh_inode(calldata->inode, calldata->res.fattr); } static void nfs4_close_prepare(struct rpc_task *task, void *data) { struct nfs4_closedata *calldata = data; struct nfs4_state *state = calldata->state; int call_close = 0; if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0) return; task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE]; calldata->arg.fmode = FMODE_READ|FMODE_WRITE; spin_lock(&state->owner->so_lock); /* Calculate the change in open mode */ if (state->n_rdwr == 0) { if (state->n_rdonly == 0) { call_close |= test_bit(NFS_O_RDONLY_STATE, &state->flags); call_close |= test_bit(NFS_O_RDWR_STATE, &state->flags); calldata->arg.fmode &= ~FMODE_READ; } if (state->n_wronly == 0) { call_close |= test_bit(NFS_O_WRONLY_STATE, &state->flags); call_close |= test_bit(NFS_O_RDWR_STATE, &state->flags); calldata->arg.fmode &= ~FMODE_WRITE; } } spin_unlock(&state->owner->so_lock); if (!call_close) { /* Note: exit _without_ calling nfs4_close_done */ task->tk_action = NULL; return; } if (calldata->arg.fmode == 0) task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE]; nfs_fattr_init(calldata->res.fattr); calldata->timestamp = jiffies; if (nfs4_setup_sequence(NFS_SERVER(calldata->inode), &calldata->arg.seq_args, &calldata->res.seq_res, 1, task)) return; rpc_call_start(task); } static const struct rpc_call_ops nfs4_close_ops = { .rpc_call_prepare = nfs4_close_prepare, .rpc_call_done = nfs4_close_done, .rpc_release = nfs4_free_closedata, }; /* * It is possible for data to be read/written from a mem-mapped file * after the sys_close call (which hits the vfs layer as a flush). * This means that we can't safely call nfsv4 close on a file until * the inode is cleared. This in turn means that we are not good * NFSv4 citizens - we do not indicate to the server to update the file's * share state even when we are done with one of the three share * stateid's in the inode. * * NOTE: Caller must be holding the sp->so_owner semaphore! */ int nfs4_do_close(struct path *path, struct nfs4_state *state, gfp_t gfp_mask, int wait) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_closedata *calldata; struct nfs4_state_owner *sp = state->owner; struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE], .rpc_cred = state->owner->so_cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_close_ops, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; int status = -ENOMEM; calldata = kzalloc(sizeof(*calldata), gfp_mask); if (calldata == NULL) goto out; calldata->inode = state->inode; calldata->state = state; calldata->arg.fh = NFS_FH(state->inode); calldata->arg.stateid = &state->open_stateid; /* Serialization for the sequence id */ calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid, gfp_mask); if (calldata->arg.seqid == NULL) goto out_free_calldata; calldata->arg.fmode = 0; calldata->arg.bitmask = server->cache_consistency_bitmask; calldata->res.fattr = &calldata->fattr; calldata->res.seqid = calldata->arg.seqid; calldata->res.server = server; path_get(path); calldata->path = *path; msg.rpc_argp = &calldata->arg, msg.rpc_resp = &calldata->res, task_setup_data.callback_data = calldata; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); status = 0; if (wait) status = rpc_wait_for_completion_task(task); rpc_put_task(task); return status; out_free_calldata: kfree(calldata); out: nfs4_put_open_state(state); nfs4_put_state_owner(sp); return status; } static struct inode * nfs4_atomic_open(struct inode *dir, struct nfs_open_context *ctx, int open_flags, struct iattr *attr) { struct nfs4_state *state; /* Protect against concurrent sillydeletes */ state = nfs4_do_open(dir, &ctx->path, ctx->mode, open_flags, attr, ctx->cred); if (IS_ERR(state)) return ERR_CAST(state); ctx->state = state; return igrab(state->inode); } static void nfs4_close_context(struct nfs_open_context *ctx, int is_sync) { if (ctx->state == NULL) return; if (is_sync) nfs4_close_sync(&ctx->path, ctx->state, ctx->mode); else nfs4_close_state(&ctx->path, ctx->state, ctx->mode); } static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) { struct nfs4_server_caps_arg args = { .fhandle = fhandle, }; struct nfs4_server_caps_res res = {}; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS], .rpc_argp = &args, .rpc_resp = &res, }; int status; status = nfs4_call_sync(server, &msg, &args, &res, 0); if (status == 0) { memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask)); server->caps &= ~(NFS_CAP_ACLS|NFS_CAP_HARDLINKS| NFS_CAP_SYMLINKS|NFS_CAP_FILEID| NFS_CAP_MODE|NFS_CAP_NLINK|NFS_CAP_OWNER| NFS_CAP_OWNER_GROUP|NFS_CAP_ATIME| NFS_CAP_CTIME|NFS_CAP_MTIME); if (res.attr_bitmask[0] & FATTR4_WORD0_ACL) server->caps |= NFS_CAP_ACLS; if (res.has_links != 0) server->caps |= NFS_CAP_HARDLINKS; if (res.has_symlinks != 0) server->caps |= NFS_CAP_SYMLINKS; if (res.attr_bitmask[0] & FATTR4_WORD0_FILEID) server->caps |= NFS_CAP_FILEID; if (res.attr_bitmask[1] & FATTR4_WORD1_MODE) server->caps |= NFS_CAP_MODE; if (res.attr_bitmask[1] & FATTR4_WORD1_NUMLINKS) server->caps |= NFS_CAP_NLINK; if (res.attr_bitmask[1] & FATTR4_WORD1_OWNER) server->caps |= NFS_CAP_OWNER; if (res.attr_bitmask[1] & FATTR4_WORD1_OWNER_GROUP) server->caps |= NFS_CAP_OWNER_GROUP; if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_ACCESS) server->caps |= NFS_CAP_ATIME; if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_METADATA) server->caps |= NFS_CAP_CTIME; if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_MODIFY) server->caps |= NFS_CAP_MTIME; memcpy(server->cache_consistency_bitmask, res.attr_bitmask, sizeof(server->cache_consistency_bitmask)); server->cache_consistency_bitmask[0] &= FATTR4_WORD0_CHANGE|FATTR4_WORD0_SIZE; server->cache_consistency_bitmask[1] &= FATTR4_WORD1_TIME_METADATA|FATTR4_WORD1_TIME_MODIFY; server->acl_bitmask = res.acl_bitmask; } return status; } int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_server_capabilities(server, fhandle), &exception); } while (exception.retry); return err; } static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs4_lookup_root_arg args = { .bitmask = nfs4_fattr_bitmap, }; struct nfs4_lookup_res res = { .server = server, .fattr = info->fattr, .fh = fhandle, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT], .rpc_argp = &args, .rpc_resp = &res, }; nfs_fattr_init(info->fattr); return nfs4_call_sync(server, &msg, &args, &res, 0); } static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_lookup_root(server, fhandle, info), &exception); } while (exception.retry); return err; } /* * get the file handle for the "/" directory on the server */ static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *info) { int status; status = nfs4_lookup_root(server, fhandle, info); if (status == 0) status = nfs4_server_capabilities(server, fhandle); if (status == 0) status = nfs4_do_fsinfo(server, fhandle, info); return nfs4_map_errors(status); } /* * Get locations and (maybe) other attributes of a referral. * Note that we'll actually follow the referral later when * we detect fsid mismatch in inode revalidation */ static int nfs4_get_referral(struct inode *dir, const struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle) { int status = -ENOMEM; struct page *page = NULL; struct nfs4_fs_locations *locations = NULL; page = alloc_page(GFP_KERNEL); if (page == NULL) goto out; locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL); if (locations == NULL) goto out; status = nfs4_proc_fs_locations(dir, name, locations, page); if (status != 0) goto out; /* Make sure server returned a different fsid for the referral */ if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) { dprintk("%s: server did not return a different fsid for a referral at %s\n", __func__, name->name); status = -EIO; goto out; } memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr)); fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL; if (!fattr->mode) fattr->mode = S_IFDIR; memset(fhandle, 0, sizeof(struct nfs_fh)); out: if (page) __free_page(page); kfree(locations); return status; } static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs4_getattr_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct nfs4_getattr_res res = { .fattr = fattr, .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR], .rpc_argp = &args, .rpc_resp = &res, }; nfs_fattr_init(fattr); return nfs4_call_sync(server, &msg, &args, &res, 0); } static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_getattr(server, fhandle, fattr), &exception); } while (exception.retry); return err; } /* * The file is not closed if it is opened due to the a request to change * the size of the file. The open call will not be needed once the * VFS layer lookup-intents are implemented. * * Close is called when the inode is destroyed. * If we haven't opened the file for O_WRONLY, we * need to in the size_change case to obtain a stateid. * * Got race? * Because OPEN is always done by name in nfsv4, it is * possible that we opened a different file by the same * name. We can recognize this race condition, but we * can't do anything about it besides returning an error. * * This will be fixed with VFS changes (lookup-intent). */ static int nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr, struct iattr *sattr) { struct inode *inode = dentry->d_inode; struct rpc_cred *cred = NULL; struct nfs4_state *state = NULL; int status; nfs_fattr_init(fattr); /* Search for an existing open(O_WRITE) file */ if (sattr->ia_valid & ATTR_FILE) { struct nfs_open_context *ctx; ctx = nfs_file_open_context(sattr->ia_file); if (ctx) { cred = ctx->cred; state = ctx->state; } } status = nfs4_do_setattr(inode, cred, fattr, sattr, state); if (status == 0) nfs_setattr_update_inode(inode, sattr); return status; } static int _nfs4_proc_lookupfh(struct nfs_server *server, const struct nfs_fh *dirfh, const struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { int status; struct nfs4_lookup_arg args = { .bitmask = server->attr_bitmask, .dir_fh = dirfh, .name = name, }; struct nfs4_lookup_res res = { .server = server, .fattr = fattr, .fh = fhandle, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP], .rpc_argp = &args, .rpc_resp = &res, }; nfs_fattr_init(fattr); dprintk("NFS call lookupfh %s\n", name->name); status = nfs4_call_sync(server, &msg, &args, &res, 0); dprintk("NFS reply lookupfh: %d\n", status); return status; } static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs4_exception exception = { }; int err; do { err = _nfs4_proc_lookupfh(server, dirfh, name, fhandle, fattr); /* FIXME: !!!! */ if (err == -NFS4ERR_MOVED) { err = -EREMOTE; break; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { int status; dprintk("NFS call lookup %s\n", name->name); status = _nfs4_proc_lookupfh(NFS_SERVER(dir), NFS_FH(dir), name, fhandle, fattr); if (status == -NFS4ERR_MOVED) status = nfs4_get_referral(dir, name, fattr, fhandle); dprintk("NFS reply lookup: %d\n", status); return status; } static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_lookup(dir, name, fhandle, fattr), &exception); } while (exception.retry); return err; } static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_accessargs args = { .fh = NFS_FH(inode), .bitmask = server->attr_bitmask, }; struct nfs4_accessres res = { .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = entry->cred, }; int mode = entry->mask; int status; /* * Determine which access bits we want to ask for... */ if (mode & MAY_READ) args.access |= NFS4_ACCESS_READ; if (S_ISDIR(inode->i_mode)) { if (mode & MAY_WRITE) args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE; if (mode & MAY_EXEC) args.access |= NFS4_ACCESS_LOOKUP; } else { if (mode & MAY_WRITE) args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND; if (mode & MAY_EXEC) args.access |= NFS4_ACCESS_EXECUTE; } res.fattr = nfs_alloc_fattr(); if (res.fattr == NULL) return -ENOMEM; status = nfs4_call_sync(server, &msg, &args, &res, 0); if (!status) { entry->mask = 0; if (res.access & NFS4_ACCESS_READ) entry->mask |= MAY_READ; if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) entry->mask |= MAY_WRITE; if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) entry->mask |= MAY_EXEC; nfs_refresh_inode(inode, res.fattr); } nfs_free_fattr(res.fattr); return status; } static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(inode), _nfs4_proc_access(inode, entry), &exception); } while (exception.retry); return err; } /* * TODO: For the time being, we don't try to get any attributes * along with any of the zero-copy operations READ, READDIR, * READLINK, WRITE. * * In the case of the first three, we want to put the GETATTR * after the read-type operation -- this is because it is hard * to predict the length of a GETATTR response in v4, and thus * align the READ data correctly. This means that the GETATTR * may end up partially falling into the page cache, and we should * shift it into the 'tail' of the xdr_buf before processing. * To do this efficiently, we need to know the total length * of data received, which doesn't seem to be available outside * of the RPC layer. * * In the case of WRITE, we also want to put the GETATTR after * the operation -- in this case because we want to make sure * we get the post-operation mtime and size. This means that * we can't use xdr_encode_pages() as written: we need a variant * of it which would leave room in the 'tail' iovec. * * Both of these changes to the XDR layer would in fact be quite * minor, but I decided to leave them for a subsequent patch. */ static int _nfs4_proc_readlink(struct inode *inode, struct page *page, unsigned int pgbase, unsigned int pglen) { struct nfs4_readlink args = { .fh = NFS_FH(inode), .pgbase = pgbase, .pglen = pglen, .pages = &page, }; struct nfs4_readlink_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK], .rpc_argp = &args, .rpc_resp = &res, }; return nfs4_call_sync(NFS_SERVER(inode), &msg, &args, &res, 0); } static int nfs4_proc_readlink(struct inode *inode, struct page *page, unsigned int pgbase, unsigned int pglen) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(inode), _nfs4_proc_readlink(inode, page, pgbase, pglen), &exception); } while (exception.retry); return err; } /* * Got race? * We will need to arrange for the VFS layer to provide an atomic open. * Until then, this create/open method is prone to inefficiency and race * conditions due to the lookup, create, and open VFS calls from sys_open() * placed on the wire. * * Given the above sorry state of affairs, I'm simply sending an OPEN. * The file will be opened again in the subsequent VFS open call * (nfs4_proc_file_open). * * The open for read will just hang around to be used by any process that * opens the file O_RDONLY. This will all be resolved with the VFS changes. */ static int nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr, int flags, struct nfs_open_context *ctx) { struct path my_path = { .dentry = dentry, }; struct path *path = &my_path; struct nfs4_state *state; struct rpc_cred *cred = NULL; fmode_t fmode = 0; int status = 0; if (ctx != NULL) { cred = ctx->cred; path = &ctx->path; fmode = ctx->mode; } state = nfs4_do_open(dir, path, fmode, flags, sattr, cred); d_drop(dentry); if (IS_ERR(state)) { status = PTR_ERR(state); goto out; } d_add(dentry, igrab(state->inode)); nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); if (ctx != NULL) ctx->state = state; else nfs4_close_sync(path, state, fmode); out: return status; } static int _nfs4_proc_remove(struct inode *dir, struct qstr *name) { struct nfs_server *server = NFS_SERVER(dir); struct nfs_removeargs args = { .fh = NFS_FH(dir), .name.len = name->len, .name.name = name->name, .bitmask = server->attr_bitmask, }; struct nfs_removeres res = { .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE], .rpc_argp = &args, .rpc_resp = &res, }; int status = -ENOMEM; res.dir_attr = nfs_alloc_fattr(); if (res.dir_attr == NULL) goto out; status = nfs4_call_sync(server, &msg, &args, &res, 1); if (status == 0) { update_changeattr(dir, &res.cinfo); nfs_post_op_update_inode(dir, res.dir_attr); } nfs_free_fattr(res.dir_attr); out: return status; } static int nfs4_proc_remove(struct inode *dir, struct qstr *name) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_remove(dir, name), &exception); } while (exception.retry); return err; } static void nfs4_proc_unlink_setup(struct rpc_message *msg, struct inode *dir) { struct nfs_server *server = NFS_SERVER(dir); struct nfs_removeargs *args = msg->rpc_argp; struct nfs_removeres *res = msg->rpc_resp; args->bitmask = server->cache_consistency_bitmask; res->server = server; res->seq_res.sr_slot = NULL; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE]; } static int nfs4_proc_unlink_done(struct rpc_task *task, struct inode *dir) { struct nfs_removeres *res = task->tk_msg.rpc_resp; if (!nfs4_sequence_done(task, &res->seq_res)) return 0; if (nfs4_async_handle_error(task, res->server, NULL) == -EAGAIN) return 0; update_changeattr(dir, &res->cinfo); nfs_post_op_update_inode(dir, res->dir_attr); return 1; } static void nfs4_proc_rename_setup(struct rpc_message *msg, struct inode *dir) { struct nfs_server *server = NFS_SERVER(dir); struct nfs_renameargs *arg = msg->rpc_argp; struct nfs_renameres *res = msg->rpc_resp; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME]; arg->bitmask = server->attr_bitmask; res->server = server; } static int nfs4_proc_rename_done(struct rpc_task *task, struct inode *old_dir, struct inode *new_dir) { struct nfs_renameres *res = task->tk_msg.rpc_resp; if (!nfs4_sequence_done(task, &res->seq_res)) return 0; if (nfs4_async_handle_error(task, res->server, NULL) == -EAGAIN) return 0; update_changeattr(old_dir, &res->old_cinfo); nfs_post_op_update_inode(old_dir, res->old_fattr); update_changeattr(new_dir, &res->new_cinfo); nfs_post_op_update_inode(new_dir, res->new_fattr); return 1; } static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name, struct inode *new_dir, struct qstr *new_name) { struct nfs_server *server = NFS_SERVER(old_dir); struct nfs_renameargs arg = { .old_dir = NFS_FH(old_dir), .new_dir = NFS_FH(new_dir), .old_name = old_name, .new_name = new_name, .bitmask = server->attr_bitmask, }; struct nfs_renameres res = { .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME], .rpc_argp = &arg, .rpc_resp = &res, }; int status = -ENOMEM; res.old_fattr = nfs_alloc_fattr(); res.new_fattr = nfs_alloc_fattr(); if (res.old_fattr == NULL || res.new_fattr == NULL) goto out; status = nfs4_call_sync(server, &msg, &arg, &res, 1); if (!status) { update_changeattr(old_dir, &res.old_cinfo); nfs_post_op_update_inode(old_dir, res.old_fattr); update_changeattr(new_dir, &res.new_cinfo); nfs_post_op_update_inode(new_dir, res.new_fattr); } out: nfs_free_fattr(res.new_fattr); nfs_free_fattr(res.old_fattr); return status; } static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name, struct inode *new_dir, struct qstr *new_name) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(old_dir), _nfs4_proc_rename(old_dir, old_name, new_dir, new_name), &exception); } while (exception.retry); return err; } static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_link_arg arg = { .fh = NFS_FH(inode), .dir_fh = NFS_FH(dir), .name = name, .bitmask = server->attr_bitmask, }; struct nfs4_link_res res = { .server = server, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK], .rpc_argp = &arg, .rpc_resp = &res, }; int status = -ENOMEM; res.fattr = nfs_alloc_fattr(); res.dir_attr = nfs_alloc_fattr(); if (res.fattr == NULL || res.dir_attr == NULL) goto out; status = nfs4_call_sync(server, &msg, &arg, &res, 1); if (!status) { update_changeattr(dir, &res.cinfo); nfs_post_op_update_inode(dir, res.dir_attr); nfs_post_op_update_inode(inode, res.fattr); } out: nfs_free_fattr(res.dir_attr); nfs_free_fattr(res.fattr); return status; } static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(inode), _nfs4_proc_link(inode, dir, name), &exception); } while (exception.retry); return err; } struct nfs4_createdata { struct rpc_message msg; struct nfs4_create_arg arg; struct nfs4_create_res res; struct nfs_fh fh; struct nfs_fattr fattr; struct nfs_fattr dir_fattr; }; static struct nfs4_createdata *nfs4_alloc_createdata(struct inode *dir, struct qstr *name, struct iattr *sattr, u32 ftype) { struct nfs4_createdata *data; data = kzalloc(sizeof(*data), GFP_KERNEL); if (data != NULL) { struct nfs_server *server = NFS_SERVER(dir); data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE]; data->msg.rpc_argp = &data->arg; data->msg.rpc_resp = &data->res; data->arg.dir_fh = NFS_FH(dir); data->arg.server = server; data->arg.name = name; data->arg.attrs = sattr; data->arg.ftype = ftype; data->arg.bitmask = server->attr_bitmask; data->res.server = server; data->res.fh = &data->fh; data->res.fattr = &data->fattr; data->res.dir_fattr = &data->dir_fattr; nfs_fattr_init(data->res.fattr); nfs_fattr_init(data->res.dir_fattr); } return data; } static int nfs4_do_create(struct inode *dir, struct dentry *dentry, struct nfs4_createdata *data) { int status = nfs4_call_sync(NFS_SERVER(dir), &data->msg, &data->arg, &data->res, 1); if (status == 0) { update_changeattr(dir, &data->res.dir_cinfo); nfs_post_op_update_inode(dir, data->res.dir_fattr); status = nfs_instantiate(dentry, data->res.fh, data->res.fattr); } return status; } static void nfs4_free_createdata(struct nfs4_createdata *data) { kfree(data); } static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs4_createdata *data; int status = -ENAMETOOLONG; if (len > NFS4_MAXPATHLEN) goto out; status = -ENOMEM; data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4LNK); if (data == NULL) goto out; data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK]; data->arg.u.symlink.pages = &page; data->arg.u.symlink.len = len; status = nfs4_do_create(dir, dentry, data); nfs4_free_createdata(data); out: return status; } static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry, struct page *page, unsigned int len, struct iattr *sattr) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_symlink(dir, dentry, page, len, sattr), &exception); } while (exception.retry); return err; } static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs4_createdata *data; int status = -ENOMEM; data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4DIR); if (data == NULL) goto out; status = nfs4_do_create(dir, dentry, data); nfs4_free_createdata(data); out: return status; } static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry, struct iattr *sattr) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_mkdir(dir, dentry, sattr), &exception); } while (exception.retry); return err; } static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct inode *dir = dentry->d_inode; struct nfs4_readdir_arg args = { .fh = NFS_FH(dir), .pages = pages, .pgbase = 0, .count = count, .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask, .plus = plus, }; struct nfs4_readdir_res res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; int status; dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __func__, dentry->d_parent->d_name.name, dentry->d_name.name, (unsigned long long)cookie); nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args); res.pgbase = args.pgbase; status = nfs4_call_sync(NFS_SERVER(dir), &msg, &args, &res, 0); if (status >= 0) { memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE); status += args.pgbase; } nfs_invalidate_atime(dir); dprintk("%s: returns %d\n", __func__, status); return status; } static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred, u64 cookie, struct page **pages, unsigned int count, int plus) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode), _nfs4_proc_readdir(dentry, cred, cookie, pages, count, plus), &exception); } while (exception.retry); return err; } static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct nfs4_createdata *data; int mode = sattr->ia_mode; int status = -ENOMEM; BUG_ON(!(sattr->ia_valid & ATTR_MODE)); BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode)); data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4SOCK); if (data == NULL) goto out; if (S_ISFIFO(mode)) data->arg.ftype = NF4FIFO; else if (S_ISBLK(mode)) { data->arg.ftype = NF4BLK; data->arg.u.device.specdata1 = MAJOR(rdev); data->arg.u.device.specdata2 = MINOR(rdev); } else if (S_ISCHR(mode)) { data->arg.ftype = NF4CHR; data->arg.u.device.specdata1 = MAJOR(rdev); data->arg.u.device.specdata2 = MINOR(rdev); } status = nfs4_do_create(dir, dentry, data); nfs4_free_createdata(data); out: return status; } static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry, struct iattr *sattr, dev_t rdev) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(dir), _nfs4_proc_mknod(dir, dentry, sattr, rdev), &exception); } while (exception.retry); return err; } static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat) { struct nfs4_statfs_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct nfs4_statfs_res res = { .fsstat = fsstat, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS], .rpc_argp = &args, .rpc_resp = &res, }; nfs_fattr_init(fsstat->fattr); return nfs4_call_sync(server, &msg, &args, &res, 0); } static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_statfs(server, fhandle, fsstat), &exception); } while (exception.retry); return err; } static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) { struct nfs4_fsinfo_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct nfs4_fsinfo_res res = { .fsinfo = fsinfo, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO], .rpc_argp = &args, .rpc_resp = &res, }; return nfs4_call_sync(server, &msg, &args, &res, 0); } static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_do_fsinfo(server, fhandle, fsinfo), &exception); } while (exception.retry); return err; } static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo) { nfs_fattr_init(fsinfo->fattr); return nfs4_do_fsinfo(server, fhandle, fsinfo); } static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *pathconf) { struct nfs4_pathconf_arg args = { .fh = fhandle, .bitmask = server->attr_bitmask, }; struct nfs4_pathconf_res res = { .pathconf = pathconf, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF], .rpc_argp = &args, .rpc_resp = &res, }; /* None of the pathconf attributes are mandatory to implement */ if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) { memset(pathconf, 0, sizeof(*pathconf)); return 0; } nfs_fattr_init(pathconf->fattr); return nfs4_call_sync(server, &msg, &args, &res, 0); } static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_pathconf *pathconf) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_pathconf(server, fhandle, pathconf), &exception); } while (exception.retry); return err; } static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data) { struct nfs_server *server = NFS_SERVER(data->inode); dprintk("--> %s\n", __func__); if (!nfs4_sequence_done(task, &data->res.seq_res)) return -EAGAIN; if (nfs4_async_handle_error(task, server, data->args.context->state) == -EAGAIN) { nfs_restart_rpc(task, server->nfs_client); return -EAGAIN; } nfs_invalidate_atime(data->inode); if (task->tk_status > 0) renew_lease(server, data->timestamp); return 0; } static void nfs4_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg) { data->timestamp = jiffies; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ]; } static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data) { struct inode *inode = data->inode; if (!nfs4_sequence_done(task, &data->res.seq_res)) return -EAGAIN; if (nfs4_async_handle_error(task, NFS_SERVER(inode), data->args.context->state) == -EAGAIN) { nfs_restart_rpc(task, NFS_SERVER(inode)->nfs_client); return -EAGAIN; } if (task->tk_status >= 0) { renew_lease(NFS_SERVER(inode), data->timestamp); nfs_post_op_update_inode_force_wcc(inode, data->res.fattr); } return 0; } static void nfs4_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg) { struct nfs_server *server = NFS_SERVER(data->inode); data->args.bitmask = server->cache_consistency_bitmask; data->res.server = server; data->timestamp = jiffies; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE]; } static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data) { struct inode *inode = data->inode; if (!nfs4_sequence_done(task, &data->res.seq_res)) return -EAGAIN; if (nfs4_async_handle_error(task, NFS_SERVER(inode), NULL) == -EAGAIN) { nfs_restart_rpc(task, NFS_SERVER(inode)->nfs_client); return -EAGAIN; } nfs_refresh_inode(inode, data->res.fattr); return 0; } static void nfs4_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg) { struct nfs_server *server = NFS_SERVER(data->inode); data->args.bitmask = server->cache_consistency_bitmask; data->res.server = server; msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT]; } struct nfs4_renewdata { struct nfs_client *client; unsigned long timestamp; }; /* * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special * standalone procedure for queueing an asynchronous RENEW. */ static void nfs4_renew_release(void *calldata) { struct nfs4_renewdata *data = calldata; struct nfs_client *clp = data->client; if (atomic_read(&clp->cl_count) > 1) nfs4_schedule_state_renewal(clp); nfs_put_client(clp); kfree(data); } static void nfs4_renew_done(struct rpc_task *task, void *calldata) { struct nfs4_renewdata *data = calldata; struct nfs_client *clp = data->client; unsigned long timestamp = data->timestamp; if (task->tk_status < 0) { /* Unless we're shutting down, schedule state recovery! */ if (test_bit(NFS_CS_RENEWD, &clp->cl_res_state) != 0) nfs4_schedule_state_recovery(clp); return; } do_renew_lease(clp, timestamp); } static const struct rpc_call_ops nfs4_renew_ops = { .rpc_call_done = nfs4_renew_done, .rpc_release = nfs4_renew_release, }; int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], .rpc_argp = clp, .rpc_cred = cred, }; struct nfs4_renewdata *data; if (!atomic_inc_not_zero(&clp->cl_count)) return -EIO; data = kmalloc(sizeof(*data), GFP_KERNEL); if (data == NULL) return -ENOMEM; data->client = clp; data->timestamp = jiffies; return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT, &nfs4_renew_ops, data); } int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred) { struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW], .rpc_argp = clp, .rpc_cred = cred, }; unsigned long now = jiffies; int status; status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); if (status < 0) return status; do_renew_lease(clp, now); return 0; } static inline int nfs4_server_supports_acls(struct nfs_server *server) { return (server->caps & NFS_CAP_ACLS) && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL) && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL); } /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on * the stack. */ #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT) static void buf_to_pages(const void *buf, size_t buflen, struct page **pages, unsigned int *pgbase) { const void *p = buf; *pgbase = offset_in_page(buf); p -= *pgbase; while (p < buf + buflen) { *(pages++) = virt_to_page(p); p += PAGE_CACHE_SIZE; } } struct nfs4_cached_acl { int cached; size_t len; char data[0]; }; static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl) { struct nfs_inode *nfsi = NFS_I(inode); spin_lock(&inode->i_lock); kfree(nfsi->nfs4_acl); nfsi->nfs4_acl = acl; spin_unlock(&inode->i_lock); } static void nfs4_zap_acl_attr(struct inode *inode) { nfs4_set_cached_acl(inode, NULL); } static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen) { struct nfs_inode *nfsi = NFS_I(inode); struct nfs4_cached_acl *acl; int ret = -ENOENT; spin_lock(&inode->i_lock); acl = nfsi->nfs4_acl; if (acl == NULL) goto out; if (buf == NULL) /* user is just asking for length */ goto out_len; if (acl->cached == 0) goto out; ret = -ERANGE; /* see getxattr(2) man page */ if (acl->len > buflen) goto out; memcpy(buf, acl->data, acl->len); out_len: ret = acl->len; out: spin_unlock(&inode->i_lock); return ret; } static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len) { struct nfs4_cached_acl *acl; if (buf && acl_len <= PAGE_SIZE) { acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL); if (acl == NULL) goto out; acl->cached = 1; memcpy(acl->data, buf, acl_len); } else { acl = kmalloc(sizeof(*acl), GFP_KERNEL); if (acl == NULL) goto out; acl->cached = 0; } acl->len = acl_len; out: nfs4_set_cached_acl(inode, acl); } static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen) { struct page *pages[NFS4ACL_MAXPAGES]; struct nfs_getaclargs args = { .fh = NFS_FH(inode), .acl_pages = pages, .acl_len = buflen, }; struct nfs_getaclres res = { .acl_len = buflen, }; void *resp_buf; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL], .rpc_argp = &args, .rpc_resp = &res, }; struct page *localpage = NULL; int ret; if (buflen < PAGE_SIZE) { /* As long as we're doing a round trip to the server anyway, * let's be prepared for a page of acl data. */ localpage = alloc_page(GFP_KERNEL); resp_buf = page_address(localpage); if (localpage == NULL) return -ENOMEM; args.acl_pages[0] = localpage; args.acl_pgbase = 0; args.acl_len = PAGE_SIZE; } else { resp_buf = buf; buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase); } ret = nfs4_call_sync(NFS_SERVER(inode), &msg, &args, &res, 0); if (ret) goto out_free; if (res.acl_len > args.acl_len) nfs4_write_cached_acl(inode, NULL, res.acl_len); else nfs4_write_cached_acl(inode, resp_buf, res.acl_len); if (buf) { ret = -ERANGE; if (res.acl_len > buflen) goto out_free; if (localpage) memcpy(buf, resp_buf, res.acl_len); } ret = res.acl_len; out_free: if (localpage) __free_page(localpage); return ret; } static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen) { struct nfs4_exception exception = { }; ssize_t ret; do { ret = __nfs4_get_acl_uncached(inode, buf, buflen); if (ret >= 0) break; ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception); } while (exception.retry); return ret; } static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen) { struct nfs_server *server = NFS_SERVER(inode); int ret; if (!nfs4_server_supports_acls(server)) return -EOPNOTSUPP; ret = nfs_revalidate_inode(server, inode); if (ret < 0) return ret; if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_ACL) nfs_zap_acl_cache(inode); ret = nfs4_read_cached_acl(inode, buf, buflen); if (ret != -ENOENT) return ret; return nfs4_get_acl_uncached(inode, buf, buflen); } static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen) { struct nfs_server *server = NFS_SERVER(inode); struct page *pages[NFS4ACL_MAXPAGES]; struct nfs_setaclargs arg = { .fh = NFS_FH(inode), .acl_pages = pages, .acl_len = buflen, }; struct nfs_setaclres res; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL], .rpc_argp = &arg, .rpc_resp = &res, }; int ret; if (!nfs4_server_supports_acls(server)) return -EOPNOTSUPP; nfs_inode_return_delegation(inode); buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase); ret = nfs4_call_sync(server, &msg, &arg, &res, 1); /* * Acl update can result in inode attribute update. * so mark the attribute cache invalid. */ spin_lock(&inode->i_lock); NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; spin_unlock(&inode->i_lock); nfs_access_zap_cache(inode); nfs_zap_acl_cache(inode); return ret; } static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(inode), __nfs4_proc_set_acl(inode, buf, buflen), &exception); } while (exception.retry); return err; } static int nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server, struct nfs4_state *state) { struct nfs_client *clp = server->nfs_client; if (task->tk_status >= 0) return 0; switch(task->tk_status) { case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: case -NFS4ERR_OPENMODE: if (state == NULL) break; nfs4_state_mark_reclaim_nograce(clp, state); goto do_state_recovery; case -NFS4ERR_STALE_STATEID: case -NFS4ERR_STALE_CLIENTID: case -NFS4ERR_EXPIRED: goto do_state_recovery; #if defined(CONFIG_NFS_V4_1) case -NFS4ERR_BADSESSION: case -NFS4ERR_BADSLOT: case -NFS4ERR_BAD_HIGH_SLOT: case -NFS4ERR_DEADSESSION: case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION: case -NFS4ERR_SEQ_FALSE_RETRY: case -NFS4ERR_SEQ_MISORDERED: dprintk("%s ERROR %d, Reset session\n", __func__, task->tk_status); nfs4_schedule_state_recovery(clp); task->tk_status = 0; return -EAGAIN; #endif /* CONFIG_NFS_V4_1 */ case -NFS4ERR_DELAY: nfs_inc_server_stats(server, NFSIOS_DELAY); case -NFS4ERR_GRACE: case -EKEYEXPIRED: rpc_delay(task, NFS4_POLL_RETRY_MAX); task->tk_status = 0; return -EAGAIN; case -NFS4ERR_OLD_STATEID: task->tk_status = 0; return -EAGAIN; } task->tk_status = nfs4_map_errors(task->tk_status); return 0; do_state_recovery: rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL); nfs4_schedule_state_recovery(clp); if (test_bit(NFS4CLNT_MANAGER_RUNNING, &clp->cl_state) == 0) rpc_wake_up_queued_task(&clp->cl_rpcwaitq, task); task->tk_status = 0; return -EAGAIN; } int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred, struct nfs4_setclientid_res *res) { nfs4_verifier sc_verifier; struct nfs4_setclientid setclientid = { .sc_verifier = &sc_verifier, .sc_prog = program, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID], .rpc_argp = &setclientid, .rpc_resp = res, .rpc_cred = cred, }; __be32 *p; int loop = 0; int status; p = (__be32*)sc_verifier.data; *p++ = htonl((u32)clp->cl_boot_time.tv_sec); *p = htonl((u32)clp->cl_boot_time.tv_nsec); for(;;) { setclientid.sc_name_len = scnprintf(setclientid.sc_name, sizeof(setclientid.sc_name), "%s/%s %s %s %u", clp->cl_ipaddr, rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_ADDR), rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_PROTO), clp->cl_rpcclient->cl_auth->au_ops->au_name, clp->cl_id_uniquifier); setclientid.sc_netid_len = scnprintf(setclientid.sc_netid, sizeof(setclientid.sc_netid), rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_NETID)); setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr, sizeof(setclientid.sc_uaddr), "%s.%u.%u", clp->cl_ipaddr, port >> 8, port & 255); status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); if (status != -NFS4ERR_CLID_INUSE) break; if (signalled()) break; if (loop++ & 1) ssleep(clp->cl_lease_time + 1); else if (++clp->cl_id_uniquifier == 0) break; } return status; } static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct nfs4_setclientid_res *arg, struct rpc_cred *cred) { struct nfs_fsinfo fsinfo; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM], .rpc_argp = arg, .rpc_resp = &fsinfo, .rpc_cred = cred, }; unsigned long now; int status; now = jiffies; status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); if (status == 0) { spin_lock(&clp->cl_lock); clp->cl_lease_time = fsinfo.lease_time * HZ; clp->cl_last_renewal = now; spin_unlock(&clp->cl_lock); } return status; } int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct nfs4_setclientid_res *arg, struct rpc_cred *cred) { long timeout = 0; int err; do { err = _nfs4_proc_setclientid_confirm(clp, arg, cred); switch (err) { case 0: return err; case -NFS4ERR_RESOURCE: /* The IBM lawyers misread another document! */ case -NFS4ERR_DELAY: err = nfs4_delay(clp->cl_rpcclient, &timeout); } } while (err == 0); return err; } struct nfs4_delegreturndata { struct nfs4_delegreturnargs args; struct nfs4_delegreturnres res; struct nfs_fh fh; nfs4_stateid stateid; unsigned long timestamp; struct nfs_fattr fattr; int rpc_status; }; static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata) { struct nfs4_delegreturndata *data = calldata; if (!nfs4_sequence_done(task, &data->res.seq_res)) return; switch (task->tk_status) { case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: case 0: renew_lease(data->res.server, data->timestamp); break; default: if (nfs4_async_handle_error(task, data->res.server, NULL) == -EAGAIN) { nfs_restart_rpc(task, data->res.server->nfs_client); return; } } data->rpc_status = task->tk_status; } static void nfs4_delegreturn_release(void *calldata) { kfree(calldata); } #if defined(CONFIG_NFS_V4_1) static void nfs4_delegreturn_prepare(struct rpc_task *task, void *data) { struct nfs4_delegreturndata *d_data; d_data = (struct nfs4_delegreturndata *)data; if (nfs4_setup_sequence(d_data->res.server, &d_data->args.seq_args, &d_data->res.seq_res, 1, task)) return; rpc_call_start(task); } #endif /* CONFIG_NFS_V4_1 */ static const struct rpc_call_ops nfs4_delegreturn_ops = { #if defined(CONFIG_NFS_V4_1) .rpc_call_prepare = nfs4_delegreturn_prepare, #endif /* CONFIG_NFS_V4_1 */ .rpc_call_done = nfs4_delegreturn_done, .rpc_release = nfs4_delegreturn_release, }; static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync) { struct nfs4_delegreturndata *data; struct nfs_server *server = NFS_SERVER(inode); struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN], .rpc_cred = cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_delegreturn_ops, .flags = RPC_TASK_ASYNC, }; int status = 0; data = kzalloc(sizeof(*data), GFP_NOFS); if (data == NULL) return -ENOMEM; data->args.fhandle = &data->fh; data->args.stateid = &data->stateid; data->args.bitmask = server->attr_bitmask; nfs_copy_fh(&data->fh, NFS_FH(inode)); memcpy(&data->stateid, stateid, sizeof(data->stateid)); data->res.fattr = &data->fattr; data->res.server = server; nfs_fattr_init(data->res.fattr); data->timestamp = jiffies; data->rpc_status = 0; task_setup_data.callback_data = data; msg.rpc_argp = &data->args, msg.rpc_resp = &data->res, task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); if (!issync) goto out; status = nfs4_wait_for_completion_rpc_task(task); if (status != 0) goto out; status = data->rpc_status; if (status != 0) goto out; nfs_refresh_inode(inode, &data->fattr); out: rpc_put_task(task); return status; } int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync) { struct nfs_server *server = NFS_SERVER(inode); struct nfs4_exception exception = { }; int err; do { err = _nfs4_proc_delegreturn(inode, cred, stateid, issync); switch (err) { case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: case 0: return 0; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } #define NFS4_LOCK_MINTIMEOUT (1 * HZ) #define NFS4_LOCK_MAXTIMEOUT (30 * HZ) /* * sleep, with exponential backoff, and retry the LOCK operation. */ static unsigned long nfs4_set_lock_task_retry(unsigned long timeout) { schedule_timeout_killable(timeout); timeout <<= 1; if (timeout > NFS4_LOCK_MAXTIMEOUT) return NFS4_LOCK_MAXTIMEOUT; return timeout; } static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct inode *inode = state->inode; struct nfs_server *server = NFS_SERVER(inode); struct nfs_client *clp = server->nfs_client; struct nfs_lockt_args arg = { .fh = NFS_FH(inode), .fl = request, }; struct nfs_lockt_res res = { .denied = request, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT], .rpc_argp = &arg, .rpc_resp = &res, .rpc_cred = state->owner->so_cred, }; struct nfs4_lock_state *lsp; int status; arg.lock_owner.clientid = clp->cl_clientid; status = nfs4_set_lock_state(state, request); if (status != 0) goto out; lsp = request->fl_u.nfs4_fl.owner; arg.lock_owner.id = lsp->ls_id.id; status = nfs4_call_sync(server, &msg, &arg, &res, 1); switch (status) { case 0: request->fl_type = F_UNLCK; break; case -NFS4ERR_DENIED: status = 0; } request->fl_ops->fl_release_private(request); out: return status; } static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(NFS_SERVER(state->inode), _nfs4_proc_getlk(state, cmd, request), &exception); } while (exception.retry); return err; } static int do_vfs_lock(struct file *file, struct file_lock *fl) { int res = 0; switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { case FL_POSIX: res = posix_lock_file_wait(file, fl); break; case FL_FLOCK: res = flock_lock_file_wait(file, fl); break; default: BUG(); } return res; } struct nfs4_unlockdata { struct nfs_locku_args arg; struct nfs_locku_res res; struct nfs4_lock_state *lsp; struct nfs_open_context *ctx; struct file_lock fl; const struct nfs_server *server; unsigned long timestamp; }; static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl, struct nfs_open_context *ctx, struct nfs4_lock_state *lsp, struct nfs_seqid *seqid) { struct nfs4_unlockdata *p; struct inode *inode = lsp->ls_state->inode; p = kzalloc(sizeof(*p), GFP_NOFS); if (p == NULL) return NULL; p->arg.fh = NFS_FH(inode); p->arg.fl = &p->fl; p->arg.seqid = seqid; p->res.seqid = seqid; p->arg.stateid = &lsp->ls_stateid; p->lsp = lsp; atomic_inc(&lsp->ls_count); /* Ensure we don't close file until we're done freeing locks! */ p->ctx = get_nfs_open_context(ctx); memcpy(&p->fl, fl, sizeof(p->fl)); p->server = NFS_SERVER(inode); return p; } static void nfs4_locku_release_calldata(void *data) { struct nfs4_unlockdata *calldata = data; nfs_free_seqid(calldata->arg.seqid); nfs4_put_lock_state(calldata->lsp); put_nfs_open_context(calldata->ctx); kfree(calldata); } static void nfs4_locku_done(struct rpc_task *task, void *data) { struct nfs4_unlockdata *calldata = data; if (!nfs4_sequence_done(task, &calldata->res.seq_res)) return; switch (task->tk_status) { case 0: memcpy(calldata->lsp->ls_stateid.data, calldata->res.stateid.data, sizeof(calldata->lsp->ls_stateid.data)); renew_lease(calldata->server, calldata->timestamp); break; case -NFS4ERR_BAD_STATEID: case -NFS4ERR_OLD_STATEID: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_EXPIRED: break; default: if (nfs4_async_handle_error(task, calldata->server, NULL) == -EAGAIN) nfs_restart_rpc(task, calldata->server->nfs_client); } } static void nfs4_locku_prepare(struct rpc_task *task, void *data) { struct nfs4_unlockdata *calldata = data; if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0) return; if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) { /* Note: exit _without_ running nfs4_locku_done */ task->tk_action = NULL; return; } calldata->timestamp = jiffies; if (nfs4_setup_sequence(calldata->server, &calldata->arg.seq_args, &calldata->res.seq_res, 1, task)) return; rpc_call_start(task); } static const struct rpc_call_ops nfs4_locku_ops = { .rpc_call_prepare = nfs4_locku_prepare, .rpc_call_done = nfs4_locku_done, .rpc_release = nfs4_locku_release_calldata, }; static struct rpc_task *nfs4_do_unlck(struct file_lock *fl, struct nfs_open_context *ctx, struct nfs4_lock_state *lsp, struct nfs_seqid *seqid) { struct nfs4_unlockdata *data; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU], .rpc_cred = ctx->cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = NFS_CLIENT(lsp->ls_state->inode), .rpc_message = &msg, .callback_ops = &nfs4_locku_ops, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; /* Ensure this is an unlock - when canceling a lock, the * canceled lock is passed in, and it won't be an unlock. */ fl->fl_type = F_UNLCK; data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid); if (data == NULL) { nfs_free_seqid(seqid); return ERR_PTR(-ENOMEM); } msg.rpc_argp = &data->arg, msg.rpc_resp = &data->res, task_setup_data.callback_data = data; return rpc_run_task(&task_setup_data); } static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs_inode *nfsi = NFS_I(state->inode); struct nfs_seqid *seqid; struct nfs4_lock_state *lsp; struct rpc_task *task; int status = 0; unsigned char fl_flags = request->fl_flags; status = nfs4_set_lock_state(state, request); /* Unlock _before_ we do the RPC call */ request->fl_flags |= FL_EXISTS; down_read(&nfsi->rwsem); if (do_vfs_lock(request->fl_file, request) == -ENOENT) { up_read(&nfsi->rwsem); goto out; } up_read(&nfsi->rwsem); if (status != 0) goto out; /* Is this a delegated lock? */ if (test_bit(NFS_DELEGATED_STATE, &state->flags)) goto out; lsp = request->fl_u.nfs4_fl.owner; seqid = nfs_alloc_seqid(&lsp->ls_seqid, GFP_KERNEL); status = -ENOMEM; if (seqid == NULL) goto out; task = nfs4_do_unlck(request, nfs_file_open_context(request->fl_file), lsp, seqid); status = PTR_ERR(task); if (IS_ERR(task)) goto out; status = nfs4_wait_for_completion_rpc_task(task); rpc_put_task(task); out: request->fl_flags = fl_flags; return status; } struct nfs4_lockdata { struct nfs_lock_args arg; struct nfs_lock_res res; struct nfs4_lock_state *lsp; struct nfs_open_context *ctx; struct file_lock fl; unsigned long timestamp; int rpc_status; int cancelled; struct nfs_server *server; }; static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl, struct nfs_open_context *ctx, struct nfs4_lock_state *lsp, gfp_t gfp_mask) { struct nfs4_lockdata *p; struct inode *inode = lsp->ls_state->inode; struct nfs_server *server = NFS_SERVER(inode); p = kzalloc(sizeof(*p), gfp_mask); if (p == NULL) return NULL; p->arg.fh = NFS_FH(inode); p->arg.fl = &p->fl; p->arg.open_seqid = nfs_alloc_seqid(&lsp->ls_state->owner->so_seqid, gfp_mask); if (p->arg.open_seqid == NULL) goto out_free; p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid, gfp_mask); if (p->arg.lock_seqid == NULL) goto out_free_seqid; p->arg.lock_stateid = &lsp->ls_stateid; p->arg.lock_owner.clientid = server->nfs_client->cl_clientid; p->arg.lock_owner.id = lsp->ls_id.id; p->res.lock_seqid = p->arg.lock_seqid; p->lsp = lsp; p->server = server; atomic_inc(&lsp->ls_count); p->ctx = get_nfs_open_context(ctx); memcpy(&p->fl, fl, sizeof(p->fl)); return p; out_free_seqid: nfs_free_seqid(p->arg.open_seqid); out_free: kfree(p); return NULL; } static void nfs4_lock_prepare(struct rpc_task *task, void *calldata) { struct nfs4_lockdata *data = calldata; struct nfs4_state *state = data->lsp->ls_state; dprintk("%s: begin!\n", __func__); if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0) return; /* Do we need to do an open_to_lock_owner? */ if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) { if (nfs_wait_on_sequence(data->arg.open_seqid, task) != 0) return; data->arg.open_stateid = &state->stateid; data->arg.new_lock_owner = 1; data->res.open_seqid = data->arg.open_seqid; } else data->arg.new_lock_owner = 0; data->timestamp = jiffies; if (nfs4_setup_sequence(data->server, &data->arg.seq_args, &data->res.seq_res, 1, task)) return; rpc_call_start(task); dprintk("%s: done!, ret = %d\n", __func__, data->rpc_status); } static void nfs4_recover_lock_prepare(struct rpc_task *task, void *calldata) { rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED); nfs4_lock_prepare(task, calldata); } static void nfs4_lock_done(struct rpc_task *task, void *calldata) { struct nfs4_lockdata *data = calldata; dprintk("%s: begin!\n", __func__); if (!nfs4_sequence_done(task, &data->res.seq_res)) return; data->rpc_status = task->tk_status; if (data->arg.new_lock_owner != 0) { if (data->rpc_status == 0) nfs_confirm_seqid(&data->lsp->ls_seqid, 0); else goto out; } if (data->rpc_status == 0) { memcpy(data->lsp->ls_stateid.data, data->res.stateid.data, sizeof(data->lsp->ls_stateid.data)); data->lsp->ls_flags |= NFS_LOCK_INITIALIZED; renew_lease(NFS_SERVER(data->ctx->path.dentry->d_inode), data->timestamp); } out: dprintk("%s: done, ret = %d!\n", __func__, data->rpc_status); } static void nfs4_lock_release(void *calldata) { struct nfs4_lockdata *data = calldata; dprintk("%s: begin!\n", __func__); nfs_free_seqid(data->arg.open_seqid); if (data->cancelled != 0) { struct rpc_task *task; task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp, data->arg.lock_seqid); if (!IS_ERR(task)) rpc_put_task(task); dprintk("%s: cancelling lock!\n", __func__); } else nfs_free_seqid(data->arg.lock_seqid); nfs4_put_lock_state(data->lsp); put_nfs_open_context(data->ctx); kfree(data); dprintk("%s: done!\n", __func__); } static const struct rpc_call_ops nfs4_lock_ops = { .rpc_call_prepare = nfs4_lock_prepare, .rpc_call_done = nfs4_lock_done, .rpc_release = nfs4_lock_release, }; static const struct rpc_call_ops nfs4_recover_lock_ops = { .rpc_call_prepare = nfs4_recover_lock_prepare, .rpc_call_done = nfs4_lock_done, .rpc_release = nfs4_lock_release, }; static void nfs4_handle_setlk_error(struct nfs_server *server, struct nfs4_lock_state *lsp, int new_lock_owner, int error) { struct nfs_client *clp = server->nfs_client; struct nfs4_state *state = lsp->ls_state; switch (error) { case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: case -NFS4ERR_EXPIRED: if (new_lock_owner != 0 || (lsp->ls_flags & NFS_LOCK_INITIALIZED) != 0) nfs4_state_mark_reclaim_nograce(clp, state); lsp->ls_seqid.flags &= ~NFS_SEQID_CONFIRMED; break; case -NFS4ERR_STALE_STATEID: if (new_lock_owner != 0 || (lsp->ls_flags & NFS_LOCK_INITIALIZED) != 0) nfs4_state_mark_reclaim_reboot(clp, state); lsp->ls_seqid.flags &= ~NFS_SEQID_CONFIRMED; }; } static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int recovery_type) { struct nfs4_lockdata *data; struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK], .rpc_cred = state->owner->so_cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = NFS_CLIENT(state->inode), .rpc_message = &msg, .callback_ops = &nfs4_lock_ops, .workqueue = nfsiod_workqueue, .flags = RPC_TASK_ASYNC, }; int ret; dprintk("%s: begin!\n", __func__); data = nfs4_alloc_lockdata(fl, nfs_file_open_context(fl->fl_file), fl->fl_u.nfs4_fl.owner, recovery_type == NFS_LOCK_NEW ? GFP_KERNEL : GFP_NOFS); if (data == NULL) return -ENOMEM; if (IS_SETLKW(cmd)) data->arg.block = 1; if (recovery_type > NFS_LOCK_NEW) { if (recovery_type == NFS_LOCK_RECLAIM) data->arg.reclaim = NFS_LOCK_RECLAIM; task_setup_data.callback_ops = &nfs4_recover_lock_ops; } msg.rpc_argp = &data->arg, msg.rpc_resp = &data->res, task_setup_data.callback_data = data; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); ret = nfs4_wait_for_completion_rpc_task(task); if (ret == 0) { ret = data->rpc_status; if (ret) nfs4_handle_setlk_error(data->server, data->lsp, data->arg.new_lock_owner, ret); } else data->cancelled = 1; rpc_put_task(task); dprintk("%s: done, ret = %d!\n", __func__, ret); return ret; } static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; do { /* Cache the lock if possible... */ if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0) return 0; err = _nfs4_do_setlk(state, F_SETLK, request, NFS_LOCK_RECLAIM); if (err != -NFS4ERR_DELAY) break; nfs4_handle_exception(server, err, &exception); } while (exception.retry); return err; } static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; err = nfs4_set_lock_state(state, request); if (err != 0) return err; do { if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0) return 0; err = _nfs4_do_setlk(state, F_SETLK, request, NFS_LOCK_EXPIRED); switch (err) { default: goto out; case -NFS4ERR_GRACE: case -NFS4ERR_DELAY: nfs4_handle_exception(server, err, &exception); err = 0; } } while (exception.retry); out: return err; } static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs_inode *nfsi = NFS_I(state->inode); unsigned char fl_flags = request->fl_flags; int status = -ENOLCK; if ((fl_flags & FL_POSIX) && !test_bit(NFS_STATE_POSIX_LOCKS, &state->flags)) goto out; /* Is this a delegated open? */ status = nfs4_set_lock_state(state, request); if (status != 0) goto out; request->fl_flags |= FL_ACCESS; status = do_vfs_lock(request->fl_file, request); if (status < 0) goto out; down_read(&nfsi->rwsem); if (test_bit(NFS_DELEGATED_STATE, &state->flags)) { /* Yes: cache locks! */ /* ...but avoid races with delegation recall... */ request->fl_flags = fl_flags & ~FL_SLEEP; status = do_vfs_lock(request->fl_file, request); goto out_unlock; } status = _nfs4_do_setlk(state, cmd, request, NFS_LOCK_NEW); if (status != 0) goto out_unlock; /* Note: we always want to sleep here! */ request->fl_flags = fl_flags | FL_SLEEP; if (do_vfs_lock(request->fl_file, request) < 0) printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __func__); out_unlock: up_read(&nfsi->rwsem); out: request->fl_flags = fl_flags; return status; } static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request) { struct nfs4_exception exception = { }; int err; do { err = _nfs4_proc_setlk(state, cmd, request); if (err == -NFS4ERR_DENIED) err = -EAGAIN; err = nfs4_handle_exception(NFS_SERVER(state->inode), err, &exception); } while (exception.retry); return err; } static int nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request) { struct nfs_open_context *ctx; struct nfs4_state *state; unsigned long timeout = NFS4_LOCK_MINTIMEOUT; int status; /* verify open state */ ctx = nfs_file_open_context(filp); state = ctx->state; if (request->fl_start < 0 || request->fl_end < 0) return -EINVAL; if (IS_GETLK(cmd)) { if (state != NULL) return nfs4_proc_getlk(state, F_GETLK, request); return 0; } if (!(IS_SETLK(cmd) || IS_SETLKW(cmd))) return -EINVAL; if (request->fl_type == F_UNLCK) { if (state != NULL) return nfs4_proc_unlck(state, cmd, request); return 0; } if (state == NULL) return -ENOLCK; do { status = nfs4_proc_setlk(state, cmd, request); if ((status != -EAGAIN) || IS_SETLK(cmd)) break; timeout = nfs4_set_lock_task_retry(timeout); status = -ERESTARTSYS; if (signalled()) break; } while(status < 0); return status; } int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl) { struct nfs_server *server = NFS_SERVER(state->inode); struct nfs4_exception exception = { }; int err; err = nfs4_set_lock_state(state, fl); if (err != 0) goto out; do { err = _nfs4_do_setlk(state, F_SETLK, fl, NFS_LOCK_NEW); switch (err) { default: printk(KERN_ERR "%s: unhandled error %d.\n", __func__, err); case 0: case -ESTALE: goto out; case -NFS4ERR_EXPIRED: case -NFS4ERR_STALE_CLIENTID: case -NFS4ERR_STALE_STATEID: case -NFS4ERR_BADSESSION: case -NFS4ERR_BADSLOT: case -NFS4ERR_BAD_HIGH_SLOT: case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION: case -NFS4ERR_DEADSESSION: nfs4_schedule_state_recovery(server->nfs_client); goto out; case -ERESTARTSYS: /* * The show must go on: exit, but mark the * stateid as needing recovery. */ case -NFS4ERR_ADMIN_REVOKED: case -NFS4ERR_BAD_STATEID: case -NFS4ERR_OPENMODE: nfs4_state_mark_reclaim_nograce(server->nfs_client, state); err = 0; goto out; case -EKEYEXPIRED: /* * User RPCSEC_GSS context has expired. * We cannot recover this stateid now, so * skip it and allow recovery thread to * proceed. */ err = 0; goto out; case -ENOMEM: case -NFS4ERR_DENIED: /* kill_proc(fl->fl_pid, SIGLOST, 1); */ err = 0; goto out; case -NFS4ERR_DELAY: break; } err = nfs4_handle_exception(server, err, &exception); } while (exception.retry); out: return err; } static void nfs4_release_lockowner_release(void *calldata) { kfree(calldata); } const struct rpc_call_ops nfs4_release_lockowner_ops = { .rpc_release = nfs4_release_lockowner_release, }; void nfs4_release_lockowner(const struct nfs4_lock_state *lsp) { struct nfs_server *server = lsp->ls_state->owner->so_server; struct nfs_release_lockowner_args *args; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RELEASE_LOCKOWNER], }; if (server->nfs_client->cl_mvops->minor_version != 0) return; args = kmalloc(sizeof(*args), GFP_NOFS); if (!args) return; args->lock_owner.clientid = server->nfs_client->cl_clientid; args->lock_owner.id = lsp->ls_id.id; msg.rpc_argp = args; rpc_call_async(server->client, &msg, 0, &nfs4_release_lockowner_ops, args); } #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl" int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf, size_t buflen, int flags) { struct inode *inode = dentry->d_inode; if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0) return -EOPNOTSUPP; return nfs4_proc_set_acl(inode, buf, buflen); } /* The getxattr man page suggests returning -ENODATA for unknown attributes, * and that's what we'll do for e.g. user attributes that haven't been set. * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported * attributes in kernel-managed attribute namespaces. */ ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf, size_t buflen) { struct inode *inode = dentry->d_inode; if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0) return -EOPNOTSUPP; return nfs4_proc_get_acl(inode, buf, buflen); } ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen) { size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1; if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode))) return 0; if (buf && buflen < len) return -ERANGE; if (buf) memcpy(buf, XATTR_NAME_NFSV4_ACL, len); return len; } static void nfs_fixup_referral_attributes(struct nfs_fattr *fattr) { if (!((fattr->valid & NFS_ATTR_FATTR_FILEID) && (fattr->valid & NFS_ATTR_FATTR_FSID) && (fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL))) return; fattr->valid |= NFS_ATTR_FATTR_TYPE | NFS_ATTR_FATTR_MODE | NFS_ATTR_FATTR_NLINK; fattr->mode = S_IFDIR | S_IRUGO | S_IXUGO; fattr->nlink = 2; } int nfs4_proc_fs_locations(struct inode *dir, const struct qstr *name, struct nfs4_fs_locations *fs_locations, struct page *page) { struct nfs_server *server = NFS_SERVER(dir); u32 bitmask[2] = { [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS, [1] = FATTR4_WORD1_MOUNTED_ON_FILEID, }; struct nfs4_fs_locations_arg args = { .dir_fh = NFS_FH(dir), .name = name, .page = page, .bitmask = bitmask, }; struct nfs4_fs_locations_res res = { .fs_locations = fs_locations, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS], .rpc_argp = &args, .rpc_resp = &res, }; int status; dprintk("%s: start\n", __func__); nfs_fattr_init(&fs_locations->fattr); fs_locations->server = server; fs_locations->nlocations = 0; status = nfs4_call_sync(server, &msg, &args, &res, 0); nfs_fixup_referral_attributes(&fs_locations->fattr); dprintk("%s: returned status = %d\n", __func__, status); return status; } #ifdef CONFIG_NFS_V4_1 /* * nfs4_proc_exchange_id() * * Since the clientid has expired, all compounds using sessions * associated with the stale clientid will be returning * NFS4ERR_BADSESSION in the sequence operation, and will therefore * be in some phase of session reset. */ int nfs4_proc_exchange_id(struct nfs_client *clp, struct rpc_cred *cred) { nfs4_verifier verifier; struct nfs41_exchange_id_args args = { .client = clp, .flags = clp->cl_exchange_flags, }; struct nfs41_exchange_id_res res = { .client = clp, }; int status; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_EXCHANGE_ID], .rpc_argp = &args, .rpc_resp = &res, .rpc_cred = cred, }; __be32 *p; dprintk("--> %s\n", __func__); BUG_ON(clp == NULL); /* Remove server-only flags */ args.flags &= ~EXCHGID4_FLAG_CONFIRMED_R; p = (u32 *)verifier.data; *p++ = htonl((u32)clp->cl_boot_time.tv_sec); *p = htonl((u32)clp->cl_boot_time.tv_nsec); args.verifier = &verifier; while (1) { args.id_len = scnprintf(args.id, sizeof(args.id), "%s/%s %u", clp->cl_ipaddr, rpc_peeraddr2str(clp->cl_rpcclient, RPC_DISPLAY_ADDR), clp->cl_id_uniquifier); status = rpc_call_sync(clp->cl_rpcclient, &msg, 0); if (status != -NFS4ERR_CLID_INUSE) break; if (signalled()) break; if (++clp->cl_id_uniquifier == 0) break; } dprintk("<-- %s status= %d\n", __func__, status); return status; } struct nfs4_get_lease_time_data { struct nfs4_get_lease_time_args *args; struct nfs4_get_lease_time_res *res; struct nfs_client *clp; }; static void nfs4_get_lease_time_prepare(struct rpc_task *task, void *calldata) { int ret; struct nfs4_get_lease_time_data *data = (struct nfs4_get_lease_time_data *)calldata; dprintk("--> %s\n", __func__); rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED); /* just setup sequence, do not trigger session recovery since we're invoked within one */ ret = nfs41_setup_sequence(data->clp->cl_session, &data->args->la_seq_args, &data->res->lr_seq_res, 0, task); BUG_ON(ret == -EAGAIN); rpc_call_start(task); dprintk("<-- %s\n", __func__); } /* * Called from nfs4_state_manager thread for session setup, so don't recover * from sequence operation or clientid errors. */ static void nfs4_get_lease_time_done(struct rpc_task *task, void *calldata) { struct nfs4_get_lease_time_data *data = (struct nfs4_get_lease_time_data *)calldata; dprintk("--> %s\n", __func__); if (!nfs41_sequence_done(task, &data->res->lr_seq_res)) return; switch (task->tk_status) { case -NFS4ERR_DELAY: case -NFS4ERR_GRACE: dprintk("%s Retry: tk_status %d\n", __func__, task->tk_status); rpc_delay(task, NFS4_POLL_RETRY_MIN); task->tk_status = 0; nfs_restart_rpc(task, data->clp); return; } dprintk("<-- %s\n", __func__); } struct rpc_call_ops nfs4_get_lease_time_ops = { .rpc_call_prepare = nfs4_get_lease_time_prepare, .rpc_call_done = nfs4_get_lease_time_done, }; int nfs4_proc_get_lease_time(struct nfs_client *clp, struct nfs_fsinfo *fsinfo) { struct rpc_task *task; struct nfs4_get_lease_time_args args; struct nfs4_get_lease_time_res res = { .lr_fsinfo = fsinfo, }; struct nfs4_get_lease_time_data data = { .args = &args, .res = &res, .clp = clp, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GET_LEASE_TIME], .rpc_argp = &args, .rpc_resp = &res, }; struct rpc_task_setup task_setup = { .rpc_client = clp->cl_rpcclient, .rpc_message = &msg, .callback_ops = &nfs4_get_lease_time_ops, .callback_data = &data }; int status; dprintk("--> %s\n", __func__); task = rpc_run_task(&task_setup); if (IS_ERR(task)) status = PTR_ERR(task); else { status = task->tk_status; rpc_put_task(task); } dprintk("<-- %s return %d\n", __func__, status); return status; } /* * Reset a slot table */ static int nfs4_reset_slot_table(struct nfs4_slot_table *tbl, u32 max_reqs, int ivalue) { struct nfs4_slot *new = NULL; int i; int ret = 0; dprintk("--> %s: max_reqs=%u, tbl->max_slots %d\n", __func__, max_reqs, tbl->max_slots); /* Does the newly negotiated max_reqs match the existing slot table? */ if (max_reqs != tbl->max_slots) { ret = -ENOMEM; new = kmalloc(max_reqs * sizeof(struct nfs4_slot), GFP_NOFS); if (!new) goto out; ret = 0; kfree(tbl->slots); } spin_lock(&tbl->slot_tbl_lock); if (new) { tbl->slots = new; tbl->max_slots = max_reqs; } for (i = 0; i < tbl->max_slots; ++i) tbl->slots[i].seq_nr = ivalue; spin_unlock(&tbl->slot_tbl_lock); dprintk("%s: tbl=%p slots=%p max_slots=%d\n", __func__, tbl, tbl->slots, tbl->max_slots); out: dprintk("<-- %s: return %d\n", __func__, ret); return ret; } /* * Reset the forechannel and backchannel slot tables */ static int nfs4_reset_slot_tables(struct nfs4_session *session) { int status; status = nfs4_reset_slot_table(&session->fc_slot_table, session->fc_attrs.max_reqs, 1); if (status) return status; status = nfs4_reset_slot_table(&session->bc_slot_table, session->bc_attrs.max_reqs, 0); return status; } /* Destroy the slot table */ static void nfs4_destroy_slot_tables(struct nfs4_session *session) { if (session->fc_slot_table.slots != NULL) { kfree(session->fc_slot_table.slots); session->fc_slot_table.slots = NULL; } if (session->bc_slot_table.slots != NULL) { kfree(session->bc_slot_table.slots); session->bc_slot_table.slots = NULL; } return; } /* * Initialize slot table */ static int nfs4_init_slot_table(struct nfs4_slot_table *tbl, int max_slots, int ivalue) { struct nfs4_slot *slot; int ret = -ENOMEM; BUG_ON(max_slots > NFS4_MAX_SLOT_TABLE); dprintk("--> %s: max_reqs=%u\n", __func__, max_slots); slot = kcalloc(max_slots, sizeof(struct nfs4_slot), GFP_NOFS); if (!slot) goto out; ret = 0; spin_lock(&tbl->slot_tbl_lock); tbl->max_slots = max_slots; tbl->slots = slot; tbl->highest_used_slotid = -1; /* no slot is currently used */ spin_unlock(&tbl->slot_tbl_lock); dprintk("%s: tbl=%p slots=%p max_slots=%d\n", __func__, tbl, tbl->slots, tbl->max_slots); out: dprintk("<-- %s: return %d\n", __func__, ret); return ret; } /* * Initialize the forechannel and backchannel tables */ static int nfs4_init_slot_tables(struct nfs4_session *session) { struct nfs4_slot_table *tbl; int status = 0; tbl = &session->fc_slot_table; if (tbl->slots == NULL) { status = nfs4_init_slot_table(tbl, session->fc_attrs.max_reqs, 1); if (status) return status; } tbl = &session->bc_slot_table; if (tbl->slots == NULL) { status = nfs4_init_slot_table(tbl, session->bc_attrs.max_reqs, 0); if (status) nfs4_destroy_slot_tables(session); } return status; } struct nfs4_session *nfs4_alloc_session(struct nfs_client *clp) { struct nfs4_session *session; struct nfs4_slot_table *tbl; session = kzalloc(sizeof(struct nfs4_session), GFP_NOFS); if (!session) return NULL; init_completion(&session->complete); tbl = &session->fc_slot_table; tbl->highest_used_slotid = -1; spin_lock_init(&tbl->slot_tbl_lock); rpc_init_priority_wait_queue(&tbl->slot_tbl_waitq, "ForeChannel Slot table"); tbl = &session->bc_slot_table; tbl->highest_used_slotid = -1; spin_lock_init(&tbl->slot_tbl_lock); rpc_init_wait_queue(&tbl->slot_tbl_waitq, "BackChannel Slot table"); session->session_state = 1<<NFS4_SESSION_INITING; session->clp = clp; return session; } void nfs4_destroy_session(struct nfs4_session *session) { nfs4_proc_destroy_session(session); dprintk("%s Destroy backchannel for xprt %p\n", __func__, session->clp->cl_rpcclient->cl_xprt); xprt_destroy_backchannel(session->clp->cl_rpcclient->cl_xprt, NFS41_BC_MIN_CALLBACKS); nfs4_destroy_slot_tables(session); kfree(session); } /* * Initialize the values to be used by the client in CREATE_SESSION * If nfs4_init_session set the fore channel request and response sizes, * use them. * * Set the back channel max_resp_sz_cached to zero to force the client to * always set csa_cachethis to FALSE because the current implementation * of the back channel DRC only supports caching the CB_SEQUENCE operation. */ static void nfs4_init_channel_attrs(struct nfs41_create_session_args *args) { struct nfs4_session *session = args->client->cl_session; unsigned int mxrqst_sz = session->fc_attrs.max_rqst_sz, mxresp_sz = session->fc_attrs.max_resp_sz; if (mxrqst_sz == 0) mxrqst_sz = NFS_MAX_FILE_IO_SIZE; if (mxresp_sz == 0) mxresp_sz = NFS_MAX_FILE_IO_SIZE; /* Fore channel attributes */ args->fc_attrs.headerpadsz = 0; args->fc_attrs.max_rqst_sz = mxrqst_sz; args->fc_attrs.max_resp_sz = mxresp_sz; args->fc_attrs.max_ops = NFS4_MAX_OPS; args->fc_attrs.max_reqs = session->clp->cl_rpcclient->cl_xprt->max_reqs; dprintk("%s: Fore Channel : max_rqst_sz=%u max_resp_sz=%u " "max_ops=%u max_reqs=%u\n", __func__, args->fc_attrs.max_rqst_sz, args->fc_attrs.max_resp_sz, args->fc_attrs.max_ops, args->fc_attrs.max_reqs); /* Back channel attributes */ args->bc_attrs.headerpadsz = 0; args->bc_attrs.max_rqst_sz = PAGE_SIZE; args->bc_attrs.max_resp_sz = PAGE_SIZE; args->bc_attrs.max_resp_sz_cached = 0; args->bc_attrs.max_ops = NFS4_MAX_BACK_CHANNEL_OPS; args->bc_attrs.max_reqs = 1; dprintk("%s: Back Channel : max_rqst_sz=%u max_resp_sz=%u " "max_resp_sz_cached=%u max_ops=%u max_reqs=%u\n", __func__, args->bc_attrs.max_rqst_sz, args->bc_attrs.max_resp_sz, args->bc_attrs.max_resp_sz_cached, args->bc_attrs.max_ops, args->bc_attrs.max_reqs); } static int nfs4_verify_fore_channel_attrs(struct nfs41_create_session_args *args, struct nfs4_session *session) { struct nfs4_channel_attrs *sent = &args->fc_attrs; struct nfs4_channel_attrs *rcvd = &session->fc_attrs; if (rcvd->headerpadsz > sent->headerpadsz) return -EINVAL; if (rcvd->max_resp_sz > sent->max_resp_sz) return -EINVAL; /* * Our requested max_ops is the minimum we need; we're not * prepared to break up compounds into smaller pieces than that. * So, no point even trying to continue if the server won't * cooperate: */ if (rcvd->max_ops < sent->max_ops) return -EINVAL; if (rcvd->max_reqs == 0) return -EINVAL; return 0; } static int nfs4_verify_back_channel_attrs(struct nfs41_create_session_args *args, struct nfs4_session *session) { struct nfs4_channel_attrs *sent = &args->bc_attrs; struct nfs4_channel_attrs *rcvd = &session->bc_attrs; if (rcvd->max_rqst_sz > sent->max_rqst_sz) return -EINVAL; if (rcvd->max_resp_sz < sent->max_resp_sz) return -EINVAL; if (rcvd->max_resp_sz_cached > sent->max_resp_sz_cached) return -EINVAL; /* These would render the backchannel useless: */ if (rcvd->max_ops == 0) return -EINVAL; if (rcvd->max_reqs == 0) return -EINVAL; return 0; } static int nfs4_verify_channel_attrs(struct nfs41_create_session_args *args, struct nfs4_session *session) { int ret; ret = nfs4_verify_fore_channel_attrs(args, session); if (ret) return ret; return nfs4_verify_back_channel_attrs(args, session); } static int _nfs4_proc_create_session(struct nfs_client *clp) { struct nfs4_session *session = clp->cl_session; struct nfs41_create_session_args args = { .client = clp, .cb_program = NFS4_CALLBACK, }; struct nfs41_create_session_res res = { .client = clp, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE_SESSION], .rpc_argp = &args, .rpc_resp = &res, }; int status; nfs4_init_channel_attrs(&args); args.flags = (SESSION4_PERSIST | SESSION4_BACK_CHAN); status = rpc_call_sync(session->clp->cl_rpcclient, &msg, 0); if (!status) /* Verify the session's negotiated channel_attrs values */ status = nfs4_verify_channel_attrs(&args, session); if (!status) { /* Increment the clientid slot sequence id */ clp->cl_seqid++; } return status; } /* * Issues a CREATE_SESSION operation to the server. * It is the responsibility of the caller to verify the session is * expired before calling this routine. */ int nfs4_proc_create_session(struct nfs_client *clp) { int status; unsigned *ptr; struct nfs4_session *session = clp->cl_session; dprintk("--> %s clp=%p session=%p\n", __func__, clp, session); status = _nfs4_proc_create_session(clp); if (status) goto out; /* Init and reset the fore channel */ status = nfs4_init_slot_tables(session); dprintk("slot table initialization returned %d\n", status); if (status) goto out; status = nfs4_reset_slot_tables(session); dprintk("slot table reset returned %d\n", status); if (status) goto out; ptr = (unsigned *)&session->sess_id.data[0]; dprintk("%s client>seqid %d sessionid %u:%u:%u:%u\n", __func__, clp->cl_seqid, ptr[0], ptr[1], ptr[2], ptr[3]); out: dprintk("<-- %s\n", __func__); return status; } /* * Issue the over-the-wire RPC DESTROY_SESSION. * The caller must serialize access to this routine. */ int nfs4_proc_destroy_session(struct nfs4_session *session) { int status = 0; struct rpc_message msg; dprintk("--> nfs4_proc_destroy_session\n"); /* session is still being setup */ if (session->clp->cl_cons_state != NFS_CS_READY) return status; msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DESTROY_SESSION]; msg.rpc_argp = session; msg.rpc_resp = NULL; msg.rpc_cred = NULL; status = rpc_call_sync(session->clp->cl_rpcclient, &msg, 0); if (status) printk(KERN_WARNING "Got error %d from the server on DESTROY_SESSION. " "Session has been destroyed regardless...\n", status); dprintk("<-- nfs4_proc_destroy_session\n"); return status; } int nfs4_init_session(struct nfs_server *server) { struct nfs_client *clp = server->nfs_client; struct nfs4_session *session; unsigned int rsize, wsize; int ret; if (!nfs4_has_session(clp)) return 0; session = clp->cl_session; if (!test_and_clear_bit(NFS4_SESSION_INITING, &session->session_state)) return 0; rsize = server->rsize; if (rsize == 0) rsize = NFS_MAX_FILE_IO_SIZE; wsize = server->wsize; if (wsize == 0) wsize = NFS_MAX_FILE_IO_SIZE; session->fc_attrs.max_rqst_sz = wsize + nfs41_maxwrite_overhead; session->fc_attrs.max_resp_sz = rsize + nfs41_maxread_overhead; ret = nfs4_recover_expired_lease(server); if (!ret) ret = nfs4_check_client_ready(clp); return ret; } /* * Renew the cl_session lease. */ struct nfs4_sequence_data { struct nfs_client *clp; struct nfs4_sequence_args args; struct nfs4_sequence_res res; }; static void nfs41_sequence_release(void *data) { struct nfs4_sequence_data *calldata = data; struct nfs_client *clp = calldata->clp; if (atomic_read(&clp->cl_count) > 1) nfs4_schedule_state_renewal(clp); nfs_put_client(clp); kfree(calldata); } static int nfs41_sequence_handle_errors(struct rpc_task *task, struct nfs_client *clp) { switch(task->tk_status) { case -NFS4ERR_DELAY: rpc_delay(task, NFS4_POLL_RETRY_MAX); return -EAGAIN; default: nfs4_schedule_state_recovery(clp); } return 0; } static void nfs41_sequence_call_done(struct rpc_task *task, void *data) { struct nfs4_sequence_data *calldata = data; struct nfs_client *clp = calldata->clp; if (!nfs41_sequence_done(task, task->tk_msg.rpc_resp)) return; if (task->tk_status < 0) { dprintk("%s ERROR %d\n", __func__, task->tk_status); if (atomic_read(&clp->cl_count) == 1) goto out; if (nfs41_sequence_handle_errors(task, clp) == -EAGAIN) { rpc_restart_call_prepare(task); return; } } dprintk("%s rpc_cred %p\n", __func__, task->tk_msg.rpc_cred); out: dprintk("<-- %s\n", __func__); } static void nfs41_sequence_prepare(struct rpc_task *task, void *data) { struct nfs4_sequence_data *calldata = data; struct nfs_client *clp = calldata->clp; struct nfs4_sequence_args *args; struct nfs4_sequence_res *res; args = task->tk_msg.rpc_argp; res = task->tk_msg.rpc_resp; if (nfs41_setup_sequence(clp->cl_session, args, res, 0, task)) return; rpc_call_start(task); } static const struct rpc_call_ops nfs41_sequence_ops = { .rpc_call_done = nfs41_sequence_call_done, .rpc_call_prepare = nfs41_sequence_prepare, .rpc_release = nfs41_sequence_release, }; static struct rpc_task *_nfs41_proc_sequence(struct nfs_client *clp, struct rpc_cred *cred) { struct nfs4_sequence_data *calldata; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SEQUENCE], .rpc_cred = cred, }; struct rpc_task_setup task_setup_data = { .rpc_client = clp->cl_rpcclient, .rpc_message = &msg, .callback_ops = &nfs41_sequence_ops, .flags = RPC_TASK_ASYNC | RPC_TASK_SOFT, }; if (!atomic_inc_not_zero(&clp->cl_count)) return ERR_PTR(-EIO); calldata = kzalloc(sizeof(*calldata), GFP_NOFS); if (calldata == NULL) { nfs_put_client(clp); return ERR_PTR(-ENOMEM); } msg.rpc_argp = &calldata->args; msg.rpc_resp = &calldata->res; calldata->clp = clp; task_setup_data.callback_data = calldata; return rpc_run_task(&task_setup_data); } static int nfs41_proc_async_sequence(struct nfs_client *clp, struct rpc_cred *cred) { struct rpc_task *task; int ret = 0; task = _nfs41_proc_sequence(clp, cred); if (IS_ERR(task)) ret = PTR_ERR(task); else rpc_put_task(task); dprintk("<-- %s status=%d\n", __func__, ret); return ret; } static int nfs4_proc_sequence(struct nfs_client *clp, struct rpc_cred *cred) { struct rpc_task *task; int ret; task = _nfs41_proc_sequence(clp, cred); if (IS_ERR(task)) { ret = PTR_ERR(task); goto out; } ret = rpc_wait_for_completion_task(task); if (!ret) ret = task->tk_status; rpc_put_task(task); out: dprintk("<-- %s status=%d\n", __func__, ret); return ret; } struct nfs4_reclaim_complete_data { struct nfs_client *clp; struct nfs41_reclaim_complete_args arg; struct nfs41_reclaim_complete_res res; }; static void nfs4_reclaim_complete_prepare(struct rpc_task *task, void *data) { struct nfs4_reclaim_complete_data *calldata = data; rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED); if (nfs41_setup_sequence(calldata->clp->cl_session, &calldata->arg.seq_args, &calldata->res.seq_res, 0, task)) return; rpc_call_start(task); } static int nfs41_reclaim_complete_handle_errors(struct rpc_task *task, struct nfs_client *clp) { switch(task->tk_status) { case 0: case -NFS4ERR_COMPLETE_ALREADY: case -NFS4ERR_WRONG_CRED: /* What to do here? */ break; case -NFS4ERR_DELAY: rpc_delay(task, NFS4_POLL_RETRY_MAX); return -EAGAIN; default: nfs4_schedule_state_recovery(clp); } return 0; } static void nfs4_reclaim_complete_done(struct rpc_task *task, void *data) { struct nfs4_reclaim_complete_data *calldata = data; struct nfs_client *clp = calldata->clp; struct nfs4_sequence_res *res = &calldata->res.seq_res; dprintk("--> %s\n", __func__); if (!nfs41_sequence_done(task, res)) return; if (nfs41_reclaim_complete_handle_errors(task, clp) == -EAGAIN) { rpc_restart_call_prepare(task); return; } dprintk("<-- %s\n", __func__); } static void nfs4_free_reclaim_complete_data(void *data) { struct nfs4_reclaim_complete_data *calldata = data; kfree(calldata); } static const struct rpc_call_ops nfs4_reclaim_complete_call_ops = { .rpc_call_prepare = nfs4_reclaim_complete_prepare, .rpc_call_done = nfs4_reclaim_complete_done, .rpc_release = nfs4_free_reclaim_complete_data, }; /* * Issue a global reclaim complete. */ static int nfs41_proc_reclaim_complete(struct nfs_client *clp) { struct nfs4_reclaim_complete_data *calldata; struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RECLAIM_COMPLETE], }; struct rpc_task_setup task_setup_data = { .rpc_client = clp->cl_rpcclient, .rpc_message = &msg, .callback_ops = &nfs4_reclaim_complete_call_ops, .flags = RPC_TASK_ASYNC, }; int status = -ENOMEM; dprintk("--> %s\n", __func__); calldata = kzalloc(sizeof(*calldata), GFP_NOFS); if (calldata == NULL) goto out; calldata->clp = clp; calldata->arg.one_fs = 0; msg.rpc_argp = &calldata->arg; msg.rpc_resp = &calldata->res; task_setup_data.callback_data = calldata; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) { status = PTR_ERR(task); goto out; } rpc_put_task(task); return 0; out: dprintk("<-- %s status=%d\n", __func__, status); return status; } static void nfs4_layoutget_prepare(struct rpc_task *task, void *calldata) { struct nfs4_layoutget *lgp = calldata; struct inode *ino = lgp->args.inode; struct nfs_server *server = NFS_SERVER(ino); dprintk("--> %s\n", __func__); if (nfs4_setup_sequence(server, &lgp->args.seq_args, &lgp->res.seq_res, 0, task)) return; rpc_call_start(task); } static void nfs4_layoutget_done(struct rpc_task *task, void *calldata) { struct nfs4_layoutget *lgp = calldata; struct nfs_server *server = NFS_SERVER(lgp->args.inode); dprintk("--> %s\n", __func__); if (!nfs4_sequence_done(task, &lgp->res.seq_res)) return; switch (task->tk_status) { case 0: break; case -NFS4ERR_LAYOUTTRYLATER: case -NFS4ERR_RECALLCONFLICT: task->tk_status = -NFS4ERR_DELAY; /* Fall through */ default: if (nfs4_async_handle_error(task, server, NULL) == -EAGAIN) { rpc_restart_call_prepare(task); return; } } lgp->status = task->tk_status; dprintk("<-- %s\n", __func__); } static void nfs4_layoutget_release(void *calldata) { struct nfs4_layoutget *lgp = calldata; dprintk("--> %s\n", __func__); put_layout_hdr(lgp->args.inode); if (lgp->res.layout.buf != NULL) free_page((unsigned long) lgp->res.layout.buf); put_nfs_open_context(lgp->args.ctx); kfree(calldata); dprintk("<-- %s\n", __func__); } static const struct rpc_call_ops nfs4_layoutget_call_ops = { .rpc_call_prepare = nfs4_layoutget_prepare, .rpc_call_done = nfs4_layoutget_done, .rpc_release = nfs4_layoutget_release, }; int nfs4_proc_layoutget(struct nfs4_layoutget *lgp) { struct nfs_server *server = NFS_SERVER(lgp->args.inode); struct rpc_task *task; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTGET], .rpc_argp = &lgp->args, .rpc_resp = &lgp->res, }; struct rpc_task_setup task_setup_data = { .rpc_client = server->client, .rpc_message = &msg, .callback_ops = &nfs4_layoutget_call_ops, .callback_data = lgp, .flags = RPC_TASK_ASYNC, }; int status = 0; dprintk("--> %s\n", __func__); lgp->res.layout.buf = (void *)__get_free_page(GFP_NOFS); if (lgp->res.layout.buf == NULL) { nfs4_layoutget_release(lgp); return -ENOMEM; } lgp->res.seq_res.sr_slot = NULL; task = rpc_run_task(&task_setup_data); if (IS_ERR(task)) return PTR_ERR(task); status = nfs4_wait_for_completion_rpc_task(task); if (status != 0) goto out; status = lgp->status; if (status != 0) goto out; status = pnfs_layout_process(lgp); out: rpc_put_task(task); dprintk("<-- %s status=%d\n", __func__, status); return status; } static int _nfs4_proc_getdeviceinfo(struct nfs_server *server, struct pnfs_device *pdev) { struct nfs4_getdeviceinfo_args args = { .pdev = pdev, }; struct nfs4_getdeviceinfo_res res = { .pdev = pdev, }; struct rpc_message msg = { .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETDEVICEINFO], .rpc_argp = &args, .rpc_resp = &res, }; int status; dprintk("--> %s\n", __func__); status = nfs4_call_sync(server, &msg, &args, &res, 0); dprintk("<-- %s status=%d\n", __func__, status); return status; } int nfs4_proc_getdeviceinfo(struct nfs_server *server, struct pnfs_device *pdev) { struct nfs4_exception exception = { }; int err; do { err = nfs4_handle_exception(server, _nfs4_proc_getdeviceinfo(server, pdev), &exception); } while (exception.retry); return err; } EXPORT_SYMBOL_GPL(nfs4_proc_getdeviceinfo); #endif /* CONFIG_NFS_V4_1 */ struct nfs4_state_recovery_ops nfs40_reboot_recovery_ops = { .owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT, .state_flag_bit = NFS_STATE_RECLAIM_REBOOT, .recover_open = nfs4_open_reclaim, .recover_lock = nfs4_lock_reclaim, .establish_clid = nfs4_init_clientid, .get_clid_cred = nfs4_get_setclientid_cred, }; #if defined(CONFIG_NFS_V4_1) struct nfs4_state_recovery_ops nfs41_reboot_recovery_ops = { .owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT, .state_flag_bit = NFS_STATE_RECLAIM_REBOOT, .recover_open = nfs4_open_reclaim, .recover_lock = nfs4_lock_reclaim, .establish_clid = nfs41_init_clientid, .get_clid_cred = nfs4_get_exchange_id_cred, .reclaim_complete = nfs41_proc_reclaim_complete, }; #endif /* CONFIG_NFS_V4_1 */ struct nfs4_state_recovery_ops nfs40_nograce_recovery_ops = { .owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE, .state_flag_bit = NFS_STATE_RECLAIM_NOGRACE, .recover_open = nfs4_open_expired, .recover_lock = nfs4_lock_expired, .establish_clid = nfs4_init_clientid, .get_clid_cred = nfs4_get_setclientid_cred, }; #if defined(CONFIG_NFS_V4_1) struct nfs4_state_recovery_ops nfs41_nograce_recovery_ops = { .owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE, .state_flag_bit = NFS_STATE_RECLAIM_NOGRACE, .recover_open = nfs4_open_expired, .recover_lock = nfs4_lock_expired, .establish_clid = nfs41_init_clientid, .get_clid_cred = nfs4_get_exchange_id_cred, }; #endif /* CONFIG_NFS_V4_1 */ struct nfs4_state_maintenance_ops nfs40_state_renewal_ops = { .sched_state_renewal = nfs4_proc_async_renew, .get_state_renewal_cred_locked = nfs4_get_renew_cred_locked, .renew_lease = nfs4_proc_renew, }; #if defined(CONFIG_NFS_V4_1) struct nfs4_state_maintenance_ops nfs41_state_renewal_ops = { .sched_state_renewal = nfs41_proc_async_sequence, .get_state_renewal_cred_locked = nfs4_get_machine_cred_locked, .renew_lease = nfs4_proc_sequence, }; #endif static const struct nfs4_minor_version_ops nfs_v4_0_minor_ops = { .minor_version = 0, .call_sync = _nfs4_call_sync, .validate_stateid = nfs4_validate_delegation_stateid, .reboot_recovery_ops = &nfs40_reboot_recovery_ops, .nograce_recovery_ops = &nfs40_nograce_recovery_ops, .state_renewal_ops = &nfs40_state_renewal_ops, }; #if defined(CONFIG_NFS_V4_1) static const struct nfs4_minor_version_ops nfs_v4_1_minor_ops = { .minor_version = 1, .call_sync = _nfs4_call_sync_session, .validate_stateid = nfs41_validate_delegation_stateid, .reboot_recovery_ops = &nfs41_reboot_recovery_ops, .nograce_recovery_ops = &nfs41_nograce_recovery_ops, .state_renewal_ops = &nfs41_state_renewal_ops, }; #endif const struct nfs4_minor_version_ops *nfs_v4_minor_ops[] = { [0] = &nfs_v4_0_minor_ops, #if defined(CONFIG_NFS_V4_1) [1] = &nfs_v4_1_minor_ops, #endif }; static const struct inode_operations nfs4_file_inode_operations = { .permission = nfs_permission, .getattr = nfs_getattr, .setattr = nfs_setattr, .getxattr = nfs4_getxattr, .setxattr = nfs4_setxattr, .listxattr = nfs4_listxattr, }; const struct nfs_rpc_ops nfs_v4_clientops = { .version = 4, /* protocol version */ .dentry_ops = &nfs4_dentry_operations, .dir_inode_ops = &nfs4_dir_inode_operations, .file_inode_ops = &nfs4_file_inode_operations, .getroot = nfs4_proc_get_root, .getattr = nfs4_proc_getattr, .setattr = nfs4_proc_setattr, .lookupfh = nfs4_proc_lookupfh, .lookup = nfs4_proc_lookup, .access = nfs4_proc_access, .readlink = nfs4_proc_readlink, .create = nfs4_proc_create, .remove = nfs4_proc_remove, .unlink_setup = nfs4_proc_unlink_setup, .unlink_done = nfs4_proc_unlink_done, .rename = nfs4_proc_rename, .rename_setup = nfs4_proc_rename_setup, .rename_done = nfs4_proc_rename_done, .link = nfs4_proc_link, .symlink = nfs4_proc_symlink, .mkdir = nfs4_proc_mkdir, .rmdir = nfs4_proc_remove, .readdir = nfs4_proc_readdir, .mknod = nfs4_proc_mknod, .statfs = nfs4_proc_statfs, .fsinfo = nfs4_proc_fsinfo, .pathconf = nfs4_proc_pathconf, .set_capabilities = nfs4_server_capabilities, .decode_dirent = nfs4_decode_dirent, .read_setup = nfs4_proc_read_setup, .read_done = nfs4_read_done, .write_setup = nfs4_proc_write_setup, .write_done = nfs4_write_done, .commit_setup = nfs4_proc_commit_setup, .commit_done = nfs4_commit_done, .lock = nfs4_proc_lock, .clear_acl_cache = nfs4_zap_acl_attr, .close_context = nfs4_close_context, .open_context = nfs4_atomic_open, }; /* * Local variables: * c-basic-offset: 8 * End: */