/* * linux/fs/ext4/super.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/inode.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 */ #include <linux/module.h> #include <linux/string.h> #include <linux/fs.h> #include <linux/time.h> #include <linux/vmalloc.h> #include <linux/jbd2.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/blkdev.h> #include <linux/parser.h> #include <linux/smp_lock.h> #include <linux/buffer_head.h> #include <linux/exportfs.h> #include <linux/vfs.h> #include <linux/random.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/quotaops.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <linux/ctype.h> #include <linux/log2.h> #include <linux/crc16.h> #include <asm/uaccess.h> #include "ext4.h" #include "ext4_jbd2.h" #include "xattr.h" #include "acl.h" #include "mballoc.h" #define CREATE_TRACE_POINTS #include <trace/events/ext4.h> struct proc_dir_entry *ext4_proc_root; static struct kset *ext4_kset; static int ext4_load_journal(struct super_block *, struct ext4_super_block *, unsigned long journal_devnum); static int ext4_commit_super(struct super_block *sb, int sync); static void ext4_mark_recovery_complete(struct super_block *sb, struct ext4_super_block *es); static void ext4_clear_journal_err(struct super_block *sb, struct ext4_super_block *es); static int ext4_sync_fs(struct super_block *sb, int wait); static const char *ext4_decode_error(struct super_block *sb, int errno, char nbuf[16]); static int ext4_remount(struct super_block *sb, int *flags, char *data); static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); static int ext4_unfreeze(struct super_block *sb); static void ext4_write_super(struct super_block *sb); static int ext4_freeze(struct super_block *sb); ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, struct ext4_group_desc *bg) { return le32_to_cpu(bg->bg_block_bitmap_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); } ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, struct ext4_group_desc *bg) { return le32_to_cpu(bg->bg_inode_bitmap_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); } ext4_fsblk_t ext4_inode_table(struct super_block *sb, struct ext4_group_desc *bg) { return le32_to_cpu(bg->bg_inode_table_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); } __u32 ext4_free_blks_count(struct super_block *sb, struct ext4_group_desc *bg) { return le16_to_cpu(bg->bg_free_blocks_count_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); } __u32 ext4_free_inodes_count(struct super_block *sb, struct ext4_group_desc *bg) { return le16_to_cpu(bg->bg_free_inodes_count_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); } __u32 ext4_used_dirs_count(struct super_block *sb, struct ext4_group_desc *bg) { return le16_to_cpu(bg->bg_used_dirs_count_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); } __u32 ext4_itable_unused_count(struct super_block *sb, struct ext4_group_desc *bg) { return le16_to_cpu(bg->bg_itable_unused_lo) | (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); } void ext4_block_bitmap_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk) { bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); } void ext4_inode_bitmap_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk) { bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); } void ext4_inode_table_set(struct super_block *sb, struct ext4_group_desc *bg, ext4_fsblk_t blk) { bg->bg_inode_table_lo = cpu_to_le32((u32)blk); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); } void ext4_free_blks_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count) { bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); } void ext4_free_inodes_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count) { bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); } void ext4_used_dirs_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count) { bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); } void ext4_itable_unused_set(struct super_block *sb, struct ext4_group_desc *bg, __u32 count) { bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); } /* Just increment the non-pointer handle value */ static handle_t *ext4_get_nojournal(void) { handle_t *handle = current->journal_info; unsigned long ref_cnt = (unsigned long)handle; BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT); ref_cnt++; handle = (handle_t *)ref_cnt; current->journal_info = handle; return handle; } /* Decrement the non-pointer handle value */ static void ext4_put_nojournal(handle_t *handle) { unsigned long ref_cnt = (unsigned long)handle; BUG_ON(ref_cnt == 0); ref_cnt--; handle = (handle_t *)ref_cnt; current->journal_info = handle; } /* * Wrappers for jbd2_journal_start/end. * * The only special thing we need to do here is to make sure that all * journal_end calls result in the superblock being marked dirty, so * that sync() will call the filesystem's write_super callback if * appropriate. */ handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks) { journal_t *journal; if (sb->s_flags & MS_RDONLY) return ERR_PTR(-EROFS); /* Special case here: if the journal has aborted behind our * backs (eg. EIO in the commit thread), then we still need to * take the FS itself readonly cleanly. */ journal = EXT4_SB(sb)->s_journal; if (journal) { if (is_journal_aborted(journal)) { ext4_abort(sb, __func__, "Detected aborted journal"); return ERR_PTR(-EROFS); } return jbd2_journal_start(journal, nblocks); } return ext4_get_nojournal(); } /* * The only special thing we need to do here is to make sure that all * jbd2_journal_stop calls result in the superblock being marked dirty, so * that sync() will call the filesystem's write_super callback if * appropriate. */ int __ext4_journal_stop(const char *where, handle_t *handle) { struct super_block *sb; int err; int rc; if (!ext4_handle_valid(handle)) { ext4_put_nojournal(handle); return 0; } sb = handle->h_transaction->t_journal->j_private; err = handle->h_err; rc = jbd2_journal_stop(handle); if (!err) err = rc; if (err) __ext4_std_error(sb, where, err); return err; } void ext4_journal_abort_handle(const char *caller, const char *err_fn, struct buffer_head *bh, handle_t *handle, int err) { char nbuf[16]; const char *errstr = ext4_decode_error(NULL, err, nbuf); BUG_ON(!ext4_handle_valid(handle)); if (bh) BUFFER_TRACE(bh, "abort"); if (!handle->h_err) handle->h_err = err; if (is_handle_aborted(handle)) return; printk(KERN_ERR "%s: aborting transaction: %s in %s\n", caller, errstr, err_fn); jbd2_journal_abort_handle(handle); } /* Deal with the reporting of failure conditions on a filesystem such as * inconsistencies detected or read IO failures. * * On ext2, we can store the error state of the filesystem in the * superblock. That is not possible on ext4, because we may have other * write ordering constraints on the superblock which prevent us from * writing it out straight away; and given that the journal is about to * be aborted, we can't rely on the current, or future, transactions to * write out the superblock safely. * * We'll just use the jbd2_journal_abort() error code to record an error in * the journal instead. On recovery, the journal will compain about * that error until we've noted it down and cleared it. */ static void ext4_handle_error(struct super_block *sb) { struct ext4_super_block *es = EXT4_SB(sb)->s_es; EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; es->s_state |= cpu_to_le16(EXT4_ERROR_FS); if (sb->s_flags & MS_RDONLY) return; if (!test_opt(sb, ERRORS_CONT)) { journal_t *journal = EXT4_SB(sb)->s_journal; EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; if (journal) jbd2_journal_abort(journal, -EIO); } if (test_opt(sb, ERRORS_RO)) { ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); sb->s_flags |= MS_RDONLY; } ext4_commit_super(sb, 1); if (test_opt(sb, ERRORS_PANIC)) panic("EXT4-fs (device %s): panic forced after error\n", sb->s_id); } void ext4_error(struct super_block *sb, const char *function, const char *fmt, ...) { va_list args; va_start(args, fmt); printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); vprintk(fmt, args); printk("\n"); va_end(args); ext4_handle_error(sb); } static const char *ext4_decode_error(struct super_block *sb, int errno, char nbuf[16]) { char *errstr = NULL; switch (errno) { case -EIO: errstr = "IO failure"; break; case -ENOMEM: errstr = "Out of memory"; break; case -EROFS: if (!sb || (EXT4_SB(sb)->s_journal && EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) errstr = "Journal has aborted"; else errstr = "Readonly filesystem"; break; default: /* If the caller passed in an extra buffer for unknown * errors, textualise them now. Else we just return * NULL. */ if (nbuf) { /* Check for truncated error codes... */ if (snprintf(nbuf, 16, "error %d", -errno) >= 0) errstr = nbuf; } break; } return errstr; } /* __ext4_std_error decodes expected errors from journaling functions * automatically and invokes the appropriate error response. */ void __ext4_std_error(struct super_block *sb, const char *function, int errno) { char nbuf[16]; const char *errstr; /* Special case: if the error is EROFS, and we're not already * inside a transaction, then there's really no point in logging * an error. */ if (errno == -EROFS && journal_current_handle() == NULL && (sb->s_flags & MS_RDONLY)) return; errstr = ext4_decode_error(sb, errno, nbuf); printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n", sb->s_id, function, errstr); ext4_handle_error(sb); } /* * ext4_abort is a much stronger failure handler than ext4_error. The * abort function may be used to deal with unrecoverable failures such * as journal IO errors or ENOMEM at a critical moment in log management. * * We unconditionally force the filesystem into an ABORT|READONLY state, * unless the error response on the fs has been set to panic in which * case we take the easy way out and panic immediately. */ void ext4_abort(struct super_block *sb, const char *function, const char *fmt, ...) { va_list args; va_start(args, fmt); printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); vprintk(fmt, args); printk("\n"); va_end(args); if (test_opt(sb, ERRORS_PANIC)) panic("EXT4-fs panic from previous error\n"); if (sb->s_flags & MS_RDONLY) return; ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; sb->s_flags |= MS_RDONLY; EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; if (EXT4_SB(sb)->s_journal) jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); } void ext4_msg (struct super_block * sb, const char *prefix, const char *fmt, ...) { va_list args; va_start(args, fmt); printk("%sEXT4-fs (%s): ", prefix, sb->s_id); vprintk(fmt, args); printk("\n"); va_end(args); } void ext4_warning(struct super_block *sb, const char *function, const char *fmt, ...) { va_list args; va_start(args, fmt); printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ", sb->s_id, function); vprintk(fmt, args); printk("\n"); va_end(args); } void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp, const char *function, const char *fmt, ...) __releases(bitlock) __acquires(bitlock) { va_list args; struct ext4_super_block *es = EXT4_SB(sb)->s_es; va_start(args, fmt); printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function); vprintk(fmt, args); printk("\n"); va_end(args); if (test_opt(sb, ERRORS_CONT)) { EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; es->s_state |= cpu_to_le16(EXT4_ERROR_FS); ext4_commit_super(sb, 0); return; } ext4_unlock_group(sb, grp); ext4_handle_error(sb); /* * We only get here in the ERRORS_RO case; relocking the group * may be dangerous, but nothing bad will happen since the * filesystem will have already been marked read/only and the * journal has been aborted. We return 1 as a hint to callers * who might what to use the return value from * ext4_grp_locked_error() to distinguish beween the * ERRORS_CONT and ERRORS_RO case, and perhaps return more * aggressively from the ext4 function in question, with a * more appropriate error code. */ ext4_lock_group(sb, grp); return; } void ext4_update_dynamic_rev(struct super_block *sb) { struct ext4_super_block *es = EXT4_SB(sb)->s_es; if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) return; ext4_warning(sb, __func__, "updating to rev %d because of new feature flag, " "running e2fsck is recommended", EXT4_DYNAMIC_REV); es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); /* leave es->s_feature_*compat flags alone */ /* es->s_uuid will be set by e2fsck if empty */ /* * The rest of the superblock fields should be zero, and if not it * means they are likely already in use, so leave them alone. We * can leave it up to e2fsck to clean up any inconsistencies there. */ } /* * Open the external journal device */ static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) { struct block_device *bdev; char b[BDEVNAME_SIZE]; bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); if (IS_ERR(bdev)) goto fail; return bdev; fail: ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", __bdevname(dev, b), PTR_ERR(bdev)); return NULL; } /* * Release the journal device */ static int ext4_blkdev_put(struct block_device *bdev) { bd_release(bdev); return blkdev_put(bdev, FMODE_READ|FMODE_WRITE); } static int ext4_blkdev_remove(struct ext4_sb_info *sbi) { struct block_device *bdev; int ret = -ENODEV; bdev = sbi->journal_bdev; if (bdev) { ret = ext4_blkdev_put(bdev); sbi->journal_bdev = NULL; } return ret; } static inline struct inode *orphan_list_entry(struct list_head *l) { return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; } static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) { struct list_head *l; ext4_msg(sb, KERN_ERR, "sb orphan head is %d", le32_to_cpu(sbi->s_es->s_last_orphan)); printk(KERN_ERR "sb_info orphan list:\n"); list_for_each(l, &sbi->s_orphan) { struct inode *inode = orphan_list_entry(l); printk(KERN_ERR " " "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", inode->i_sb->s_id, inode->i_ino, inode, inode->i_mode, inode->i_nlink, NEXT_ORPHAN(inode)); } } static void ext4_put_super(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; int i, err; flush_workqueue(sbi->dio_unwritten_wq); destroy_workqueue(sbi->dio_unwritten_wq); lock_super(sb); lock_kernel(); if (sb->s_dirt) ext4_commit_super(sb, 1); if (sbi->s_journal) { err = jbd2_journal_destroy(sbi->s_journal); sbi->s_journal = NULL; if (err < 0) ext4_abort(sb, __func__, "Couldn't clean up the journal"); } ext4_release_system_zone(sb); ext4_mb_release(sb); ext4_ext_release(sb); ext4_xattr_put_super(sb); if (!(sb->s_flags & MS_RDONLY)) { EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); es->s_state = cpu_to_le16(sbi->s_mount_state); ext4_commit_super(sb, 1); } if (sbi->s_proc) { remove_proc_entry(sb->s_id, ext4_proc_root); } kobject_del(&sbi->s_kobj); for (i = 0; i < sbi->s_gdb_count; i++) brelse(sbi->s_group_desc[i]); kfree(sbi->s_group_desc); if (is_vmalloc_addr(sbi->s_flex_groups)) vfree(sbi->s_flex_groups); else kfree(sbi->s_flex_groups); percpu_counter_destroy(&sbi->s_freeblocks_counter); percpu_counter_destroy(&sbi->s_freeinodes_counter); percpu_counter_destroy(&sbi->s_dirs_counter); percpu_counter_destroy(&sbi->s_dirtyblocks_counter); brelse(sbi->s_sbh); #ifdef CONFIG_QUOTA for (i = 0; i < MAXQUOTAS; i++) kfree(sbi->s_qf_names[i]); #endif /* Debugging code just in case the in-memory inode orphan list * isn't empty. The on-disk one can be non-empty if we've * detected an error and taken the fs readonly, but the * in-memory list had better be clean by this point. */ if (!list_empty(&sbi->s_orphan)) dump_orphan_list(sb, sbi); J_ASSERT(list_empty(&sbi->s_orphan)); invalidate_bdev(sb->s_bdev); if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { /* * Invalidate the journal device's buffers. We don't want them * floating about in memory - the physical journal device may * hotswapped, and it breaks the `ro-after' testing code. */ sync_blockdev(sbi->journal_bdev); invalidate_bdev(sbi->journal_bdev); ext4_blkdev_remove(sbi); } sb->s_fs_info = NULL; /* * Now that we are completely done shutting down the * superblock, we need to actually destroy the kobject. */ unlock_kernel(); unlock_super(sb); kobject_put(&sbi->s_kobj); wait_for_completion(&sbi->s_kobj_unregister); kfree(sbi->s_blockgroup_lock); kfree(sbi); } static struct kmem_cache *ext4_inode_cachep; /* * Called inside transaction, so use GFP_NOFS */ static struct inode *ext4_alloc_inode(struct super_block *sb) { struct ext4_inode_info *ei; ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); if (!ei) return NULL; ei->vfs_inode.i_version = 1; ei->vfs_inode.i_data.writeback_index = 0; memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache)); INIT_LIST_HEAD(&ei->i_prealloc_list); spin_lock_init(&ei->i_prealloc_lock); /* * Note: We can be called before EXT4_SB(sb)->s_journal is set, * therefore it can be null here. Don't check it, just initialize * jinode. */ jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode); ei->i_reserved_data_blocks = 0; ei->i_reserved_meta_blocks = 0; ei->i_allocated_meta_blocks = 0; ei->i_delalloc_reserved_flag = 0; spin_lock_init(&(ei->i_block_reservation_lock)); INIT_LIST_HEAD(&ei->i_aio_dio_complete_list); ei->cur_aio_dio = NULL; return &ei->vfs_inode; } static void ext4_destroy_inode(struct inode *inode) { if (!list_empty(&(EXT4_I(inode)->i_orphan))) { ext4_msg(inode->i_sb, KERN_ERR, "Inode %lu (%p): orphan list check failed!", inode->i_ino, EXT4_I(inode)); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, EXT4_I(inode), sizeof(struct ext4_inode_info), true); dump_stack(); } kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); } static void init_once(void *foo) { struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; INIT_LIST_HEAD(&ei->i_orphan); #ifdef CONFIG_EXT4_FS_XATTR init_rwsem(&ei->xattr_sem); #endif init_rwsem(&ei->i_data_sem); inode_init_once(&ei->vfs_inode); } static int init_inodecache(void) { ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", sizeof(struct ext4_inode_info), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), init_once); if (ext4_inode_cachep == NULL) return -ENOMEM; return 0; } static void destroy_inodecache(void) { kmem_cache_destroy(ext4_inode_cachep); } static void ext4_clear_inode(struct inode *inode) { ext4_discard_preallocations(inode); if (EXT4_JOURNAL(inode)) jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal, &EXT4_I(inode)->jinode); } static inline void ext4_show_quota_options(struct seq_file *seq, struct super_block *sb) { #if defined(CONFIG_QUOTA) struct ext4_sb_info *sbi = EXT4_SB(sb); if (sbi->s_jquota_fmt) seq_printf(seq, ",jqfmt=%s", (sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0"); if (sbi->s_qf_names[USRQUOTA]) seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); if (sbi->s_qf_names[GRPQUOTA]) seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) seq_puts(seq, ",usrquota"); if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) seq_puts(seq, ",grpquota"); #endif } /* * Show an option if * - it's set to a non-default value OR * - if the per-sb default is different from the global default */ static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs) { int def_errors; unsigned long def_mount_opts; struct super_block *sb = vfs->mnt_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; def_mount_opts = le32_to_cpu(es->s_default_mount_opts); def_errors = le16_to_cpu(es->s_errors); if (sbi->s_sb_block != 1) seq_printf(seq, ",sb=%llu", sbi->s_sb_block); if (test_opt(sb, MINIX_DF)) seq_puts(seq, ",minixdf"); if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS)) seq_puts(seq, ",grpid"); if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS)) seq_puts(seq, ",nogrpid"); if (sbi->s_resuid != EXT4_DEF_RESUID || le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) { seq_printf(seq, ",resuid=%u", sbi->s_resuid); } if (sbi->s_resgid != EXT4_DEF_RESGID || le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) { seq_printf(seq, ",resgid=%u", sbi->s_resgid); } if (test_opt(sb, ERRORS_RO)) { if (def_errors == EXT4_ERRORS_PANIC || def_errors == EXT4_ERRORS_CONTINUE) { seq_puts(seq, ",errors=remount-ro"); } } if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) seq_puts(seq, ",errors=continue"); if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) seq_puts(seq, ",errors=panic"); if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16)) seq_puts(seq, ",nouid32"); if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG)) seq_puts(seq, ",debug"); if (test_opt(sb, OLDALLOC)) seq_puts(seq, ",oldalloc"); #ifdef CONFIG_EXT4_FS_XATTR if (test_opt(sb, XATTR_USER) && !(def_mount_opts & EXT4_DEFM_XATTR_USER)) seq_puts(seq, ",user_xattr"); if (!test_opt(sb, XATTR_USER) && (def_mount_opts & EXT4_DEFM_XATTR_USER)) { seq_puts(seq, ",nouser_xattr"); } #endif #ifdef CONFIG_EXT4_FS_POSIX_ACL if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL)) seq_puts(seq, ",acl"); if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL)) seq_puts(seq, ",noacl"); #endif if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { seq_printf(seq, ",commit=%u", (unsigned) (sbi->s_commit_interval / HZ)); } if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) { seq_printf(seq, ",min_batch_time=%u", (unsigned) sbi->s_min_batch_time); } if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) { seq_printf(seq, ",max_batch_time=%u", (unsigned) sbi->s_min_batch_time); } /* * We're changing the default of barrier mount option, so * let's always display its mount state so it's clear what its * status is. */ seq_puts(seq, ",barrier="); seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) seq_puts(seq, ",journal_async_commit"); if (test_opt(sb, NOBH)) seq_puts(seq, ",nobh"); if (test_opt(sb, I_VERSION)) seq_puts(seq, ",i_version"); if (!test_opt(sb, DELALLOC)) seq_puts(seq, ",nodelalloc"); if (sbi->s_stripe) seq_printf(seq, ",stripe=%lu", sbi->s_stripe); /* * journal mode get enabled in different ways * So just print the value even if we didn't specify it */ if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) seq_puts(seq, ",data=journal"); else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) seq_puts(seq, ",data=ordered"); else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) seq_puts(seq, ",data=writeback"); if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) seq_printf(seq, ",inode_readahead_blks=%u", sbi->s_inode_readahead_blks); if (test_opt(sb, DATA_ERR_ABORT)) seq_puts(seq, ",data_err=abort"); if (test_opt(sb, NO_AUTO_DA_ALLOC)) seq_puts(seq, ",noauto_da_alloc"); if (test_opt(sb, DISCARD)) seq_puts(seq, ",discard"); if (test_opt(sb, NOLOAD)) seq_puts(seq, ",norecovery"); ext4_show_quota_options(seq, sb); return 0; } static struct inode *ext4_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct inode *inode; if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) return ERR_PTR(-ESTALE); if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) return ERR_PTR(-ESTALE); /* iget isn't really right if the inode is currently unallocated!! * * ext4_read_inode will return a bad_inode if the inode had been * deleted, so we should be safe. * * Currently we don't know the generation for parent directory, so * a generation of 0 means "accept any" */ inode = ext4_iget(sb, ino); if (IS_ERR(inode)) return ERR_CAST(inode); if (generation && inode->i_generation != generation) { iput(inode); return ERR_PTR(-ESTALE); } return inode; } static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, ext4_nfs_get_inode); } static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, ext4_nfs_get_inode); } /* * Try to release metadata pages (indirect blocks, directories) which are * mapped via the block device. Since these pages could have journal heads * which would prevent try_to_free_buffers() from freeing them, we must use * jbd2 layer's try_to_free_buffers() function to release them. */ static int bdev_try_to_free_page(struct super_block *sb, struct page *page, gfp_t wait) { journal_t *journal = EXT4_SB(sb)->s_journal; WARN_ON(PageChecked(page)); if (!page_has_buffers(page)) return 0; if (journal) return jbd2_journal_try_to_free_buffers(journal, page, wait & ~__GFP_WAIT); return try_to_free_buffers(page); } #ifdef CONFIG_QUOTA #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) static int ext4_write_dquot(struct dquot *dquot); static int ext4_acquire_dquot(struct dquot *dquot); static int ext4_release_dquot(struct dquot *dquot); static int ext4_mark_dquot_dirty(struct dquot *dquot); static int ext4_write_info(struct super_block *sb, int type); static int ext4_quota_on(struct super_block *sb, int type, int format_id, char *path, int remount); static int ext4_quota_on_mount(struct super_block *sb, int type); static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off); static ssize_t ext4_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off); static const struct dquot_operations ext4_quota_operations = { .initialize = dquot_initialize, .drop = dquot_drop, .alloc_space = dquot_alloc_space, .reserve_space = dquot_reserve_space, .claim_space = dquot_claim_space, .release_rsv = dquot_release_reserved_space, .get_reserved_space = ext4_get_reserved_space, .alloc_inode = dquot_alloc_inode, .free_space = dquot_free_space, .free_inode = dquot_free_inode, .transfer = dquot_transfer, .write_dquot = ext4_write_dquot, .acquire_dquot = ext4_acquire_dquot, .release_dquot = ext4_release_dquot, .mark_dirty = ext4_mark_dquot_dirty, .write_info = ext4_write_info, .alloc_dquot = dquot_alloc, .destroy_dquot = dquot_destroy, }; static const struct quotactl_ops ext4_qctl_operations = { .quota_on = ext4_quota_on, .quota_off = vfs_quota_off, .quota_sync = vfs_quota_sync, .get_info = vfs_get_dqinfo, .set_info = vfs_set_dqinfo, .get_dqblk = vfs_get_dqblk, .set_dqblk = vfs_set_dqblk }; #endif static const struct super_operations ext4_sops = { .alloc_inode = ext4_alloc_inode, .destroy_inode = ext4_destroy_inode, .write_inode = ext4_write_inode, .dirty_inode = ext4_dirty_inode, .delete_inode = ext4_delete_inode, .put_super = ext4_put_super, .sync_fs = ext4_sync_fs, .freeze_fs = ext4_freeze, .unfreeze_fs = ext4_unfreeze, .statfs = ext4_statfs, .remount_fs = ext4_remount, .clear_inode = ext4_clear_inode, .show_options = ext4_show_options, #ifdef CONFIG_QUOTA .quota_read = ext4_quota_read, .quota_write = ext4_quota_write, #endif .bdev_try_to_free_page = bdev_try_to_free_page, }; static const struct super_operations ext4_nojournal_sops = { .alloc_inode = ext4_alloc_inode, .destroy_inode = ext4_destroy_inode, .write_inode = ext4_write_inode, .dirty_inode = ext4_dirty_inode, .delete_inode = ext4_delete_inode, .write_super = ext4_write_super, .put_super = ext4_put_super, .statfs = ext4_statfs, .remount_fs = ext4_remount, .clear_inode = ext4_clear_inode, .show_options = ext4_show_options, #ifdef CONFIG_QUOTA .quota_read = ext4_quota_read, .quota_write = ext4_quota_write, #endif .bdev_try_to_free_page = bdev_try_to_free_page, }; static const struct export_operations ext4_export_ops = { .fh_to_dentry = ext4_fh_to_dentry, .fh_to_parent = ext4_fh_to_parent, .get_parent = ext4_get_parent, }; enum { Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov, Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh, Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_update, Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, Opt_data_err_abort, Opt_data_err_ignore, Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_block_validity, Opt_noblock_validity, Opt_inode_readahead_blks, Opt_journal_ioprio, Opt_discard, Opt_nodiscard, }; static const match_table_t tokens = { {Opt_bsd_df, "bsddf"}, {Opt_minix_df, "minixdf"}, {Opt_grpid, "grpid"}, {Opt_grpid, "bsdgroups"}, {Opt_nogrpid, "nogrpid"}, {Opt_nogrpid, "sysvgroups"}, {Opt_resgid, "resgid=%u"}, {Opt_resuid, "resuid=%u"}, {Opt_sb, "sb=%u"}, {Opt_err_cont, "errors=continue"}, {Opt_err_panic, "errors=panic"}, {Opt_err_ro, "errors=remount-ro"}, {Opt_nouid32, "nouid32"}, {Opt_debug, "debug"}, {Opt_oldalloc, "oldalloc"}, {Opt_orlov, "orlov"}, {Opt_user_xattr, "user_xattr"}, {Opt_nouser_xattr, "nouser_xattr"}, {Opt_acl, "acl"}, {Opt_noacl, "noacl"}, {Opt_noload, "noload"}, {Opt_noload, "norecovery"}, {Opt_nobh, "nobh"}, {Opt_bh, "bh"}, {Opt_commit, "commit=%u"}, {Opt_min_batch_time, "min_batch_time=%u"}, {Opt_max_batch_time, "max_batch_time=%u"}, {Opt_journal_update, "journal=update"}, {Opt_journal_dev, "journal_dev=%u"}, {Opt_journal_checksum, "journal_checksum"}, {Opt_journal_async_commit, "journal_async_commit"}, {Opt_abort, "abort"}, {Opt_data_journal, "data=journal"}, {Opt_data_ordered, "data=ordered"}, {Opt_data_writeback, "data=writeback"}, {Opt_data_err_abort, "data_err=abort"}, {Opt_data_err_ignore, "data_err=ignore"}, {Opt_offusrjquota, "usrjquota="}, {Opt_usrjquota, "usrjquota=%s"}, {Opt_offgrpjquota, "grpjquota="}, {Opt_grpjquota, "grpjquota=%s"}, {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, {Opt_grpquota, "grpquota"}, {Opt_noquota, "noquota"}, {Opt_quota, "quota"}, {Opt_usrquota, "usrquota"}, {Opt_barrier, "barrier=%u"}, {Opt_barrier, "barrier"}, {Opt_nobarrier, "nobarrier"}, {Opt_i_version, "i_version"}, {Opt_stripe, "stripe=%u"}, {Opt_resize, "resize"}, {Opt_delalloc, "delalloc"}, {Opt_nodelalloc, "nodelalloc"}, {Opt_block_validity, "block_validity"}, {Opt_noblock_validity, "noblock_validity"}, {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, {Opt_journal_ioprio, "journal_ioprio=%u"}, {Opt_auto_da_alloc, "auto_da_alloc=%u"}, {Opt_auto_da_alloc, "auto_da_alloc"}, {Opt_noauto_da_alloc, "noauto_da_alloc"}, {Opt_discard, "discard"}, {Opt_nodiscard, "nodiscard"}, {Opt_err, NULL}, }; static ext4_fsblk_t get_sb_block(void **data) { ext4_fsblk_t sb_block; char *options = (char *) *data; if (!options || strncmp(options, "sb=", 3) != 0) return 1; /* Default location */ options += 3; /* TODO: use simple_strtoll with >32bit ext4 */ sb_block = simple_strtoul(options, &options, 0); if (*options && *options != ',') { printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", (char *) *data); return 1; } if (*options == ',') options++; *data = (void *) options; return sb_block; } #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) static int parse_options(char *options, struct super_block *sb, unsigned long *journal_devnum, unsigned int *journal_ioprio, ext4_fsblk_t *n_blocks_count, int is_remount) { struct ext4_sb_info *sbi = EXT4_SB(sb); char *p; substring_t args[MAX_OPT_ARGS]; int data_opt = 0; int option; #ifdef CONFIG_QUOTA int qtype, qfmt; char *qname; #endif if (!options) return 1; while ((p = strsep(&options, ",")) != NULL) { int token; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_bsd_df: clear_opt(sbi->s_mount_opt, MINIX_DF); break; case Opt_minix_df: set_opt(sbi->s_mount_opt, MINIX_DF); break; case Opt_grpid: set_opt(sbi->s_mount_opt, GRPID); break; case Opt_nogrpid: clear_opt(sbi->s_mount_opt, GRPID); break; case Opt_resuid: if (match_int(&args[0], &option)) return 0; sbi->s_resuid = option; break; case Opt_resgid: if (match_int(&args[0], &option)) return 0; sbi->s_resgid = option; break; case Opt_sb: /* handled by get_sb_block() instead of here */ /* *sb_block = match_int(&args[0]); */ break; case Opt_err_panic: clear_opt(sbi->s_mount_opt, ERRORS_CONT); clear_opt(sbi->s_mount_opt, ERRORS_RO); set_opt(sbi->s_mount_opt, ERRORS_PANIC); break; case Opt_err_ro: clear_opt(sbi->s_mount_opt, ERRORS_CONT); clear_opt(sbi->s_mount_opt, ERRORS_PANIC); set_opt(sbi->s_mount_opt, ERRORS_RO); break; case Opt_err_cont: clear_opt(sbi->s_mount_opt, ERRORS_RO); clear_opt(sbi->s_mount_opt, ERRORS_PANIC); set_opt(sbi->s_mount_opt, ERRORS_CONT); break; case Opt_nouid32: set_opt(sbi->s_mount_opt, NO_UID32); break; case Opt_debug: set_opt(sbi->s_mount_opt, DEBUG); break; case Opt_oldalloc: set_opt(sbi->s_mount_opt, OLDALLOC); break; case Opt_orlov: clear_opt(sbi->s_mount_opt, OLDALLOC); break; #ifdef CONFIG_EXT4_FS_XATTR case Opt_user_xattr: set_opt(sbi->s_mount_opt, XATTR_USER); break; case Opt_nouser_xattr: clear_opt(sbi->s_mount_opt, XATTR_USER); break; #else case Opt_user_xattr: case Opt_nouser_xattr: ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported"); break; #endif #ifdef CONFIG_EXT4_FS_POSIX_ACL case Opt_acl: set_opt(sbi->s_mount_opt, POSIX_ACL); break; case Opt_noacl: clear_opt(sbi->s_mount_opt, POSIX_ACL); break; #else case Opt_acl: case Opt_noacl: ext4_msg(sb, KERN_ERR, "(no)acl options not supported"); break; #endif case Opt_journal_update: /* @@@ FIXME */ /* Eventually we will want to be able to create a journal file here. For now, only allow the user to specify an existing inode to be the journal file. */ if (is_remount) { ext4_msg(sb, KERN_ERR, "Cannot specify journal on remount"); return 0; } set_opt(sbi->s_mount_opt, UPDATE_JOURNAL); break; case Opt_journal_dev: if (is_remount) { ext4_msg(sb, KERN_ERR, "Cannot specify journal on remount"); return 0; } if (match_int(&args[0], &option)) return 0; *journal_devnum = option; break; case Opt_journal_checksum: set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); break; case Opt_journal_async_commit: set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT); set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM); break; case Opt_noload: set_opt(sbi->s_mount_opt, NOLOAD); break; case Opt_commit: if (match_int(&args[0], &option)) return 0; if (option < 0) return 0; if (option == 0) option = JBD2_DEFAULT_MAX_COMMIT_AGE; sbi->s_commit_interval = HZ * option; break; case Opt_max_batch_time: if (match_int(&args[0], &option)) return 0; if (option < 0) return 0; if (option == 0) option = EXT4_DEF_MAX_BATCH_TIME; sbi->s_max_batch_time = option; break; case Opt_min_batch_time: if (match_int(&args[0], &option)) return 0; if (option < 0) return 0; sbi->s_min_batch_time = option; break; case Opt_data_journal: data_opt = EXT4_MOUNT_JOURNAL_DATA; goto datacheck; case Opt_data_ordered: data_opt = EXT4_MOUNT_ORDERED_DATA; goto datacheck; case Opt_data_writeback: data_opt = EXT4_MOUNT_WRITEBACK_DATA; datacheck: if (is_remount) { if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS) != data_opt) { ext4_msg(sb, KERN_ERR, "Cannot change data mode on remount"); return 0; } } else { sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS; sbi->s_mount_opt |= data_opt; } break; case Opt_data_err_abort: set_opt(sbi->s_mount_opt, DATA_ERR_ABORT); break; case Opt_data_err_ignore: clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT); break; #ifdef CONFIG_QUOTA case Opt_usrjquota: qtype = USRQUOTA; goto set_qf_name; case Opt_grpjquota: qtype = GRPQUOTA; set_qf_name: if (sb_any_quota_loaded(sb) && !sbi->s_qf_names[qtype]) { ext4_msg(sb, KERN_ERR, "Cannot change journaled " "quota options when quota turned on"); return 0; } qname = match_strdup(&args[0]); if (!qname) { ext4_msg(sb, KERN_ERR, "Not enough memory for " "storing quotafile name"); return 0; } if (sbi->s_qf_names[qtype] && strcmp(sbi->s_qf_names[qtype], qname)) { ext4_msg(sb, KERN_ERR, "%s quota file already " "specified", QTYPE2NAME(qtype)); kfree(qname); return 0; } sbi->s_qf_names[qtype] = qname; if (strchr(sbi->s_qf_names[qtype], '/')) { ext4_msg(sb, KERN_ERR, "quotafile must be on " "filesystem root"); kfree(sbi->s_qf_names[qtype]); sbi->s_qf_names[qtype] = NULL; return 0; } set_opt(sbi->s_mount_opt, QUOTA); break; case Opt_offusrjquota: qtype = USRQUOTA; goto clear_qf_name; case Opt_offgrpjquota: qtype = GRPQUOTA; clear_qf_name: if (sb_any_quota_loaded(sb) && sbi->s_qf_names[qtype]) { ext4_msg(sb, KERN_ERR, "Cannot change " "journaled quota options when " "quota turned on"); return 0; } /* * The space will be released later when all options * are confirmed to be correct */ sbi->s_qf_names[qtype] = NULL; break; case Opt_jqfmt_vfsold: qfmt = QFMT_VFS_OLD; goto set_qf_format; case Opt_jqfmt_vfsv0: qfmt = QFMT_VFS_V0; set_qf_format: if (sb_any_quota_loaded(sb) && sbi->s_jquota_fmt != qfmt) { ext4_msg(sb, KERN_ERR, "Cannot change " "journaled quota options when " "quota turned on"); return 0; } sbi->s_jquota_fmt = qfmt; break; case Opt_quota: case Opt_usrquota: set_opt(sbi->s_mount_opt, QUOTA); set_opt(sbi->s_mount_opt, USRQUOTA); break; case Opt_grpquota: set_opt(sbi->s_mount_opt, QUOTA); set_opt(sbi->s_mount_opt, GRPQUOTA); break; case Opt_noquota: if (sb_any_quota_loaded(sb)) { ext4_msg(sb, KERN_ERR, "Cannot change quota " "options when quota turned on"); return 0; } clear_opt(sbi->s_mount_opt, QUOTA); clear_opt(sbi->s_mount_opt, USRQUOTA); clear_opt(sbi->s_mount_opt, GRPQUOTA); break; #else case Opt_quota: case Opt_usrquota: case Opt_grpquota: ext4_msg(sb, KERN_ERR, "quota options not supported"); break; case Opt_usrjquota: case Opt_grpjquota: case Opt_offusrjquota: case Opt_offgrpjquota: case Opt_jqfmt_vfsold: case Opt_jqfmt_vfsv0: ext4_msg(sb, KERN_ERR, "journaled quota options not supported"); break; case Opt_noquota: break; #endif case Opt_abort: sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; break; case Opt_nobarrier: clear_opt(sbi->s_mount_opt, BARRIER); break; case Opt_barrier: if (match_int(&args[0], &option)) { set_opt(sbi->s_mount_opt, BARRIER); break; } if (option) set_opt(sbi->s_mount_opt, BARRIER); else clear_opt(sbi->s_mount_opt, BARRIER); break; case Opt_ignore: break; case Opt_resize: if (!is_remount) { ext4_msg(sb, KERN_ERR, "resize option only available " "for remount"); return 0; } if (match_int(&args[0], &option) != 0) return 0; *n_blocks_count = option; break; case Opt_nobh: set_opt(sbi->s_mount_opt, NOBH); break; case Opt_bh: clear_opt(sbi->s_mount_opt, NOBH); break; case Opt_i_version: set_opt(sbi->s_mount_opt, I_VERSION); sb->s_flags |= MS_I_VERSION; break; case Opt_nodelalloc: clear_opt(sbi->s_mount_opt, DELALLOC); break; case Opt_stripe: if (match_int(&args[0], &option)) return 0; if (option < 0) return 0; sbi->s_stripe = option; break; case Opt_delalloc: set_opt(sbi->s_mount_opt, DELALLOC); break; case Opt_block_validity: set_opt(sbi->s_mount_opt, BLOCK_VALIDITY); break; case Opt_noblock_validity: clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY); break; case Opt_inode_readahead_blks: if (match_int(&args[0], &option)) return 0; if (option < 0 || option > (1 << 30)) return 0; if (!is_power_of_2(option)) { ext4_msg(sb, KERN_ERR, "EXT4-fs: inode_readahead_blks" " must be a power of 2"); return 0; } sbi->s_inode_readahead_blks = option; break; case Opt_journal_ioprio: if (match_int(&args[0], &option)) return 0; if (option < 0 || option > 7) break; *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, option); break; case Opt_noauto_da_alloc: set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); break; case Opt_auto_da_alloc: if (match_int(&args[0], &option)) { clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); break; } if (option) clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC); else set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC); break; case Opt_discard: set_opt(sbi->s_mount_opt, DISCARD); break; case Opt_nodiscard: clear_opt(sbi->s_mount_opt, DISCARD); break; default: ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " "or missing value", p); return 0; } } #ifdef CONFIG_QUOTA if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) && sbi->s_qf_names[USRQUOTA]) clear_opt(sbi->s_mount_opt, USRQUOTA); if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) clear_opt(sbi->s_mount_opt, GRPQUOTA); if ((sbi->s_qf_names[USRQUOTA] && (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) || (sbi->s_qf_names[GRPQUOTA] && (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) { ext4_msg(sb, KERN_ERR, "old and new quota " "format mixing"); return 0; } if (!sbi->s_jquota_fmt) { ext4_msg(sb, KERN_ERR, "journaled quota format " "not specified"); return 0; } } else { if (sbi->s_jquota_fmt) { ext4_msg(sb, KERN_ERR, "journaled quota format " "specified with no journaling " "enabled"); return 0; } } #endif return 1; } static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, int read_only) { struct ext4_sb_info *sbi = EXT4_SB(sb); int res = 0; if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { ext4_msg(sb, KERN_ERR, "revision level too high, " "forcing read-only mode"); res = MS_RDONLY; } if (read_only) return res; if (!(sbi->s_mount_state & EXT4_VALID_FS)) ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " "running e2fsck is recommended"); else if ((sbi->s_mount_state & EXT4_ERROR_FS)) ext4_msg(sb, KERN_WARNING, "warning: mounting fs with errors, " "running e2fsck is recommended"); else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 && le16_to_cpu(es->s_mnt_count) >= (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) ext4_msg(sb, KERN_WARNING, "warning: maximal mount count reached, " "running e2fsck is recommended"); else if (le32_to_cpu(es->s_checkinterval) && (le32_to_cpu(es->s_lastcheck) + le32_to_cpu(es->s_checkinterval) <= get_seconds())) ext4_msg(sb, KERN_WARNING, "warning: checktime reached, " "running e2fsck is recommended"); if (!sbi->s_journal) es->s_state &= cpu_to_le16(~EXT4_VALID_FS); if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); le16_add_cpu(&es->s_mnt_count, 1); es->s_mtime = cpu_to_le32(get_seconds()); ext4_update_dynamic_rev(sb); if (sbi->s_journal) EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); ext4_commit_super(sb, 1); if (test_opt(sb, DEBUG)) printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " "bpg=%lu, ipg=%lu, mo=%04x]\n", sb->s_blocksize, sbi->s_groups_count, EXT4_BLOCKS_PER_GROUP(sb), EXT4_INODES_PER_GROUP(sb), sbi->s_mount_opt); return res; } static int ext4_fill_flex_info(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_group_desc *gdp = NULL; ext4_group_t flex_group_count; ext4_group_t flex_group; int groups_per_flex = 0; size_t size; int i; sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; groups_per_flex = 1 << sbi->s_log_groups_per_flex; if (groups_per_flex < 2) { sbi->s_log_groups_per_flex = 0; return 1; } /* We allocate both existing and potentially added groups */ flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) + ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) << EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex; size = flex_group_count * sizeof(struct flex_groups); sbi->s_flex_groups = kzalloc(size, GFP_KERNEL); if (sbi->s_flex_groups == NULL) { sbi->s_flex_groups = vmalloc(size); if (sbi->s_flex_groups) memset(sbi->s_flex_groups, 0, size); } if (sbi->s_flex_groups == NULL) { ext4_msg(sb, KERN_ERR, "not enough memory for " "%u flex groups", flex_group_count); goto failed; } for (i = 0; i < sbi->s_groups_count; i++) { gdp = ext4_get_group_desc(sb, i, NULL); flex_group = ext4_flex_group(sbi, i); atomic_add(ext4_free_inodes_count(sb, gdp), &sbi->s_flex_groups[flex_group].free_inodes); atomic_add(ext4_free_blks_count(sb, gdp), &sbi->s_flex_groups[flex_group].free_blocks); atomic_add(ext4_used_dirs_count(sb, gdp), &sbi->s_flex_groups[flex_group].used_dirs); } return 1; failed: return 0; } __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, struct ext4_group_desc *gdp) { __u16 crc = 0; if (sbi->s_es->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { int offset = offsetof(struct ext4_group_desc, bg_checksum); __le32 le_group = cpu_to_le32(block_group); crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); crc = crc16(crc, (__u8 *)gdp, offset); offset += sizeof(gdp->bg_checksum); /* skip checksum */ /* for checksum of struct ext4_group_desc do the rest...*/ if ((sbi->s_es->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && offset < le16_to_cpu(sbi->s_es->s_desc_size)) crc = crc16(crc, (__u8 *)gdp + offset, le16_to_cpu(sbi->s_es->s_desc_size) - offset); } return cpu_to_le16(crc); } int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group, struct ext4_group_desc *gdp) { if ((sbi->s_es->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) && (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp))) return 0; return 1; } /* Called at mount-time, super-block is locked */ static int ext4_check_descriptors(struct super_block *sb) { struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); ext4_fsblk_t last_block; ext4_fsblk_t block_bitmap; ext4_fsblk_t inode_bitmap; ext4_fsblk_t inode_table; int flexbg_flag = 0; ext4_group_t i; if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) flexbg_flag = 1; ext4_debug("Checking group descriptors"); for (i = 0; i < sbi->s_groups_count; i++) { struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); if (i == sbi->s_groups_count - 1 || flexbg_flag) last_block = ext4_blocks_count(sbi->s_es) - 1; else last_block = first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1); block_bitmap = ext4_block_bitmap(sb, gdp); if (block_bitmap < first_block || block_bitmap > last_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Block bitmap for group %u not in group " "(block %llu)!", i, block_bitmap); return 0; } inode_bitmap = ext4_inode_bitmap(sb, gdp); if (inode_bitmap < first_block || inode_bitmap > last_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode bitmap for group %u not in group " "(block %llu)!", i, inode_bitmap); return 0; } inode_table = ext4_inode_table(sb, gdp); if (inode_table < first_block || inode_table + sbi->s_itb_per_group - 1 > last_block) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Inode table for group %u not in group " "(block %llu)!", i, inode_table); return 0; } ext4_lock_group(sb, i); if (!ext4_group_desc_csum_verify(sbi, i, gdp)) { ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " "Checksum for group %u failed (%u!=%u)", i, le16_to_cpu(ext4_group_desc_csum(sbi, i, gdp)), le16_to_cpu(gdp->bg_checksum)); if (!(sb->s_flags & MS_RDONLY)) { ext4_unlock_group(sb, i); return 0; } } ext4_unlock_group(sb, i); if (!flexbg_flag) first_block += EXT4_BLOCKS_PER_GROUP(sb); } ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb)); sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); return 1; } /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at * the superblock) which were deleted from all directories, but held open by * a process at the time of a crash. We walk the list and try to delete these * inodes at recovery time (only with a read-write filesystem). * * In order to keep the orphan inode chain consistent during traversal (in * case of crash during recovery), we link each inode into the superblock * orphan list_head and handle it the same way as an inode deletion during * normal operation (which journals the operations for us). * * We only do an iget() and an iput() on each inode, which is very safe if we * accidentally point at an in-use or already deleted inode. The worst that * can happen in this case is that we get a "bit already cleared" message from * ext4_free_inode(). The only reason we would point at a wrong inode is if * e2fsck was run on this filesystem, and it must have already done the orphan * inode cleanup for us, so we can safely abort without any further action. */ static void ext4_orphan_cleanup(struct super_block *sb, struct ext4_super_block *es) { unsigned int s_flags = sb->s_flags; int nr_orphans = 0, nr_truncates = 0; #ifdef CONFIG_QUOTA int i; #endif if (!es->s_last_orphan) { jbd_debug(4, "no orphan inodes to clean up\n"); return; } if (bdev_read_only(sb->s_bdev)) { ext4_msg(sb, KERN_ERR, "write access " "unavailable, skipping orphan cleanup"); return; } if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { if (es->s_last_orphan) jbd_debug(1, "Errors on filesystem, " "clearing orphan list.\n"); es->s_last_orphan = 0; jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); return; } if (s_flags & MS_RDONLY) { ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); sb->s_flags &= ~MS_RDONLY; } #ifdef CONFIG_QUOTA /* Needed for iput() to work correctly and not trash data */ sb->s_flags |= MS_ACTIVE; /* Turn on quotas so that they are updated correctly */ for (i = 0; i < MAXQUOTAS; i++) { if (EXT4_SB(sb)->s_qf_names[i]) { int ret = ext4_quota_on_mount(sb, i); if (ret < 0) ext4_msg(sb, KERN_ERR, "Cannot turn on journaled " "quota: error %d", ret); } } #endif while (es->s_last_orphan) { struct inode *inode; inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); if (IS_ERR(inode)) { es->s_last_orphan = 0; break; } list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); vfs_dq_init(inode); if (inode->i_nlink) { ext4_msg(sb, KERN_DEBUG, "%s: truncating inode %lu to %lld bytes", __func__, inode->i_ino, inode->i_size); jbd_debug(2, "truncating inode %lu to %lld bytes\n", inode->i_ino, inode->i_size); ext4_truncate(inode); nr_truncates++; } else { ext4_msg(sb, KERN_DEBUG, "%s: deleting unreferenced inode %lu", __func__, inode->i_ino); jbd_debug(2, "deleting unreferenced inode %lu\n", inode->i_ino); nr_orphans++; } iput(inode); /* The delete magic happens here! */ } #define PLURAL(x) (x), ((x) == 1) ? "" : "s" if (nr_orphans) ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", PLURAL(nr_orphans)); if (nr_truncates) ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", PLURAL(nr_truncates)); #ifdef CONFIG_QUOTA /* Turn quotas off */ for (i = 0; i < MAXQUOTAS; i++) { if (sb_dqopt(sb)->files[i]) vfs_quota_off(sb, i, 0); } #endif sb->s_flags = s_flags; /* Restore MS_RDONLY status */ } /* * Maximal extent format file size. * Resulting logical blkno at s_maxbytes must fit in our on-disk * extent format containers, within a sector_t, and within i_blocks * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, * so that won't be a limiting factor. * * Note, this does *not* consider any metadata overhead for vfs i_blocks. */ static loff_t ext4_max_size(int blkbits, int has_huge_files) { loff_t res; loff_t upper_limit = MAX_LFS_FILESIZE; /* small i_blocks in vfs inode? */ if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { /* * CONFIG_LBDAF is not enabled implies the inode * i_block represent total blocks in 512 bytes * 32 == size of vfs inode i_blocks * 8 */ upper_limit = (1LL << 32) - 1; /* total blocks in file system block size */ upper_limit >>= (blkbits - 9); upper_limit <<= blkbits; } /* 32-bit extent-start container, ee_block */ res = 1LL << 32; res <<= blkbits; res -= 1; /* Sanity check against vm- & vfs- imposed limits */ if (res > upper_limit) res = upper_limit; return res; } /* * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. * We need to be 1 filesystem block less than the 2^48 sector limit. */ static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) { loff_t res = EXT4_NDIR_BLOCKS; int meta_blocks; loff_t upper_limit; /* This is calculated to be the largest file size for a dense, block * mapped file such that the file's total number of 512-byte sectors, * including data and all indirect blocks, does not exceed (2^48 - 1). * * __u32 i_blocks_lo and _u16 i_blocks_high represent the total * number of 512-byte sectors of the file. */ if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { /* * !has_huge_files or CONFIG_LBDAF not enabled implies that * the inode i_block field represents total file blocks in * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 */ upper_limit = (1LL << 32) - 1; /* total blocks in file system block size */ upper_limit >>= (bits - 9); } else { /* * We use 48 bit ext4_inode i_blocks * With EXT4_HUGE_FILE_FL set the i_blocks * represent total number of blocks in * file system block size */ upper_limit = (1LL << 48) - 1; } /* indirect blocks */ meta_blocks = 1; /* double indirect blocks */ meta_blocks += 1 + (1LL << (bits-2)); /* tripple indirect blocks */ meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); upper_limit -= meta_blocks; upper_limit <<= bits; res += 1LL << (bits-2); res += 1LL << (2*(bits-2)); res += 1LL << (3*(bits-2)); res <<= bits; if (res > upper_limit) res = upper_limit; if (res > MAX_LFS_FILESIZE) res = MAX_LFS_FILESIZE; return res; } static ext4_fsblk_t descriptor_loc(struct super_block *sb, ext4_fsblk_t logical_sb_block, int nr) { struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_group_t bg, first_meta_bg; int has_super = 0; first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || nr < first_meta_bg) return logical_sb_block + nr + 1; bg = sbi->s_desc_per_block * nr; if (ext4_bg_has_super(sb, bg)) has_super = 1; return (has_super + ext4_group_first_block_no(sb, bg)); } /** * ext4_get_stripe_size: Get the stripe size. * @sbi: In memory super block info * * If we have specified it via mount option, then * use the mount option value. If the value specified at mount time is * greater than the blocks per group use the super block value. * If the super block value is greater than blocks per group return 0. * Allocator needs it be less than blocks per group. * */ static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) { unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); unsigned long stripe_width = le32_to_cpu(sbi->s_es->s_raid_stripe_width); if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) return sbi->s_stripe; if (stripe_width <= sbi->s_blocks_per_group) return stripe_width; if (stride <= sbi->s_blocks_per_group) return stride; return 0; } /* sysfs supprt */ struct ext4_attr { struct attribute attr; ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, const char *, size_t); int offset; }; static int parse_strtoul(const char *buf, unsigned long max, unsigned long *value) { char *endp; while (*buf && isspace(*buf)) buf++; *value = simple_strtoul(buf, &endp, 0); while (*endp && isspace(*endp)) endp++; if (*endp || *value > max) return -EINVAL; return 0; } static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, struct ext4_sb_info *sbi, char *buf) { return snprintf(buf, PAGE_SIZE, "%llu\n", (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter)); } static ssize_t session_write_kbytes_show(struct ext4_attr *a, struct ext4_sb_info *sbi, char *buf) { struct super_block *sb = sbi->s_buddy_cache->i_sb; return snprintf(buf, PAGE_SIZE, "%lu\n", (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - sbi->s_sectors_written_start) >> 1); } static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, struct ext4_sb_info *sbi, char *buf) { struct super_block *sb = sbi->s_buddy_cache->i_sb; return snprintf(buf, PAGE_SIZE, "%llu\n", sbi->s_kbytes_written + ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - EXT4_SB(sb)->s_sectors_written_start) >> 1)); } static ssize_t inode_readahead_blks_store(struct ext4_attr *a, struct ext4_sb_info *sbi, const char *buf, size_t count) { unsigned long t; if (parse_strtoul(buf, 0x40000000, &t)) return -EINVAL; if (!is_power_of_2(t)) return -EINVAL; sbi->s_inode_readahead_blks = t; return count; } static ssize_t sbi_ui_show(struct ext4_attr *a, struct ext4_sb_info *sbi, char *buf) { unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); return snprintf(buf, PAGE_SIZE, "%u\n", *ui); } static ssize_t sbi_ui_store(struct ext4_attr *a, struct ext4_sb_info *sbi, const char *buf, size_t count) { unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); unsigned long t; if (parse_strtoul(buf, 0xffffffff, &t)) return -EINVAL; *ui = t; return count; } #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ static struct ext4_attr ext4_attr_##_name = { \ .attr = {.name = __stringify(_name), .mode = _mode }, \ .show = _show, \ .store = _store, \ .offset = offsetof(struct ext4_sb_info, _elname), \ } #define EXT4_ATTR(name, mode, show, store) \ static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) #define EXT4_RW_ATTR_SBI_UI(name, elname) \ EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) #define ATTR_LIST(name) &ext4_attr_##name.attr EXT4_RO_ATTR(delayed_allocation_blocks); EXT4_RO_ATTR(session_write_kbytes); EXT4_RO_ATTR(lifetime_write_kbytes); EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, inode_readahead_blks_store, s_inode_readahead_blks); EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); static struct attribute *ext4_attrs[] = { ATTR_LIST(delayed_allocation_blocks), ATTR_LIST(session_write_kbytes), ATTR_LIST(lifetime_write_kbytes), ATTR_LIST(inode_readahead_blks), ATTR_LIST(inode_goal), ATTR_LIST(mb_stats), ATTR_LIST(mb_max_to_scan), ATTR_LIST(mb_min_to_scan), ATTR_LIST(mb_order2_req), ATTR_LIST(mb_stream_req), ATTR_LIST(mb_group_prealloc), ATTR_LIST(max_writeback_mb_bump), NULL, }; static ssize_t ext4_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, s_kobj); struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); return a->show ? a->show(a, sbi, buf) : 0; } static ssize_t ext4_attr_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t len) { struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, s_kobj); struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); return a->store ? a->store(a, sbi, buf, len) : 0; } static void ext4_sb_release(struct kobject *kobj) { struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, s_kobj); complete(&sbi->s_kobj_unregister); } static struct sysfs_ops ext4_attr_ops = { .show = ext4_attr_show, .store = ext4_attr_store, }; static struct kobj_type ext4_ktype = { .default_attrs = ext4_attrs, .sysfs_ops = &ext4_attr_ops, .release = ext4_sb_release, }; /* * Check whether this filesystem can be mounted based on * the features present and the RDONLY/RDWR mount requested. * Returns 1 if this filesystem can be mounted as requested, * 0 if it cannot be. */ static int ext4_feature_set_ok(struct super_block *sb, int readonly) { if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { ext4_msg(sb, KERN_ERR, "Couldn't mount because of " "unsupported optional features (%x)", (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & ~EXT4_FEATURE_INCOMPAT_SUPP)); return 0; } if (readonly) return 1; /* Check that feature set is OK for a read-write mount */ if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " "unsupported optional features (%x)", (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & ~EXT4_FEATURE_RO_COMPAT_SUPP)); return 0; } /* * Large file size enabled file system can only be mounted * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF */ if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { if (sizeof(blkcnt_t) < sizeof(u64)) { ext4_msg(sb, KERN_ERR, "Filesystem with huge files " "cannot be mounted RDWR without " "CONFIG_LBDAF"); return 0; } } return 1; } static int ext4_fill_super(struct super_block *sb, void *data, int silent) __releases(kernel_lock) __acquires(kernel_lock) { struct buffer_head *bh; struct ext4_super_block *es = NULL; struct ext4_sb_info *sbi; ext4_fsblk_t block; ext4_fsblk_t sb_block = get_sb_block(&data); ext4_fsblk_t logical_sb_block; unsigned long offset = 0; unsigned long journal_devnum = 0; unsigned long def_mount_opts; struct inode *root; char *cp; const char *descr; int ret = -EINVAL; int blocksize; unsigned int db_count; unsigned int i; int needs_recovery, has_huge_files; __u64 blocks_count; int err; unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); if (!sbi) return -ENOMEM; sbi->s_blockgroup_lock = kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); if (!sbi->s_blockgroup_lock) { kfree(sbi); return -ENOMEM; } sb->s_fs_info = sbi; sbi->s_mount_opt = 0; sbi->s_resuid = EXT4_DEF_RESUID; sbi->s_resgid = EXT4_DEF_RESGID; sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; sbi->s_sb_block = sb_block; sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part, sectors[1]); unlock_kernel(); /* Cleanup superblock name */ for (cp = sb->s_id; (cp = strchr(cp, '/'));) *cp = '!'; blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); if (!blocksize) { ext4_msg(sb, KERN_ERR, "unable to set blocksize"); goto out_fail; } /* * The ext4 superblock will not be buffer aligned for other than 1kB * block sizes. We need to calculate the offset from buffer start. */ if (blocksize != EXT4_MIN_BLOCK_SIZE) { logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; offset = do_div(logical_sb_block, blocksize); } else { logical_sb_block = sb_block; } if (!(bh = sb_bread(sb, logical_sb_block))) { ext4_msg(sb, KERN_ERR, "unable to read superblock"); goto out_fail; } /* * Note: s_es must be initialized as soon as possible because * some ext4 macro-instructions depend on its value */ es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); sbi->s_es = es; sb->s_magic = le16_to_cpu(es->s_magic); if (sb->s_magic != EXT4_SUPER_MAGIC) goto cantfind_ext4; sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); /* Set defaults before we parse the mount options */ def_mount_opts = le32_to_cpu(es->s_default_mount_opts); if (def_mount_opts & EXT4_DEFM_DEBUG) set_opt(sbi->s_mount_opt, DEBUG); if (def_mount_opts & EXT4_DEFM_BSDGROUPS) set_opt(sbi->s_mount_opt, GRPID); if (def_mount_opts & EXT4_DEFM_UID16) set_opt(sbi->s_mount_opt, NO_UID32); #ifdef CONFIG_EXT4_FS_XATTR if (def_mount_opts & EXT4_DEFM_XATTR_USER) set_opt(sbi->s_mount_opt, XATTR_USER); #endif #ifdef CONFIG_EXT4_FS_POSIX_ACL if (def_mount_opts & EXT4_DEFM_ACL) set_opt(sbi->s_mount_opt, POSIX_ACL); #endif if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA; else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA; if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) set_opt(sbi->s_mount_opt, ERRORS_PANIC); else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) set_opt(sbi->s_mount_opt, ERRORS_CONT); else set_opt(sbi->s_mount_opt, ERRORS_RO); sbi->s_resuid = le16_to_cpu(es->s_def_resuid); sbi->s_resgid = le16_to_cpu(es->s_def_resgid); sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; set_opt(sbi->s_mount_opt, BARRIER); /* * enable delayed allocation by default * Use -o nodelalloc to turn it off */ set_opt(sbi->s_mount_opt, DELALLOC); if (!parse_options((char *) data, sb, &journal_devnum, &journal_ioprio, NULL, 0)) goto failed_mount; sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) ext4_msg(sb, KERN_WARNING, "feature flags set on rev 0 fs, " "running e2fsck is recommended"); /* * Check feature flags regardless of the revision level, since we * previously didn't change the revision level when setting the flags, * so there is a chance incompat flags are set on a rev 0 filesystem. */ if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) goto failed_mount; blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); if (blocksize < EXT4_MIN_BLOCK_SIZE || blocksize > EXT4_MAX_BLOCK_SIZE) { ext4_msg(sb, KERN_ERR, "Unsupported filesystem blocksize %d", blocksize); goto failed_mount; } if (sb->s_blocksize != blocksize) { /* Validate the filesystem blocksize */ if (!sb_set_blocksize(sb, blocksize)) { ext4_msg(sb, KERN_ERR, "bad block size %d", blocksize); goto failed_mount; } brelse(bh); logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; offset = do_div(logical_sb_block, blocksize); bh = sb_bread(sb, logical_sb_block); if (!bh) { ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try"); goto failed_mount; } es = (struct ext4_super_block *)(((char *)bh->b_data) + offset); sbi->s_es = es; if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!"); goto failed_mount; } } has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE); sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, has_huge_files); sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; } else { sbi->s_inode_size = le16_to_cpu(es->s_inode_size); sbi->s_first_ino = le32_to_cpu(es->s_first_ino); if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || (!is_power_of_2(sbi->s_inode_size)) || (sbi->s_inode_size > blocksize)) { ext4_msg(sb, KERN_ERR, "unsupported inode size: %d", sbi->s_inode_size); goto failed_mount; } if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); } sbi->s_desc_size = le16_to_cpu(es->s_desc_size); if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || sbi->s_desc_size > EXT4_MAX_DESC_SIZE || !is_power_of_2(sbi->s_desc_size)) { ext4_msg(sb, KERN_ERR, "unsupported descriptor size %lu", sbi->s_desc_size); goto failed_mount; } } else sbi->s_desc_size = EXT4_MIN_DESC_SIZE; sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) goto cantfind_ext4; sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); if (sbi->s_inodes_per_block == 0) goto cantfind_ext4; sbi->s_itb_per_group = sbi->s_inodes_per_group / sbi->s_inodes_per_block; sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); sbi->s_sbh = bh; sbi->s_mount_state = le16_to_cpu(es->s_state); sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); for (i = 0; i < 4; i++) sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); sbi->s_def_hash_version = es->s_def_hash_version; i = le32_to_cpu(es->s_flags); if (i & EXT2_FLAGS_UNSIGNED_HASH) sbi->s_hash_unsigned = 3; else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { #ifdef __CHAR_UNSIGNED__ es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); sbi->s_hash_unsigned = 3; #else es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); #endif sb->s_dirt = 1; } if (sbi->s_blocks_per_group > blocksize * 8) { ext4_msg(sb, KERN_ERR, "#blocks per group too big: %lu", sbi->s_blocks_per_group); goto failed_mount; } if (sbi->s_inodes_per_group > blocksize * 8) { ext4_msg(sb, KERN_ERR, "#inodes per group too big: %lu", sbi->s_inodes_per_group); goto failed_mount; } /* * Test whether we have more sectors than will fit in sector_t, * and whether the max offset is addressable by the page cache. */ if ((ext4_blocks_count(es) > (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) || (ext4_blocks_count(es) > (pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) { ext4_msg(sb, KERN_ERR, "filesystem" " too large to mount safely on this system"); if (sizeof(sector_t) < 8) ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); ret = -EFBIG; goto failed_mount; } if (EXT4_BLOCKS_PER_GROUP(sb) == 0) goto cantfind_ext4; /* check blocks count against device size */ blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; if (blocks_count && ext4_blocks_count(es) > blocks_count) { ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " "exceeds size of device (%llu blocks)", ext4_blocks_count(es), blocks_count); goto failed_mount; } /* * It makes no sense for the first data block to be beyond the end * of the filesystem. */ if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { ext4_msg(sb, KERN_WARNING, "bad geometry: first data" "block %u is beyond end of filesystem (%llu)", le32_to_cpu(es->s_first_data_block), ext4_blocks_count(es)); goto failed_mount; } blocks_count = (ext4_blocks_count(es) - le32_to_cpu(es->s_first_data_block) + EXT4_BLOCKS_PER_GROUP(sb) - 1); do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { ext4_msg(sb, KERN_WARNING, "groups count too large: %u " "(block count %llu, first data block %u, " "blocks per group %lu)", sbi->s_groups_count, ext4_blocks_count(es), le32_to_cpu(es->s_first_data_block), EXT4_BLOCKS_PER_GROUP(sb)); goto failed_mount; } sbi->s_groups_count = blocks_count; sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / EXT4_DESC_PER_BLOCK(sb); sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *), GFP_KERNEL); if (sbi->s_group_desc == NULL) { ext4_msg(sb, KERN_ERR, "not enough memory"); goto failed_mount; } #ifdef CONFIG_PROC_FS if (ext4_proc_root) sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); #endif bgl_lock_init(sbi->s_blockgroup_lock); for (i = 0; i < db_count; i++) { block = descriptor_loc(sb, logical_sb_block, i); sbi->s_group_desc[i] = sb_bread(sb, block); if (!sbi->s_group_desc[i]) { ext4_msg(sb, KERN_ERR, "can't read group descriptor %d", i); db_count = i; goto failed_mount2; } } if (!ext4_check_descriptors(sb)) { ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); goto failed_mount2; } if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) if (!ext4_fill_flex_info(sb)) { ext4_msg(sb, KERN_ERR, "unable to initialize " "flex_bg meta info!"); goto failed_mount2; } sbi->s_gdb_count = db_count; get_random_bytes(&sbi->s_next_generation, sizeof(u32)); spin_lock_init(&sbi->s_next_gen_lock); err = percpu_counter_init(&sbi->s_freeblocks_counter, ext4_count_free_blocks(sb)); if (!err) { err = percpu_counter_init(&sbi->s_freeinodes_counter, ext4_count_free_inodes(sb)); } if (!err) { err = percpu_counter_init(&sbi->s_dirs_counter, ext4_count_dirs(sb)); } if (!err) { err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0); } if (err) { ext4_msg(sb, KERN_ERR, "insufficient memory"); goto failed_mount3; } sbi->s_stripe = ext4_get_stripe_size(sbi); sbi->s_max_writeback_mb_bump = 128; /* * set up enough so that it can read an inode */ if (!test_opt(sb, NOLOAD) && EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) sb->s_op = &ext4_sops; else sb->s_op = &ext4_nojournal_sops; sb->s_export_op = &ext4_export_ops; sb->s_xattr = ext4_xattr_handlers; #ifdef CONFIG_QUOTA sb->s_qcop = &ext4_qctl_operations; sb->dq_op = &ext4_quota_operations; #endif INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ mutex_init(&sbi->s_orphan_lock); mutex_init(&sbi->s_resize_lock); sb->s_root = NULL; needs_recovery = (es->s_last_orphan != 0 || EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)); /* * The first inode we look at is the journal inode. Don't try * root first: it may be modified in the journal! */ if (!test_opt(sb, NOLOAD) && EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { if (ext4_load_journal(sb, es, journal_devnum)) goto failed_mount3; } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { ext4_msg(sb, KERN_ERR, "required journal recovery " "suppressed and not mounted read-only"); goto failed_mount4; } else { clear_opt(sbi->s_mount_opt, DATA_FLAGS); set_opt(sbi->s_mount_opt, WRITEBACK_DATA); sbi->s_journal = NULL; needs_recovery = 0; goto no_journal; } if (ext4_blocks_count(es) > 0xffffffffULL && !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_64BIT)) { ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); goto failed_mount4; } if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { jbd2_journal_set_features(sbi->s_journal, JBD2_FEATURE_COMPAT_CHECKSUM, 0, JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); } else if (test_opt(sb, JOURNAL_CHECKSUM)) { jbd2_journal_set_features(sbi->s_journal, JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0); jbd2_journal_clear_features(sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); } else { jbd2_journal_clear_features(sbi->s_journal, JBD2_FEATURE_COMPAT_CHECKSUM, 0, JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); } /* We have now updated the journal if required, so we can * validate the data journaling mode. */ switch (test_opt(sb, DATA_FLAGS)) { case 0: /* No mode set, assume a default based on the journal * capabilities: ORDERED_DATA if the journal can * cope, else JOURNAL_DATA */ if (jbd2_journal_check_available_features (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) set_opt(sbi->s_mount_opt, ORDERED_DATA); else set_opt(sbi->s_mount_opt, JOURNAL_DATA); break; case EXT4_MOUNT_ORDERED_DATA: case EXT4_MOUNT_WRITEBACK_DATA: if (!jbd2_journal_check_available_features (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { ext4_msg(sb, KERN_ERR, "Journal does not support " "requested data journaling mode"); goto failed_mount4; } default: break; } set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); no_journal: if (test_opt(sb, NOBH)) { if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) { ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - " "its supported only with writeback mode"); clear_opt(sbi->s_mount_opt, NOBH); } } EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten"); if (!EXT4_SB(sb)->dio_unwritten_wq) { printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); goto failed_mount_wq; } /* * The jbd2_journal_load will have done any necessary log recovery, * so we can safely mount the rest of the filesystem now. */ root = ext4_iget(sb, EXT4_ROOT_INO); if (IS_ERR(root)) { ext4_msg(sb, KERN_ERR, "get root inode failed"); ret = PTR_ERR(root); goto failed_mount4; } if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { iput(root); ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); goto failed_mount4; } sb->s_root = d_alloc_root(root); if (!sb->s_root) { ext4_msg(sb, KERN_ERR, "get root dentry failed"); iput(root); ret = -ENOMEM; goto failed_mount4; } ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY); /* determine the minimum size of new large inodes, if present */ if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { sbi->s_want_extra_isize = sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE; if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { if (sbi->s_want_extra_isize < le16_to_cpu(es->s_want_extra_isize)) sbi->s_want_extra_isize = le16_to_cpu(es->s_want_extra_isize); if (sbi->s_want_extra_isize < le16_to_cpu(es->s_min_extra_isize)) sbi->s_want_extra_isize = le16_to_cpu(es->s_min_extra_isize); } } /* Check if enough inode space is available */ if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > sbi->s_inode_size) { sbi->s_want_extra_isize = sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE; ext4_msg(sb, KERN_INFO, "required extra inode space not" "available"); } if (test_opt(sb, DELALLOC) && (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) { ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - " "requested data journaling mode"); clear_opt(sbi->s_mount_opt, DELALLOC); } err = ext4_setup_system_zone(sb); if (err) { ext4_msg(sb, KERN_ERR, "failed to initialize system " "zone (%d)\n", err); goto failed_mount4; } ext4_ext_init(sb); err = ext4_mb_init(sb, needs_recovery); if (err) { ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)", err); goto failed_mount4; } sbi->s_kobj.kset = ext4_kset; init_completion(&sbi->s_kobj_unregister); err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, "%s", sb->s_id); if (err) { ext4_mb_release(sb); ext4_ext_release(sb); goto failed_mount4; }; EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; ext4_orphan_cleanup(sb, es); EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; if (needs_recovery) { ext4_msg(sb, KERN_INFO, "recovery complete"); ext4_mark_recovery_complete(sb, es); } if (EXT4_SB(sb)->s_journal) { if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) descr = " journalled data mode"; else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) descr = " ordered data mode"; else descr = " writeback data mode"; } else descr = "out journal"; ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr); lock_kernel(); return 0; cantfind_ext4: if (!silent) ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); goto failed_mount; failed_mount4: ext4_msg(sb, KERN_ERR, "mount failed"); destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); failed_mount_wq: ext4_release_system_zone(sb); if (sbi->s_journal) { jbd2_journal_destroy(sbi->s_journal); sbi->s_journal = NULL; } failed_mount3: if (sbi->s_flex_groups) { if (is_vmalloc_addr(sbi->s_flex_groups)) vfree(sbi->s_flex_groups); else kfree(sbi->s_flex_groups); } percpu_counter_destroy(&sbi->s_freeblocks_counter); percpu_counter_destroy(&sbi->s_freeinodes_counter); percpu_counter_destroy(&sbi->s_dirs_counter); percpu_counter_destroy(&sbi->s_dirtyblocks_counter); failed_mount2: for (i = 0; i < db_count; i++) brelse(sbi->s_group_desc[i]); kfree(sbi->s_group_desc); failed_mount: if (sbi->s_proc) { remove_proc_entry(sb->s_id, ext4_proc_root); } #ifdef CONFIG_QUOTA for (i = 0; i < MAXQUOTAS; i++) kfree(sbi->s_qf_names[i]); #endif ext4_blkdev_remove(sbi); brelse(bh); out_fail: sb->s_fs_info = NULL; kfree(sbi->s_blockgroup_lock); kfree(sbi); lock_kernel(); return ret; } /* * Setup any per-fs journal parameters now. We'll do this both on * initial mount, once the journal has been initialised but before we've * done any recovery; and again on any subsequent remount. */ static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) { struct ext4_sb_info *sbi = EXT4_SB(sb); journal->j_commit_interval = sbi->s_commit_interval; journal->j_min_batch_time = sbi->s_min_batch_time; journal->j_max_batch_time = sbi->s_max_batch_time; spin_lock(&journal->j_state_lock); if (test_opt(sb, BARRIER)) journal->j_flags |= JBD2_BARRIER; else journal->j_flags &= ~JBD2_BARRIER; if (test_opt(sb, DATA_ERR_ABORT)) journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; else journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; spin_unlock(&journal->j_state_lock); } static journal_t *ext4_get_journal(struct super_block *sb, unsigned int journal_inum) { struct inode *journal_inode; journal_t *journal; BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); /* First, test for the existence of a valid inode on disk. Bad * things happen if we iget() an unused inode, as the subsequent * iput() will try to delete it. */ journal_inode = ext4_iget(sb, journal_inum); if (IS_ERR(journal_inode)) { ext4_msg(sb, KERN_ERR, "no journal found"); return NULL; } if (!journal_inode->i_nlink) { make_bad_inode(journal_inode); iput(journal_inode); ext4_msg(sb, KERN_ERR, "journal inode is deleted"); return NULL; } jbd_debug(2, "Journal inode found at %p: %lld bytes\n", journal_inode, journal_inode->i_size); if (!S_ISREG(journal_inode->i_mode)) { ext4_msg(sb, KERN_ERR, "invalid journal inode"); iput(journal_inode); return NULL; } journal = jbd2_journal_init_inode(journal_inode); if (!journal) { ext4_msg(sb, KERN_ERR, "Could not load journal inode"); iput(journal_inode); return NULL; } journal->j_private = sb; ext4_init_journal_params(sb, journal); return journal; } static journal_t *ext4_get_dev_journal(struct super_block *sb, dev_t j_dev) { struct buffer_head *bh; journal_t *journal; ext4_fsblk_t start; ext4_fsblk_t len; int hblock, blocksize; ext4_fsblk_t sb_block; unsigned long offset; struct ext4_super_block *es; struct block_device *bdev; BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); bdev = ext4_blkdev_get(j_dev, sb); if (bdev == NULL) return NULL; if (bd_claim(bdev, sb)) { ext4_msg(sb, KERN_ERR, "failed to claim external journal device"); blkdev_put(bdev, FMODE_READ|FMODE_WRITE); return NULL; } blocksize = sb->s_blocksize; hblock = bdev_logical_block_size(bdev); if (blocksize < hblock) { ext4_msg(sb, KERN_ERR, "blocksize too small for journal device"); goto out_bdev; } sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; offset = EXT4_MIN_BLOCK_SIZE % blocksize; set_blocksize(bdev, blocksize); if (!(bh = __bread(bdev, sb_block, blocksize))) { ext4_msg(sb, KERN_ERR, "couldn't read superblock of " "external journal"); goto out_bdev; } es = (struct ext4_super_block *) (((char *)bh->b_data) + offset); if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || !(le32_to_cpu(es->s_feature_incompat) & EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { ext4_msg(sb, KERN_ERR, "external journal has " "bad superblock"); brelse(bh); goto out_bdev; } if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { ext4_msg(sb, KERN_ERR, "journal UUID does not match"); brelse(bh); goto out_bdev; } len = ext4_blocks_count(es); start = sb_block + 1; brelse(bh); /* we're done with the superblock */ journal = jbd2_journal_init_dev(bdev, sb->s_bdev, start, len, blocksize); if (!journal) { ext4_msg(sb, KERN_ERR, "failed to create device journal"); goto out_bdev; } journal->j_private = sb; ll_rw_block(READ, 1, &journal->j_sb_buffer); wait_on_buffer(journal->j_sb_buffer); if (!buffer_uptodate(journal->j_sb_buffer)) { ext4_msg(sb, KERN_ERR, "I/O error on journal device"); goto out_journal; } if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { ext4_msg(sb, KERN_ERR, "External journal has more than one " "user (unsupported) - %d", be32_to_cpu(journal->j_superblock->s_nr_users)); goto out_journal; } EXT4_SB(sb)->journal_bdev = bdev; ext4_init_journal_params(sb, journal); return journal; out_journal: jbd2_journal_destroy(journal); out_bdev: ext4_blkdev_put(bdev); return NULL; } static int ext4_load_journal(struct super_block *sb, struct ext4_super_block *es, unsigned long journal_devnum) { journal_t *journal; unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); dev_t journal_dev; int err = 0; int really_read_only; BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); if (journal_devnum && journal_devnum != le32_to_cpu(es->s_journal_dev)) { ext4_msg(sb, KERN_INFO, "external journal device major/minor " "numbers have changed"); journal_dev = new_decode_dev(journal_devnum); } else journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); really_read_only = bdev_read_only(sb->s_bdev); /* * Are we loading a blank journal or performing recovery after a * crash? For recovery, we need to check in advance whether we * can get read-write access to the device. */ if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { if (sb->s_flags & MS_RDONLY) { ext4_msg(sb, KERN_INFO, "INFO: recovery " "required on readonly filesystem"); if (really_read_only) { ext4_msg(sb, KERN_ERR, "write access " "unavailable, cannot proceed"); return -EROFS; } ext4_msg(sb, KERN_INFO, "write access will " "be enabled during recovery"); } } if (journal_inum && journal_dev) { ext4_msg(sb, KERN_ERR, "filesystem has both journal " "and inode journals!"); return -EINVAL; } if (journal_inum) { if (!(journal = ext4_get_journal(sb, journal_inum))) return -EINVAL; } else { if (!(journal = ext4_get_dev_journal(sb, journal_dev))) return -EINVAL; } if (!(journal->j_flags & JBD2_BARRIER)) ext4_msg(sb, KERN_INFO, "barriers disabled"); if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { err = jbd2_journal_update_format(journal); if (err) { ext4_msg(sb, KERN_ERR, "error updating journal"); jbd2_journal_destroy(journal); return err; } } if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) err = jbd2_journal_wipe(journal, !really_read_only); if (!err) err = jbd2_journal_load(journal); if (err) { ext4_msg(sb, KERN_ERR, "error loading journal"); jbd2_journal_destroy(journal); return err; } EXT4_SB(sb)->s_journal = journal; ext4_clear_journal_err(sb, es); if (journal_devnum && journal_devnum != le32_to_cpu(es->s_journal_dev)) { es->s_journal_dev = cpu_to_le32(journal_devnum); /* Make sure we flush the recovery flag to disk. */ ext4_commit_super(sb, 1); } return 0; } static int ext4_commit_super(struct super_block *sb, int sync) { struct ext4_super_block *es = EXT4_SB(sb)->s_es; struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; int error = 0; if (!sbh) return error; if (buffer_write_io_error(sbh)) { /* * Oh, dear. A previous attempt to write the * superblock failed. This could happen because the * USB device was yanked out. Or it could happen to * be a transient write error and maybe the block will * be remapped. Nothing we can do but to retry the * write and hope for the best. */ ext4_msg(sb, KERN_ERR, "previous I/O error to " "superblock detected"); clear_buffer_write_io_error(sbh); set_buffer_uptodate(sbh); } /* * If the file system is mounted read-only, don't update the * superblock write time. This avoids updating the superblock * write time when we are mounting the root file system * read/only but we need to replay the journal; at that point, * for people who are east of GMT and who make their clock * tick in localtime for Windows bug-for-bug compatibility, * the clock is set in the future, and this will cause e2fsck * to complain and force a full file system check. */ if (!(sb->s_flags & MS_RDONLY)) es->s_wtime = cpu_to_le32(get_seconds()); es->s_kbytes_written = cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - EXT4_SB(sb)->s_sectors_written_start) >> 1)); ext4_free_blocks_count_set(es, percpu_counter_sum_positive( &EXT4_SB(sb)->s_freeblocks_counter)); es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive( &EXT4_SB(sb)->s_freeinodes_counter)); sb->s_dirt = 0; BUFFER_TRACE(sbh, "marking dirty"); mark_buffer_dirty(sbh); if (sync) { error = sync_dirty_buffer(sbh); if (error) return error; error = buffer_write_io_error(sbh); if (error) { ext4_msg(sb, KERN_ERR, "I/O error while writing " "superblock"); clear_buffer_write_io_error(sbh); set_buffer_uptodate(sbh); } } return error; } /* * Have we just finished recovery? If so, and if we are mounting (or * remounting) the filesystem readonly, then we will end up with a * consistent fs on disk. Record that fact. */ static void ext4_mark_recovery_complete(struct super_block *sb, struct ext4_super_block *es) { journal_t *journal = EXT4_SB(sb)->s_journal; if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { BUG_ON(journal != NULL); return; } jbd2_journal_lock_updates(journal); if (jbd2_journal_flush(journal) < 0) goto out; if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && sb->s_flags & MS_RDONLY) { EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); ext4_commit_super(sb, 1); } out: jbd2_journal_unlock_updates(journal); } /* * If we are mounting (or read-write remounting) a filesystem whose journal * has recorded an error from a previous lifetime, move that error to the * main filesystem now. */ static void ext4_clear_journal_err(struct super_block *sb, struct ext4_super_block *es) { journal_t *journal; int j_errno; const char *errstr; BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); journal = EXT4_SB(sb)->s_journal; /* * Now check for any error status which may have been recorded in the * journal by a prior ext4_error() or ext4_abort() */ j_errno = jbd2_journal_errno(journal); if (j_errno) { char nbuf[16]; errstr = ext4_decode_error(sb, j_errno, nbuf); ext4_warning(sb, __func__, "Filesystem error recorded " "from previous mount: %s", errstr); ext4_warning(sb, __func__, "Marking fs in need of " "filesystem check."); EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; es->s_state |= cpu_to_le16(EXT4_ERROR_FS); ext4_commit_super(sb, 1); jbd2_journal_clear_err(journal); } } /* * Force the running and committing transactions to commit, * and wait on the commit. */ int ext4_force_commit(struct super_block *sb) { journal_t *journal; int ret = 0; if (sb->s_flags & MS_RDONLY) return 0; journal = EXT4_SB(sb)->s_journal; if (journal) ret = ext4_journal_force_commit(journal); return ret; } static void ext4_write_super(struct super_block *sb) { lock_super(sb); ext4_commit_super(sb, 1); unlock_super(sb); } static int ext4_sync_fs(struct super_block *sb, int wait) { int ret = 0; tid_t target; struct ext4_sb_info *sbi = EXT4_SB(sb); trace_ext4_sync_fs(sb, wait); flush_workqueue(sbi->dio_unwritten_wq); if (jbd2_journal_start_commit(sbi->s_journal, &target)) { if (wait) jbd2_log_wait_commit(sbi->s_journal, target); } return ret; } /* * LVM calls this function before a (read-only) snapshot is created. This * gives us a chance to flush the journal completely and mark the fs clean. */ static int ext4_freeze(struct super_block *sb) { int error = 0; journal_t *journal; if (sb->s_flags & MS_RDONLY) return 0; journal = EXT4_SB(sb)->s_journal; /* Now we set up the journal barrier. */ jbd2_journal_lock_updates(journal); /* * Don't clear the needs_recovery flag if we failed to flush * the journal. */ error = jbd2_journal_flush(journal); if (error < 0) { out: jbd2_journal_unlock_updates(journal); return error; } /* Journal blocked and flushed, clear needs_recovery flag. */ EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); error = ext4_commit_super(sb, 1); if (error) goto out; return 0; } /* * Called by LVM after the snapshot is done. We need to reset the RECOVER * flag here, even though the filesystem is not technically dirty yet. */ static int ext4_unfreeze(struct super_block *sb) { if (sb->s_flags & MS_RDONLY) return 0; lock_super(sb); /* Reset the needs_recovery flag before the fs is unlocked. */ EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); ext4_commit_super(sb, 1); unlock_super(sb); jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); return 0; } static int ext4_remount(struct super_block *sb, int *flags, char *data) { struct ext4_super_block *es; struct ext4_sb_info *sbi = EXT4_SB(sb); ext4_fsblk_t n_blocks_count = 0; unsigned long old_sb_flags; struct ext4_mount_options old_opts; ext4_group_t g; unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; int err; #ifdef CONFIG_QUOTA int i; #endif lock_kernel(); /* Store the original options */ lock_super(sb); old_sb_flags = sb->s_flags; old_opts.s_mount_opt = sbi->s_mount_opt; old_opts.s_resuid = sbi->s_resuid; old_opts.s_resgid = sbi->s_resgid; old_opts.s_commit_interval = sbi->s_commit_interval; old_opts.s_min_batch_time = sbi->s_min_batch_time; old_opts.s_max_batch_time = sbi->s_max_batch_time; #ifdef CONFIG_QUOTA old_opts.s_jquota_fmt = sbi->s_jquota_fmt; for (i = 0; i < MAXQUOTAS; i++) old_opts.s_qf_names[i] = sbi->s_qf_names[i]; #endif if (sbi->s_journal && sbi->s_journal->j_task->io_context) journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; /* * Allow the "check" option to be passed as a remount option. */ if (!parse_options(data, sb, NULL, &journal_ioprio, &n_blocks_count, 1)) { err = -EINVAL; goto restore_opts; } if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) ext4_abort(sb, __func__, "Abort forced by user"); sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0); es = sbi->s_es; if (sbi->s_journal) { ext4_init_journal_params(sb, sbi->s_journal); set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); } if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || n_blocks_count > ext4_blocks_count(es)) { if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { err = -EROFS; goto restore_opts; } if (*flags & MS_RDONLY) { /* * First of all, the unconditional stuff we have to do * to disable replay of the journal when we next remount */ sb->s_flags |= MS_RDONLY; /* * OK, test if we are remounting a valid rw partition * readonly, and if so set the rdonly flag and then * mark the partition as valid again. */ if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && (sbi->s_mount_state & EXT4_VALID_FS)) es->s_state = cpu_to_le16(sbi->s_mount_state); if (sbi->s_journal) ext4_mark_recovery_complete(sb, es); } else { /* Make sure we can mount this feature set readwrite */ if (!ext4_feature_set_ok(sb, 0)) { err = -EROFS; goto restore_opts; } /* * Make sure the group descriptor checksums * are sane. If they aren't, refuse to remount r/w. */ for (g = 0; g < sbi->s_groups_count; g++) { struct ext4_group_desc *gdp = ext4_get_group_desc(sb, g, NULL); if (!ext4_group_desc_csum_verify(sbi, g, gdp)) { ext4_msg(sb, KERN_ERR, "ext4_remount: Checksum for group %u failed (%u!=%u)", g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), le16_to_cpu(gdp->bg_checksum)); err = -EINVAL; goto restore_opts; } } /* * If we have an unprocessed orphan list hanging * around from a previously readonly bdev mount, * require a full umount/remount for now. */ if (es->s_last_orphan) { ext4_msg(sb, KERN_WARNING, "Couldn't " "remount RDWR because of unprocessed " "orphan inode list. Please " "umount/remount instead"); err = -EINVAL; goto restore_opts; } /* * Mounting a RDONLY partition read-write, so reread * and store the current valid flag. (It may have * been changed by e2fsck since we originally mounted * the partition.) */ if (sbi->s_journal) ext4_clear_journal_err(sb, es); sbi->s_mount_state = le16_to_cpu(es->s_state); if ((err = ext4_group_extend(sb, es, n_blocks_count))) goto restore_opts; if (!ext4_setup_super(sb, es, 0)) sb->s_flags &= ~MS_RDONLY; } } ext4_setup_system_zone(sb); if (sbi->s_journal == NULL) ext4_commit_super(sb, 1); #ifdef CONFIG_QUOTA /* Release old quota file names */ for (i = 0; i < MAXQUOTAS; i++) if (old_opts.s_qf_names[i] && old_opts.s_qf_names[i] != sbi->s_qf_names[i]) kfree(old_opts.s_qf_names[i]); #endif unlock_super(sb); unlock_kernel(); return 0; restore_opts: sb->s_flags = old_sb_flags; sbi->s_mount_opt = old_opts.s_mount_opt; sbi->s_resuid = old_opts.s_resuid; sbi->s_resgid = old_opts.s_resgid; sbi->s_commit_interval = old_opts.s_commit_interval; sbi->s_min_batch_time = old_opts.s_min_batch_time; sbi->s_max_batch_time = old_opts.s_max_batch_time; #ifdef CONFIG_QUOTA sbi->s_jquota_fmt = old_opts.s_jquota_fmt; for (i = 0; i < MAXQUOTAS; i++) { if (sbi->s_qf_names[i] && old_opts.s_qf_names[i] != sbi->s_qf_names[i]) kfree(sbi->s_qf_names[i]); sbi->s_qf_names[i] = old_opts.s_qf_names[i]; } #endif unlock_super(sb); unlock_kernel(); return err; } static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; u64 fsid; if (test_opt(sb, MINIX_DF)) { sbi->s_overhead_last = 0; } else if (sbi->s_blocks_last != ext4_blocks_count(es)) { ext4_group_t i, ngroups = ext4_get_groups_count(sb); ext4_fsblk_t overhead = 0; /* * Compute the overhead (FS structures). This is constant * for a given filesystem unless the number of block groups * changes so we cache the previous value until it does. */ /* * All of the blocks before first_data_block are * overhead */ overhead = le32_to_cpu(es->s_first_data_block); /* * Add the overhead attributed to the superblock and * block group descriptors. If the sparse superblocks * feature is turned on, then not all groups have this. */ for (i = 0; i < ngroups; i++) { overhead += ext4_bg_has_super(sb, i) + ext4_bg_num_gdb(sb, i); cond_resched(); } /* * Every block group has an inode bitmap, a block * bitmap, and an inode table. */ overhead += ngroups * (2 + sbi->s_itb_per_group); sbi->s_overhead_last = overhead; smp_wmb(); sbi->s_blocks_last = ext4_blocks_count(es); } buf->f_type = EXT4_SUPER_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last; buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) - percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter); buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); if (buf->f_bfree < ext4_r_blocks_count(es)) buf->f_bavail = 0; buf->f_files = le32_to_cpu(es->s_inodes_count); buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); buf->f_namelen = EXT4_NAME_LEN; fsid = le64_to_cpup((void *)es->s_uuid) ^ le64_to_cpup((void *)es->s_uuid + sizeof(u64)); buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; return 0; } /* Helper function for writing quotas on sync - we need to start transaction * before quota file is locked for write. Otherwise the are possible deadlocks: * Process 1 Process 2 * ext4_create() quota_sync() * jbd2_journal_start() write_dquot() * vfs_dq_init() down(dqio_mutex) * down(dqio_mutex) jbd2_journal_start() * */ #ifdef CONFIG_QUOTA static inline struct inode *dquot_to_inode(struct dquot *dquot) { return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; } static int ext4_write_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; struct inode *inode; inode = dquot_to_inode(dquot); handle = ext4_journal_start(inode, EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_commit(dquot); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_acquire_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_acquire(dquot); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_release_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) { /* Release dquot anyway to avoid endless cycle in dqput() */ dquot_release(dquot); return PTR_ERR(handle); } ret = dquot_release(dquot); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext4_mark_dquot_dirty(struct dquot *dquot) { /* Are we journaling quotas? */ if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { dquot_mark_dquot_dirty(dquot); return ext4_write_dquot(dquot); } else { return dquot_mark_dquot_dirty(dquot); } } static int ext4_write_info(struct super_block *sb, int type) { int ret, err; handle_t *handle; /* Data block + inode block */ handle = ext4_journal_start(sb->s_root->d_inode, 2); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_commit_info(sb, type); err = ext4_journal_stop(handle); if (!ret) ret = err; return ret; } /* * Turn on quotas during mount time - we need to find * the quota file and such... */ static int ext4_quota_on_mount(struct super_block *sb, int type) { return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], EXT4_SB(sb)->s_jquota_fmt, type); } /* * Standard function to be called on quota_on */ static int ext4_quota_on(struct super_block *sb, int type, int format_id, char *name, int remount) { int err; struct path path; if (!test_opt(sb, QUOTA)) return -EINVAL; /* When remounting, no checks are needed and in fact, name is NULL */ if (remount) return vfs_quota_on(sb, type, format_id, name, remount); err = kern_path(name, LOOKUP_FOLLOW, &path); if (err) return err; /* Quotafile not on the same filesystem? */ if (path.mnt->mnt_sb != sb) { path_put(&path); return -EXDEV; } /* Journaling quota? */ if (EXT4_SB(sb)->s_qf_names[type]) { /* Quotafile not in fs root? */ if (path.dentry->d_parent != sb->s_root) ext4_msg(sb, KERN_WARNING, "Quota file not on filesystem root. " "Journaled quota will not work"); } /* * When we journal data on quota file, we have to flush journal to see * all updates to the file when we bypass pagecache... */ if (EXT4_SB(sb)->s_journal && ext4_should_journal_data(path.dentry->d_inode)) { /* * We don't need to lock updates but journal_flush() could * otherwise be livelocked... */ jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); if (err) { path_put(&path); return err; } } err = vfs_quota_on_path(sb, type, format_id, &path); path_put(&path); return err; } /* Read data from quotafile - avoid pagecache and such because we cannot afford * acquiring the locks... As quota files are never truncated and quota code * itself serializes the operations (and noone else should touch the files) * we don't have to be afraid of races */ static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); int err = 0; int offset = off & (sb->s_blocksize - 1); int tocopy; size_t toread; struct buffer_head *bh; loff_t i_size = i_size_read(inode); if (off > i_size) return 0; if (off+len > i_size) len = i_size-off; toread = len; while (toread > 0) { tocopy = sb->s_blocksize - offset < toread ? sb->s_blocksize - offset : toread; bh = ext4_bread(NULL, inode, blk, 0, &err); if (err) return err; if (!bh) /* A hole? */ memset(data, 0, tocopy); else memcpy(data, bh->b_data+offset, tocopy); brelse(bh); offset = 0; toread -= tocopy; data += tocopy; blk++; } return len; } /* Write to quotafile (we know the transaction is already started and has * enough credits) */ static ssize_t ext4_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); int err = 0; int offset = off & (sb->s_blocksize - 1); int tocopy; int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL; size_t towrite = len; struct buffer_head *bh; handle_t *handle = journal_current_handle(); if (EXT4_SB(sb)->s_journal && !handle) { ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" " cancelled because transaction is not started", (unsigned long long)off, (unsigned long long)len); return -EIO; } mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); while (towrite > 0) { tocopy = sb->s_blocksize - offset < towrite ? sb->s_blocksize - offset : towrite; bh = ext4_bread(handle, inode, blk, 1, &err); if (!bh) goto out; if (journal_quota) { err = ext4_journal_get_write_access(handle, bh); if (err) { brelse(bh); goto out; } } lock_buffer(bh); memcpy(bh->b_data+offset, data, tocopy); flush_dcache_page(bh->b_page); unlock_buffer(bh); if (journal_quota) err = ext4_handle_dirty_metadata(handle, NULL, bh); else { /* Always do at least ordered writes for quotas */ err = ext4_jbd2_file_inode(handle, inode); mark_buffer_dirty(bh); } brelse(bh); if (err) goto out; offset = 0; towrite -= tocopy; data += tocopy; blk++; } out: if (len == towrite) { mutex_unlock(&inode->i_mutex); return err; } if (inode->i_size < off+len-towrite) { i_size_write(inode, off+len-towrite); EXT4_I(inode)->i_disksize = inode->i_size; } inode->i_mtime = inode->i_ctime = CURRENT_TIME; ext4_mark_inode_dirty(handle, inode); mutex_unlock(&inode->i_mutex); return len - towrite; } #endif static int ext4_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt); } #if !defined(CONTIG_EXT2_FS) && defined(CONFIG_EXT4_USE_FOR_EXT23) static struct file_system_type ext2_fs_type = { .owner = THIS_MODULE, .name = "ext2", .get_sb = ext4_get_sb, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; static inline void register_as_ext2(void) { int err = register_filesystem(&ext2_fs_type); if (err) printk(KERN_WARNING "EXT4-fs: Unable to register as ext2 (%d)\n", err); } static inline void unregister_as_ext2(void) { unregister_filesystem(&ext2_fs_type); } #else static inline void register_as_ext2(void) { } static inline void unregister_as_ext2(void) { } #endif #if !defined(CONTIG_EXT3_FS) && defined(CONFIG_EXT4_USE_FOR_EXT23) static struct file_system_type ext3_fs_type = { .owner = THIS_MODULE, .name = "ext3", .get_sb = ext4_get_sb, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; static inline void register_as_ext3(void) { int err = register_filesystem(&ext3_fs_type); if (err) printk(KERN_WARNING "EXT4-fs: Unable to register as ext3 (%d)\n", err); } static inline void unregister_as_ext3(void) { unregister_filesystem(&ext3_fs_type); } #else static inline void register_as_ext3(void) { } static inline void unregister_as_ext3(void) { } #endif static struct file_system_type ext4_fs_type = { .owner = THIS_MODULE, .name = "ext4", .get_sb = ext4_get_sb, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; static int __init init_ext4_fs(void) { int err; err = init_ext4_system_zone(); if (err) return err; ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); if (!ext4_kset) goto out4; ext4_proc_root = proc_mkdir("fs/ext4", NULL); err = init_ext4_mballoc(); if (err) goto out3; err = init_ext4_xattr(); if (err) goto out2; err = init_inodecache(); if (err) goto out1; register_as_ext2(); register_as_ext3(); err = register_filesystem(&ext4_fs_type); if (err) goto out; return 0; out: unregister_as_ext2(); unregister_as_ext3(); destroy_inodecache(); out1: exit_ext4_xattr(); out2: exit_ext4_mballoc(); out3: remove_proc_entry("fs/ext4", NULL); kset_unregister(ext4_kset); out4: exit_ext4_system_zone(); return err; } static void __exit exit_ext4_fs(void) { unregister_as_ext2(); unregister_as_ext3(); unregister_filesystem(&ext4_fs_type); destroy_inodecache(); exit_ext4_xattr(); exit_ext4_mballoc(); remove_proc_entry("fs/ext4", NULL); kset_unregister(ext4_kset); exit_ext4_system_zone(); } MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); MODULE_DESCRIPTION("Fourth Extended Filesystem"); MODULE_LICENSE("GPL"); module_init(init_ext4_fs) module_exit(exit_ext4_fs)