/* * linux/fs/nfs/direct.c * * Copyright (C) 2003 by Chuck Lever * * High-performance uncached I/O for the Linux NFS client * * There are important applications whose performance or correctness * depends on uncached access to file data. Database clusters * (multiple copies of the same instance running on separate hosts) * implement their own cache coherency protocol that subsumes file * system cache protocols. Applications that process datasets * considerably larger than the client's memory do not always benefit * from a local cache. A streaming video server, for instance, has no * need to cache the contents of a file. * * When an application requests uncached I/O, all read and write requests * are made directly to the server; data stored or fetched via these * requests is not cached in the Linux page cache. The client does not * correct unaligned requests from applications. All requested bytes are * held on permanent storage before a direct write system call returns to * an application. * * Solaris implements an uncached I/O facility called directio() that * is used for backups and sequential I/O to very large files. Solaris * also supports uncaching whole NFS partitions with "-o forcedirectio," * an undocumented mount option. * * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with * help from Andrew Morton. * * 18 Dec 2001 Initial implementation for 2.4 --cel * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy * 08 Jun 2003 Port to 2.5 APIs --cel * 31 Mar 2004 Handle direct I/O without VFS support --cel * 15 Sep 2004 Parallel async reads --cel * 04 May 2005 support O_DIRECT with aio --cel * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iostat.h" #define NFSDBG_FACILITY NFSDBG_VFS static kmem_cache_t *nfs_direct_cachep; /* * This represents a set of asynchronous requests that we're waiting on */ struct nfs_direct_req { struct kref kref; /* release manager */ /* I/O parameters */ struct list_head list, /* nfs_read/write_data structs */ rewrite_list; /* saved nfs_write_data structs */ struct nfs_open_context *ctx; /* file open context info */ struct kiocb * iocb; /* controlling i/o request */ wait_queue_head_t wait; /* wait for i/o completion */ struct inode * inode; /* target file of i/o */ unsigned long user_addr; /* location of user's buffer */ size_t user_count; /* total bytes to move */ loff_t pos; /* starting offset in file */ struct page ** pages; /* pages in our buffer */ unsigned int npages; /* count of pages */ /* completion state */ spinlock_t lock; /* protect completion state */ int outstanding; /* i/os we're waiting for */ ssize_t count, /* bytes actually processed */ error; /* any reported error */ /* commit state */ struct nfs_write_data * commit_data; /* special write_data for commits */ int flags; #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */ #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */ struct nfs_writeverf verf; /* unstable write verifier */ }; static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync); static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode); /** * nfs_direct_IO - NFS address space operation for direct I/O * @rw: direction (read or write) * @iocb: target I/O control block * @iov: array of vectors that define I/O buffer * @pos: offset in file to begin the operation * @nr_segs: size of iovec array * * The presence of this routine in the address space ops vector means * the NFS client supports direct I/O. However, we shunt off direct * read and write requests before the VFS gets them, so this method * should never be called. */ ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs) { struct dentry *dentry = iocb->ki_filp->f_dentry; dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n", dentry->d_name.name, (long long) pos, nr_segs); return -EINVAL; } static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty) { int i; for (i = 0; i < npages; i++) { struct page *page = pages[i]; if (do_dirty && !PageCompound(page)) set_page_dirty_lock(page); page_cache_release(page); } kfree(pages); } static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages) { int result = -ENOMEM; unsigned long page_count; size_t array_size; page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT; page_count -= user_addr >> PAGE_SHIFT; array_size = (page_count * sizeof(struct page *)); *pages = kmalloc(array_size, GFP_KERNEL); if (*pages) { down_read(¤t->mm->mmap_sem); result = get_user_pages(current, current->mm, user_addr, page_count, (rw == READ), 0, *pages, NULL); up_read(¤t->mm->mmap_sem); if (result != page_count) { /* * If we got fewer pages than expected from * get_user_pages(), the user buffer runs off the * end of a mapping; return EFAULT. */ if (result >= 0) { nfs_free_user_pages(*pages, result, 0); result = -EFAULT; } else kfree(*pages); *pages = NULL; } } return result; } static inline struct nfs_direct_req *nfs_direct_req_alloc(void) { struct nfs_direct_req *dreq; dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL); if (!dreq) return NULL; kref_init(&dreq->kref); init_waitqueue_head(&dreq->wait); INIT_LIST_HEAD(&dreq->list); INIT_LIST_HEAD(&dreq->rewrite_list); dreq->iocb = NULL; dreq->ctx = NULL; spin_lock_init(&dreq->lock); dreq->outstanding = 0; dreq->count = 0; dreq->error = 0; dreq->flags = 0; return dreq; } static void nfs_direct_req_release(struct kref *kref) { struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); if (dreq->ctx != NULL) put_nfs_open_context(dreq->ctx); kmem_cache_free(nfs_direct_cachep, dreq); } /* * Collects and returns the final error value/byte-count. */ static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) { ssize_t result = -EIOCBQUEUED; /* Async requests don't wait here */ if (dreq->iocb) goto out; result = wait_event_interruptible(dreq->wait, (dreq->outstanding == 0)); if (!result) result = dreq->error; if (!result) result = dreq->count; out: kref_put(&dreq->kref, nfs_direct_req_release); return (ssize_t) result; } /* * We must hold a reference to all the pages in this direct read request * until the RPCs complete. This could be long *after* we are woken up in * nfs_direct_wait (for instance, if someone hits ^C on a slow server). * * In addition, synchronous I/O uses a stack-allocated iocb. Thus we * can't trust the iocb is still valid here if this is a synchronous * request. If the waiter is woken prematurely, the iocb is long gone. */ static void nfs_direct_complete(struct nfs_direct_req *dreq) { nfs_free_user_pages(dreq->pages, dreq->npages, 1); if (dreq->iocb) { long res = (long) dreq->error; if (!res) res = (long) dreq->count; aio_complete(dreq->iocb, res, 0); } else wake_up(&dreq->wait); kref_put(&dreq->kref, nfs_direct_req_release); } /* * Note we also set the number of requests we have in the dreq when we are * done. This prevents races with I/O completion so we will always wait * until all requests have been dispatched and completed. */ static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize) { struct list_head *list; struct nfs_direct_req *dreq; unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; dreq = nfs_direct_req_alloc(); if (!dreq) return NULL; list = &dreq->list; for(;;) { struct nfs_read_data *data = nfs_readdata_alloc(rpages); if (unlikely(!data)) { while (!list_empty(list)) { data = list_entry(list->next, struct nfs_read_data, pages); list_del(&data->pages); nfs_readdata_free(data); } kref_put(&dreq->kref, nfs_direct_req_release); return NULL; } INIT_LIST_HEAD(&data->pages); list_add(&data->pages, list); data->req = (struct nfs_page *) dreq; dreq->outstanding++; if (nbytes <= rsize) break; nbytes -= rsize; } kref_get(&dreq->kref); return dreq; } static void nfs_direct_read_result(struct rpc_task *task, void *calldata) { struct nfs_read_data *data = calldata; struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req; if (nfs_readpage_result(task, data) != 0) return; spin_lock(&dreq->lock); if (likely(task->tk_status >= 0)) dreq->count += data->res.count; else dreq->error = task->tk_status; if (--dreq->outstanding) { spin_unlock(&dreq->lock); return; } spin_unlock(&dreq->lock); nfs_direct_complete(dreq); } static const struct rpc_call_ops nfs_read_direct_ops = { .rpc_call_done = nfs_direct_read_result, .rpc_release = nfs_readdata_release, }; /* * For each nfs_read_data struct that was allocated on the list, dispatch * an NFS READ operation */ static void nfs_direct_read_schedule(struct nfs_direct_req *dreq) { struct nfs_open_context *ctx = dreq->ctx; struct inode *inode = ctx->dentry->d_inode; struct list_head *list = &dreq->list; struct page **pages = dreq->pages; size_t count = dreq->user_count; loff_t pos = dreq->pos; size_t rsize = NFS_SERVER(inode)->rsize; unsigned int curpage, pgbase; curpage = 0; pgbase = dreq->user_addr & ~PAGE_MASK; do { struct nfs_read_data *data; size_t bytes; bytes = rsize; if (count < rsize) bytes = count; BUG_ON(list_empty(list)); data = list_entry(list->next, struct nfs_read_data, pages); list_del_init(&data->pages); data->inode = inode; data->cred = ctx->cred; data->args.fh = NFS_FH(inode); data->args.context = ctx; data->args.offset = pos; data->args.pgbase = pgbase; data->args.pages = &pages[curpage]; data->args.count = bytes; data->res.fattr = &data->fattr; data->res.eof = 0; data->res.count = bytes; rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs_read_direct_ops, data); NFS_PROTO(inode)->read_setup(data); data->task.tk_cookie = (unsigned long) inode; lock_kernel(); rpc_execute(&data->task); unlock_kernel(); dfprintk(VFS, "NFS: %5u initiated direct read call (req %s/%Ld, %zu bytes @ offset %Lu)\n", data->task.tk_pid, inode->i_sb->s_id, (long long)NFS_FILEID(inode), bytes, (unsigned long long)data->args.offset); pos += bytes; pgbase += bytes; curpage += pgbase >> PAGE_SHIFT; pgbase &= ~PAGE_MASK; count -= bytes; } while (count != 0); BUG_ON(!list_empty(list)); } static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, unsigned int nr_pages) { ssize_t result; sigset_t oldset; struct inode *inode = iocb->ki_filp->f_mapping->host; struct rpc_clnt *clnt = NFS_CLIENT(inode); struct nfs_direct_req *dreq; dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize); if (!dreq) return -ENOMEM; dreq->user_addr = user_addr; dreq->user_count = count; dreq->pos = pos; dreq->pages = pages; dreq->npages = nr_pages; dreq->inode = inode; dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data); if (!is_sync_kiocb(iocb)) dreq->iocb = iocb; nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count); rpc_clnt_sigmask(clnt, &oldset); nfs_direct_read_schedule(dreq); result = nfs_direct_wait(dreq); rpc_clnt_sigunmask(clnt, &oldset); return result; } static void nfs_direct_free_writedata(struct nfs_direct_req *dreq) { list_splice_init(&dreq->rewrite_list, &dreq->list); while (!list_empty(&dreq->list)) { struct nfs_write_data *data = list_entry(dreq->list.next, struct nfs_write_data, pages); list_del(&data->pages); nfs_writedata_release(data); } } #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4) static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) { struct list_head *pos; list_splice_init(&dreq->rewrite_list, &dreq->list); list_for_each(pos, &dreq->list) dreq->outstanding++; dreq->count = 0; nfs_direct_write_schedule(dreq, FLUSH_STABLE); } static void nfs_direct_commit_result(struct rpc_task *task, void *calldata) { struct nfs_write_data *data = calldata; struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req; /* Call the NFS version-specific code */ if (NFS_PROTO(data->inode)->commit_done(task, data) != 0) return; if (unlikely(task->tk_status < 0)) { dreq->error = task->tk_status; dreq->flags = NFS_ODIRECT_RESCHED_WRITES; } if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) { dprintk("NFS: %5u commit verify failed\n", task->tk_pid); dreq->flags = NFS_ODIRECT_RESCHED_WRITES; } dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status); nfs_direct_write_complete(dreq, data->inode); } static const struct rpc_call_ops nfs_commit_direct_ops = { .rpc_call_done = nfs_direct_commit_result, .rpc_release = nfs_commit_release, }; static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) { struct nfs_write_data *data = dreq->commit_data; struct rpc_task *task = &data->task; data->inode = dreq->inode; data->cred = dreq->ctx->cred; data->args.fh = NFS_FH(data->inode); data->args.offset = dreq->pos; data->args.count = dreq->user_count; data->res.count = 0; data->res.fattr = &data->fattr; data->res.verf = &data->verf; rpc_init_task(&data->task, NFS_CLIENT(dreq->inode), RPC_TASK_ASYNC, &nfs_commit_direct_ops, data); NFS_PROTO(data->inode)->commit_setup(data, 0); data->task.tk_priority = RPC_PRIORITY_NORMAL; data->task.tk_cookie = (unsigned long)data->inode; /* Note: task.tk_ops->rpc_release will free dreq->commit_data */ dreq->commit_data = NULL; dprintk("NFS: %5u initiated commit call\n", task->tk_pid); lock_kernel(); rpc_execute(&data->task); unlock_kernel(); } static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) { int flags = dreq->flags; dreq->flags = 0; switch (flags) { case NFS_ODIRECT_DO_COMMIT: nfs_direct_commit_schedule(dreq); break; case NFS_ODIRECT_RESCHED_WRITES: nfs_direct_write_reschedule(dreq); break; default: nfs_end_data_update(inode); if (dreq->commit_data != NULL) nfs_commit_free(dreq->commit_data); nfs_direct_free_writedata(dreq); nfs_direct_complete(dreq); } } static void nfs_alloc_commit_data(struct nfs_direct_req *dreq) { dreq->commit_data = nfs_commit_alloc(0); if (dreq->commit_data != NULL) dreq->commit_data->req = (struct nfs_page *) dreq; } #else static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq) { dreq->commit_data = NULL; } static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode) { nfs_end_data_update(inode); nfs_direct_free_writedata(dreq); nfs_direct_complete(dreq); } #endif static struct nfs_direct_req *nfs_direct_write_alloc(size_t nbytes, size_t wsize) { struct list_head *list; struct nfs_direct_req *dreq; unsigned int wpages = (wsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; dreq = nfs_direct_req_alloc(); if (!dreq) return NULL; list = &dreq->list; for(;;) { struct nfs_write_data *data = nfs_writedata_alloc(wpages); if (unlikely(!data)) { while (!list_empty(list)) { data = list_entry(list->next, struct nfs_write_data, pages); list_del(&data->pages); nfs_writedata_free(data); } kref_put(&dreq->kref, nfs_direct_req_release); return NULL; } INIT_LIST_HEAD(&data->pages); list_add(&data->pages, list); data->req = (struct nfs_page *) dreq; dreq->outstanding++; if (nbytes <= wsize) break; nbytes -= wsize; } nfs_alloc_commit_data(dreq); kref_get(&dreq->kref); return dreq; } static void nfs_direct_write_result(struct rpc_task *task, void *calldata) { struct nfs_write_data *data = calldata; struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req; int status = task->tk_status; if (nfs_writeback_done(task, data) != 0) return; spin_lock(&dreq->lock); if (likely(status >= 0)) dreq->count += data->res.count; else dreq->error = task->tk_status; if (data->res.verf->committed != NFS_FILE_SYNC) { switch (dreq->flags) { case 0: memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf)); dreq->flags = NFS_ODIRECT_DO_COMMIT; break; case NFS_ODIRECT_DO_COMMIT: if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) { dprintk("NFS: %5u write verify failed\n", task->tk_pid); dreq->flags = NFS_ODIRECT_RESCHED_WRITES; } } } /* In case we have to resend */ data->args.stable = NFS_FILE_SYNC; spin_unlock(&dreq->lock); } /* * NB: Return the value of the first error return code. Subsequent * errors after the first one are ignored. */ static void nfs_direct_write_release(void *calldata) { struct nfs_write_data *data = calldata; struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req; spin_lock(&dreq->lock); if (--dreq->outstanding) { spin_unlock(&dreq->lock); return; } spin_unlock(&dreq->lock); nfs_direct_write_complete(dreq, data->inode); } static const struct rpc_call_ops nfs_write_direct_ops = { .rpc_call_done = nfs_direct_write_result, .rpc_release = nfs_direct_write_release, }; /* * For each nfs_write_data struct that was allocated on the list, dispatch * an NFS WRITE operation */ static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync) { struct nfs_open_context *ctx = dreq->ctx; struct inode *inode = ctx->dentry->d_inode; struct list_head *list = &dreq->list; struct page **pages = dreq->pages; size_t count = dreq->user_count; loff_t pos = dreq->pos; size_t wsize = NFS_SERVER(inode)->wsize; unsigned int curpage, pgbase; curpage = 0; pgbase = dreq->user_addr & ~PAGE_MASK; do { struct nfs_write_data *data; size_t bytes; bytes = wsize; if (count < wsize) bytes = count; BUG_ON(list_empty(list)); data = list_entry(list->next, struct nfs_write_data, pages); list_move_tail(&data->pages, &dreq->rewrite_list); data->inode = inode; data->cred = ctx->cred; data->args.fh = NFS_FH(inode); data->args.context = ctx; data->args.offset = pos; data->args.pgbase = pgbase; data->args.pages = &pages[curpage]; data->args.count = bytes; data->res.fattr = &data->fattr; data->res.count = bytes; data->res.verf = &data->verf; rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs_write_direct_ops, data); NFS_PROTO(inode)->write_setup(data, sync); data->task.tk_priority = RPC_PRIORITY_NORMAL; data->task.tk_cookie = (unsigned long) inode; lock_kernel(); rpc_execute(&data->task); unlock_kernel(); dfprintk(VFS, "NFS: %5u initiated direct write call (req %s/%Ld, %zu bytes @ offset %Lu)\n", data->task.tk_pid, inode->i_sb->s_id, (long long)NFS_FILEID(inode), bytes, (unsigned long long)data->args.offset); pos += bytes; pgbase += bytes; curpage += pgbase >> PAGE_SHIFT; pgbase &= ~PAGE_MASK; count -= bytes; } while (count != 0); BUG_ON(!list_empty(list)); } static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, int nr_pages) { ssize_t result; sigset_t oldset; struct inode *inode = iocb->ki_filp->f_mapping->host; struct rpc_clnt *clnt = NFS_CLIENT(inode); struct nfs_direct_req *dreq; size_t wsize = NFS_SERVER(inode)->wsize; int sync = 0; dreq = nfs_direct_write_alloc(count, wsize); if (!dreq) return -ENOMEM; if (dreq->commit_data == NULL || count < wsize) sync = FLUSH_STABLE; dreq->user_addr = user_addr; dreq->user_count = count; dreq->pos = pos; dreq->pages = pages; dreq->npages = nr_pages; dreq->inode = inode; dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data); if (!is_sync_kiocb(iocb)) dreq->iocb = iocb; nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count); nfs_begin_data_update(inode); rpc_clnt_sigmask(clnt, &oldset); nfs_direct_write_schedule(dreq, sync); result = nfs_direct_wait(dreq); rpc_clnt_sigunmask(clnt, &oldset); return result; } /** * nfs_file_direct_read - file direct read operation for NFS files * @iocb: target I/O control block * @buf: user's buffer into which to read data * @count: number of bytes to read * @pos: byte offset in file where reading starts * * We use this function for direct reads instead of calling * generic_file_aio_read() in order to avoid gfar's check to see if * the request starts before the end of the file. For that check * to work, we must generate a GETATTR before each direct read, and * even then there is a window between the GETATTR and the subsequent * READ where the file size could change. Our preference is simply * to do all reads the application wants, and the server will take * care of managing the end of file boundary. * * This function also eliminates unnecessarily updating the file's * atime locally, as the NFS server sets the file's atime, and this * client must read the updated atime from the server back into its * cache. */ ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos) { ssize_t retval = -EINVAL; int page_count; struct page **pages; struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n", file->f_dentry->d_parent->d_name.name, file->f_dentry->d_name.name, (unsigned long) count, (long long) pos); if (count < 0) goto out; retval = -EFAULT; if (!access_ok(VERIFY_WRITE, buf, count)) goto out; retval = 0; if (!count) goto out; retval = nfs_sync_mapping(mapping); if (retval) goto out; retval = nfs_get_user_pages(READ, (unsigned long) buf, count, &pages); if (retval < 0) goto out; page_count = retval; retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos, pages, page_count); if (retval > 0) iocb->ki_pos = pos + retval; out: return retval; } /** * nfs_file_direct_write - file direct write operation for NFS files * @iocb: target I/O control block * @buf: user's buffer from which to write data * @count: number of bytes to write * @pos: byte offset in file where writing starts * * We use this function for direct writes instead of calling * generic_file_aio_write() in order to avoid taking the inode * semaphore and updating the i_size. The NFS server will set * the new i_size and this client must read the updated size * back into its cache. We let the server do generic write * parameter checking and report problems. * * We also avoid an unnecessary invocation of generic_osync_inode(), * as it is fairly meaningless to sync the metadata of an NFS file. * * We eliminate local atime updates, see direct read above. * * We avoid unnecessary page cache invalidations for normal cached * readers of this file. * * Note that O_APPEND is not supported for NFS direct writes, as there * is no atomic O_APPEND write facility in the NFS protocol. */ ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos) { ssize_t retval; int page_count; struct page **pages; struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n", file->f_dentry->d_parent->d_name.name, file->f_dentry->d_name.name, (unsigned long) count, (long long) pos); retval = generic_write_checks(file, &pos, &count, 0); if (retval) goto out; retval = -EINVAL; if ((ssize_t) count < 0) goto out; retval = 0; if (!count) goto out; retval = -EFAULT; if (!access_ok(VERIFY_READ, buf, count)) goto out; retval = nfs_sync_mapping(mapping); if (retval) goto out; retval = nfs_get_user_pages(WRITE, (unsigned long) buf, count, &pages); if (retval < 0) goto out; page_count = retval; retval = nfs_direct_write(iocb, (unsigned long) buf, count, pos, pages, page_count); /* * XXX: nfs_end_data_update() already ensures this file's * cached data is subsequently invalidated. Do we really * need to call invalidate_inode_pages2() again here? * * For aio writes, this invalidation will almost certainly * occur before the writes complete. Kind of racey. */ if (mapping->nrpages) invalidate_inode_pages2(mapping); if (retval > 0) iocb->ki_pos = pos + retval; out: return retval; } /** * nfs_init_directcache - create a slab cache for nfs_direct_req structures * */ int nfs_init_directcache(void) { nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", sizeof(struct nfs_direct_req), 0, SLAB_RECLAIM_ACCOUNT, NULL, NULL); if (nfs_direct_cachep == NULL) return -ENOMEM; return 0; } /** * nfs_init_directcache - destroy the slab cache for nfs_direct_req structures * */ void nfs_destroy_directcache(void) { if (kmem_cache_destroy(nfs_direct_cachep)) printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n"); }