/* * Copyright (C) 2005, 2006 * Avishay Traeger (avishay@gmail.com) * Copyright (C) 2008, 2009 * Boaz Harrosh * * Copyrights for code taken from ext2: * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * from * linux/fs/minix/inode.c * Copyright (C) 1991, 1992 Linus Torvalds * * This file is part of exofs. * * exofs is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. Since it is based on ext2, and the only * valid version of GPL for the Linux kernel is version 2, the only valid * version of GPL for exofs is version 2. * * exofs is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with exofs; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include #include "exofs.h" /****************************************************************************** * MOUNT OPTIONS *****************************************************************************/ /* * struct to hold what we get from mount options */ struct exofs_mountopt { bool is_osdname; const char *dev_name; uint64_t pid; int timeout; }; /* * exofs-specific mount-time options. */ enum { Opt_name, Opt_pid, Opt_to, Opt_err }; /* * Our mount-time options. These should ideally be 64-bit unsigned, but the * kernel's parsing functions do not currently support that. 32-bit should be * sufficient for most applications now. */ static match_table_t tokens = { {Opt_name, "osdname=%s"}, {Opt_pid, "pid=%u"}, {Opt_to, "to=%u"}, {Opt_err, NULL} }; /* * The main option parsing method. Also makes sure that all of the mandatory * mount options were set. */ static int parse_options(char *options, struct exofs_mountopt *opts) { char *p; substring_t args[MAX_OPT_ARGS]; int option; bool s_pid = false; EXOFS_DBGMSG("parse_options %s\n", options); /* defaults */ memset(opts, 0, sizeof(*opts)); opts->timeout = BLK_DEFAULT_SG_TIMEOUT; while ((p = strsep(&options, ",")) != NULL) { int token; char str[32]; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_name: opts->dev_name = match_strdup(&args[0]); if (unlikely(!opts->dev_name)) { EXOFS_ERR("Error allocating dev_name"); return -ENOMEM; } opts->is_osdname = true; break; case Opt_pid: if (0 == match_strlcpy(str, &args[0], sizeof(str))) return -EINVAL; opts->pid = simple_strtoull(str, NULL, 0); if (opts->pid < EXOFS_MIN_PID) { EXOFS_ERR("Partition ID must be >= %u", EXOFS_MIN_PID); return -EINVAL; } s_pid = 1; break; case Opt_to: if (match_int(&args[0], &option)) return -EINVAL; if (option <= 0) { EXOFS_ERR("Timout must be > 0"); return -EINVAL; } opts->timeout = option * HZ; break; } } if (!s_pid) { EXOFS_ERR("Need to specify the following options:\n"); EXOFS_ERR(" -o pid=pid_no_to_use\n"); return -EINVAL; } return 0; } /****************************************************************************** * INODE CACHE *****************************************************************************/ /* * Our inode cache. Isn't it pretty? */ static struct kmem_cache *exofs_inode_cachep; /* * Allocate an inode in the cache */ static struct inode *exofs_alloc_inode(struct super_block *sb) { struct exofs_i_info *oi; oi = kmem_cache_alloc(exofs_inode_cachep, GFP_KERNEL); if (!oi) return NULL; oi->vfs_inode.i_version = 1; return &oi->vfs_inode; } static void exofs_i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); INIT_LIST_HEAD(&inode->i_dentry); kmem_cache_free(exofs_inode_cachep, exofs_i(inode)); } /* * Remove an inode from the cache */ static void exofs_destroy_inode(struct inode *inode) { call_rcu(&inode->i_rcu, exofs_i_callback); } /* * Initialize the inode */ static void exofs_init_once(void *foo) { struct exofs_i_info *oi = foo; inode_init_once(&oi->vfs_inode); } /* * Create and initialize the inode cache */ static int init_inodecache(void) { exofs_inode_cachep = kmem_cache_create("exofs_inode_cache", sizeof(struct exofs_i_info), 0, SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, exofs_init_once); if (exofs_inode_cachep == NULL) return -ENOMEM; return 0; } /* * Destroy the inode cache */ static void destroy_inodecache(void) { kmem_cache_destroy(exofs_inode_cachep); } /****************************************************************************** * SUPERBLOCK FUNCTIONS *****************************************************************************/ static const struct super_operations exofs_sops; static const struct export_operations exofs_export_ops; static const struct osd_attr g_attr_sb_stats = ATTR_DEF( EXOFS_APAGE_SB_DATA, EXOFS_ATTR_SB_STATS, sizeof(struct exofs_sb_stats)); static int __sbi_read_stats(struct exofs_sb_info *sbi) { struct osd_attr attrs[] = { [0] = g_attr_sb_stats, }; struct exofs_io_state *ios; int ret; ret = exofs_get_io_state(&sbi->layout, &ios); if (unlikely(ret)) { EXOFS_ERR("%s: exofs_get_io_state failed.\n", __func__); return ret; } ios->cred = sbi->s_cred; ios->in_attr = attrs; ios->in_attr_len = ARRAY_SIZE(attrs); ret = exofs_sbi_read(ios); if (unlikely(ret)) { EXOFS_ERR("Error reading super_block stats => %d\n", ret); goto out; } ret = extract_attr_from_ios(ios, &attrs[0]); if (ret) { EXOFS_ERR("%s: extract_attr of sb_stats failed\n", __func__); goto out; } if (attrs[0].len) { struct exofs_sb_stats *ess; if (unlikely(attrs[0].len != sizeof(*ess))) { EXOFS_ERR("%s: Wrong version of exofs_sb_stats " "size(%d) != expected(%zd)\n", __func__, attrs[0].len, sizeof(*ess)); goto out; } ess = attrs[0].val_ptr; sbi->s_nextid = le64_to_cpu(ess->s_nextid); sbi->s_numfiles = le32_to_cpu(ess->s_numfiles); } out: exofs_put_io_state(ios); return ret; } static void stats_done(struct exofs_io_state *ios, void *p) { exofs_put_io_state(ios); /* Good thanks nothing to do anymore */ } /* Asynchronously write the stats attribute */ int exofs_sbi_write_stats(struct exofs_sb_info *sbi) { struct osd_attr attrs[] = { [0] = g_attr_sb_stats, }; struct exofs_io_state *ios; int ret; ret = exofs_get_io_state(&sbi->layout, &ios); if (unlikely(ret)) { EXOFS_ERR("%s: exofs_get_io_state failed.\n", __func__); return ret; } sbi->s_ess.s_nextid = cpu_to_le64(sbi->s_nextid); sbi->s_ess.s_numfiles = cpu_to_le64(sbi->s_numfiles); attrs[0].val_ptr = &sbi->s_ess; ios->cred = sbi->s_cred; ios->done = stats_done; ios->private = sbi; ios->out_attr = attrs; ios->out_attr_len = ARRAY_SIZE(attrs); ret = exofs_sbi_write(ios); if (unlikely(ret)) { EXOFS_ERR("%s: exofs_sbi_write failed.\n", __func__); exofs_put_io_state(ios); } return ret; } /* * Write the superblock to the OSD */ int exofs_sync_fs(struct super_block *sb, int wait) { struct exofs_sb_info *sbi; struct exofs_fscb *fscb; struct exofs_io_state *ios; int ret = -ENOMEM; fscb = kmalloc(sizeof(*fscb), GFP_KERNEL); if (unlikely(!fscb)) return -ENOMEM; sbi = sb->s_fs_info; /* NOTE: We no longer dirty the super_block anywhere in exofs. The * reason we write the fscb here on unmount is so we can stay backwards * compatible with fscb->s_version == 1. (What we are not compatible * with is if a new version FS crashed and then we try to mount an old * version). Otherwise the exofs_fscb is read-only from mkfs time. All * the writeable info is set in exofs_sbi_write_stats() above. */ ret = exofs_get_io_state(&sbi->layout, &ios); if (unlikely(ret)) goto out; lock_super(sb); ios->length = offsetof(struct exofs_fscb, s_dev_table_oid); memset(fscb, 0, ios->length); fscb->s_nextid = cpu_to_le64(sbi->s_nextid); fscb->s_numfiles = cpu_to_le32(sbi->s_numfiles); fscb->s_magic = cpu_to_le16(sb->s_magic); fscb->s_newfs = 0; fscb->s_version = EXOFS_FSCB_VER; ios->obj.id = EXOFS_SUPER_ID; ios->offset = 0; ios->kern_buff = fscb; ios->cred = sbi->s_cred; ret = exofs_sbi_write(ios); if (unlikely(ret)) EXOFS_ERR("%s: exofs_sbi_write failed.\n", __func__); else sb->s_dirt = 0; unlock_super(sb); out: EXOFS_DBGMSG("s_nextid=0x%llx ret=%d\n", _LLU(sbi->s_nextid), ret); exofs_put_io_state(ios); kfree(fscb); return ret; } static void exofs_write_super(struct super_block *sb) { if (!(sb->s_flags & MS_RDONLY)) exofs_sync_fs(sb, 1); else sb->s_dirt = 0; } static void _exofs_print_device(const char *msg, const char *dev_path, struct osd_dev *od, u64 pid) { const struct osd_dev_info *odi = osduld_device_info(od); printk(KERN_NOTICE "exofs: %s %s osd_name-%s pid-0x%llx\n", msg, dev_path ?: "", odi->osdname, _LLU(pid)); } void exofs_free_sbi(struct exofs_sb_info *sbi) { while (sbi->layout.s_numdevs) { int i = --sbi->layout.s_numdevs; struct osd_dev *od = sbi->layout.s_ods[i]; if (od) { sbi->layout.s_ods[i] = NULL; osduld_put_device(od); } } if (sbi->layout.s_ods != sbi->_min_one_dev) kfree(sbi->layout.s_ods); kfree(sbi); } /* * This function is called when the vfs is freeing the superblock. We just * need to free our own part. */ static void exofs_put_super(struct super_block *sb) { int num_pend; struct exofs_sb_info *sbi = sb->s_fs_info; /* make sure there are no pending commands */ for (num_pend = atomic_read(&sbi->s_curr_pending); num_pend > 0; num_pend = atomic_read(&sbi->s_curr_pending)) { wait_queue_head_t wq; printk(KERN_NOTICE "%s: !!Pending operations in flight. " "This is a BUG. please report to osd-dev@open-osd.org\n", __func__); init_waitqueue_head(&wq); wait_event_timeout(wq, (atomic_read(&sbi->s_curr_pending) == 0), msecs_to_jiffies(100)); } _exofs_print_device("Unmounting", NULL, sbi->layout.s_ods[0], sbi->layout.s_pid); bdi_destroy(&sbi->bdi); exofs_free_sbi(sbi); sb->s_fs_info = NULL; } static int _read_and_match_data_map(struct exofs_sb_info *sbi, unsigned numdevs, struct exofs_device_table *dt) { u64 stripe_length; sbi->data_map.odm_num_comps = le32_to_cpu(dt->dt_data_map.cb_num_comps); sbi->data_map.odm_stripe_unit = le64_to_cpu(dt->dt_data_map.cb_stripe_unit); sbi->data_map.odm_group_width = le32_to_cpu(dt->dt_data_map.cb_group_width); sbi->data_map.odm_group_depth = le32_to_cpu(dt->dt_data_map.cb_group_depth); sbi->data_map.odm_mirror_cnt = le32_to_cpu(dt->dt_data_map.cb_mirror_cnt); sbi->data_map.odm_raid_algorithm = le32_to_cpu(dt->dt_data_map.cb_raid_algorithm); /* FIXME: Only raid0 for now. if not so, do not mount */ if (sbi->data_map.odm_num_comps != numdevs) { EXOFS_ERR("odm_num_comps(%u) != numdevs(%u)\n", sbi->data_map.odm_num_comps, numdevs); return -EINVAL; } if (sbi->data_map.odm_raid_algorithm != PNFS_OSD_RAID_0) { EXOFS_ERR("Only RAID_0 for now\n"); return -EINVAL; } if (0 != (numdevs % (sbi->data_map.odm_mirror_cnt + 1))) { EXOFS_ERR("Data Map wrong, numdevs=%d mirrors=%d\n", numdevs, sbi->data_map.odm_mirror_cnt); return -EINVAL; } if (0 != (sbi->data_map.odm_stripe_unit & ~PAGE_MASK)) { EXOFS_ERR("Stripe Unit(0x%llx)" " must be Multples of PAGE_SIZE(0x%lx)\n", _LLU(sbi->data_map.odm_stripe_unit), PAGE_SIZE); return -EINVAL; } sbi->layout.stripe_unit = sbi->data_map.odm_stripe_unit; sbi->layout.mirrors_p1 = sbi->data_map.odm_mirror_cnt + 1; if (sbi->data_map.odm_group_width) { sbi->layout.group_width = sbi->data_map.odm_group_width; sbi->layout.group_depth = sbi->data_map.odm_group_depth; if (!sbi->layout.group_depth) { EXOFS_ERR("group_depth == 0 && group_width != 0\n"); return -EINVAL; } sbi->layout.group_count = sbi->data_map.odm_num_comps / sbi->layout.mirrors_p1 / sbi->data_map.odm_group_width; } else { if (sbi->data_map.odm_group_depth) { printk(KERN_NOTICE "Warning: group_depth ignored " "group_width == 0 && group_depth == %d\n", sbi->data_map.odm_group_depth); sbi->data_map.odm_group_depth = 0; } sbi->layout.group_width = sbi->data_map.odm_num_comps / sbi->layout.mirrors_p1; sbi->layout.group_depth = -1; sbi->layout.group_count = 1; } stripe_length = (u64)sbi->layout.group_width * sbi->layout.stripe_unit; if (stripe_length >= (1ULL << 32)) { EXOFS_ERR("Total Stripe length(0x%llx)" " >= 32bit is not supported\n", _LLU(stripe_length)); return -EINVAL; } EXOFS_DBGMSG("exofs: layout: " "num_comps=%u stripe_unit=0x%x group_width=%u " "group_depth=0x%llx mirrors_p1=%u raid_algorithm=%u\n", numdevs, sbi->layout.stripe_unit, sbi->layout.group_width, _LLU(sbi->layout.group_depth), sbi->layout.mirrors_p1, sbi->data_map.odm_raid_algorithm); return 0; } static unsigned __ra_pages(struct exofs_layout *layout) { const unsigned _MIN_RA = 32; /* min 128K read-ahead */ unsigned ra_pages = layout->group_width * layout->stripe_unit / PAGE_SIZE; unsigned max_io_pages = exofs_max_io_pages(layout, ~0); ra_pages *= 2; /* two stripes */ if (ra_pages < _MIN_RA) ra_pages = roundup(_MIN_RA, ra_pages / 2); if (ra_pages > max_io_pages) ra_pages = max_io_pages; return ra_pages; } /* @odi is valid only as long as @fscb_dev is valid */ static int exofs_devs_2_odi(struct exofs_dt_device_info *dt_dev, struct osd_dev_info *odi) { odi->systemid_len = le32_to_cpu(dt_dev->systemid_len); memcpy(odi->systemid, dt_dev->systemid, odi->systemid_len); odi->osdname_len = le32_to_cpu(dt_dev->osdname_len); odi->osdname = dt_dev->osdname; /* FIXME support long names. Will need a _put function */ if (dt_dev->long_name_offset) return -EINVAL; /* Make sure osdname is printable! * mkexofs should give us space for a null-terminator else the * device-table is invalid. */ if (unlikely(odi->osdname_len >= sizeof(dt_dev->osdname))) odi->osdname_len = sizeof(dt_dev->osdname) - 1; dt_dev->osdname[odi->osdname_len] = 0; /* If it's all zeros something is bad we read past end-of-obj */ return !(odi->systemid_len || odi->osdname_len); } static int exofs_read_lookup_dev_table(struct exofs_sb_info *sbi, struct osd_dev *fscb_od, unsigned table_count) { struct osd_obj_id obj = {.partition = sbi->layout.s_pid, .id = EXOFS_DEVTABLE_ID}; struct exofs_device_table *dt; unsigned table_bytes = table_count * sizeof(dt->dt_dev_table[0]) + sizeof(*dt); unsigned numdevs, i; int ret; dt = kmalloc(table_bytes, GFP_KERNEL); if (unlikely(!dt)) { EXOFS_ERR("ERROR: allocating %x bytes for device table\n", table_bytes); return -ENOMEM; } sbi->layout.s_numdevs = 0; ret = exofs_read_kern(fscb_od, sbi->s_cred, &obj, 0, dt, table_bytes); if (unlikely(ret)) { EXOFS_ERR("ERROR: reading device table\n"); goto out; } numdevs = le64_to_cpu(dt->dt_num_devices); if (unlikely(!numdevs)) { ret = -EINVAL; goto out; } WARN_ON(table_count != numdevs); ret = _read_and_match_data_map(sbi, numdevs, dt); if (unlikely(ret)) goto out; if (likely(numdevs > 1)) { unsigned size = numdevs * sizeof(sbi->layout.s_ods[0]); sbi->layout.s_ods = kzalloc(size, GFP_KERNEL); if (unlikely(!sbi->layout.s_ods)) { EXOFS_ERR("ERROR: faild allocating Device array[%d]\n", numdevs); ret = -ENOMEM; goto out; } } for (i = 0; i < numdevs; i++) { struct exofs_fscb fscb; struct osd_dev_info odi; struct osd_dev *od; if (exofs_devs_2_odi(&dt->dt_dev_table[i], &odi)) { EXOFS_ERR("ERROR: Read all-zeros device entry\n"); ret = -EINVAL; goto out; } printk(KERN_NOTICE "Add device[%d]: osd_name-%s\n", i, odi.osdname); /* On all devices the device table is identical. The user can * specify any one of the participating devices on the command * line. We always keep them in device-table order. */ if (fscb_od && osduld_device_same(fscb_od, &odi)) { sbi->layout.s_ods[i] = fscb_od; ++sbi->layout.s_numdevs; fscb_od = NULL; continue; } od = osduld_info_lookup(&odi); if (IS_ERR(od)) { ret = PTR_ERR(od); EXOFS_ERR("ERROR: device requested is not found " "osd_name-%s =>%d\n", odi.osdname, ret); goto out; } sbi->layout.s_ods[i] = od; ++sbi->layout.s_numdevs; /* Read the fscb of the other devices to make sure the FS * partition is there. */ ret = exofs_read_kern(od, sbi->s_cred, &obj, 0, &fscb, sizeof(fscb)); if (unlikely(ret)) { EXOFS_ERR("ERROR: Malformed participating device " "error reading fscb osd_name-%s\n", odi.osdname); goto out; } /* TODO: verify other information is correct and FS-uuid * matches. Benny what did you say about device table * generation and old devices? */ } out: kfree(dt); if (unlikely(!ret && fscb_od)) { EXOFS_ERR( "ERROR: Bad device-table container device not present\n"); osduld_put_device(fscb_od); ret = -EINVAL; } return ret; } /* * Read the superblock from the OSD and fill in the fields */ static int exofs_fill_super(struct super_block *sb, void *data, int silent) { struct inode *root; struct exofs_mountopt *opts = data; struct exofs_sb_info *sbi; /*extended info */ struct osd_dev *od; /* Master device */ struct exofs_fscb fscb; /*on-disk superblock info */ struct osd_obj_id obj; unsigned table_count; int ret; sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); if (!sbi) return -ENOMEM; /* use mount options to fill superblock */ if (opts->is_osdname) { struct osd_dev_info odi = {.systemid_len = 0}; odi.osdname_len = strlen(opts->dev_name); odi.osdname = (u8 *)opts->dev_name; od = osduld_info_lookup(&odi); } else { od = osduld_path_lookup(opts->dev_name); } if (IS_ERR(od)) { ret = -EINVAL; goto free_sbi; } /* Default layout in case we do not have a device-table */ sbi->layout.stripe_unit = PAGE_SIZE; sbi->layout.mirrors_p1 = 1; sbi->layout.group_width = 1; sbi->layout.group_depth = -1; sbi->layout.group_count = 1; sbi->layout.s_ods = sbi->_min_one_dev; sbi->layout.s_numdevs = 1; sbi->layout.s_pid = opts->pid; sbi->s_timeout = opts->timeout; /* fill in some other data by hand */ memset(sb->s_id, 0, sizeof(sb->s_id)); strcpy(sb->s_id, "exofs"); sb->s_blocksize = EXOFS_BLKSIZE; sb->s_blocksize_bits = EXOFS_BLKSHIFT; sb->s_maxbytes = MAX_LFS_FILESIZE; atomic_set(&sbi->s_curr_pending, 0); sb->s_bdev = NULL; sb->s_dev = 0; obj.partition = sbi->layout.s_pid; obj.id = EXOFS_SUPER_ID; exofs_make_credential(sbi->s_cred, &obj); ret = exofs_read_kern(od, sbi->s_cred, &obj, 0, &fscb, sizeof(fscb)); if (unlikely(ret)) goto free_sbi; sb->s_magic = le16_to_cpu(fscb.s_magic); /* NOTE: we read below to be backward compatible with old versions */ sbi->s_nextid = le64_to_cpu(fscb.s_nextid); sbi->s_numfiles = le32_to_cpu(fscb.s_numfiles); /* make sure what we read from the object store is correct */ if (sb->s_magic != EXOFS_SUPER_MAGIC) { if (!silent) EXOFS_ERR("ERROR: Bad magic value\n"); ret = -EINVAL; goto free_sbi; } if (le32_to_cpu(fscb.s_version) > EXOFS_FSCB_VER) { EXOFS_ERR("ERROR: Bad FSCB version expected-%d got-%d\n", EXOFS_FSCB_VER, le32_to_cpu(fscb.s_version)); ret = -EINVAL; goto free_sbi; } /* start generation numbers from a random point */ get_random_bytes(&sbi->s_next_generation, sizeof(u32)); spin_lock_init(&sbi->s_next_gen_lock); table_count = le64_to_cpu(fscb.s_dev_table_count); if (table_count) { ret = exofs_read_lookup_dev_table(sbi, od, table_count); if (unlikely(ret)) goto free_sbi; } else { sbi->layout.s_ods[0] = od; } __sbi_read_stats(sbi); /* set up operation vectors */ sbi->bdi.ra_pages = __ra_pages(&sbi->layout); sb->s_bdi = &sbi->bdi; sb->s_fs_info = sbi; sb->s_op = &exofs_sops; sb->s_export_op = &exofs_export_ops; root = exofs_iget(sb, EXOFS_ROOT_ID - EXOFS_OBJ_OFF); if (IS_ERR(root)) { EXOFS_ERR("ERROR: exofs_iget failed\n"); ret = PTR_ERR(root); goto free_sbi; } sb->s_root = d_alloc_root(root); if (!sb->s_root) { iput(root); EXOFS_ERR("ERROR: get root inode failed\n"); ret = -ENOMEM; goto free_sbi; } if (!S_ISDIR(root->i_mode)) { dput(sb->s_root); sb->s_root = NULL; EXOFS_ERR("ERROR: corrupt root inode (mode = %hd)\n", root->i_mode); ret = -EINVAL; goto free_sbi; } ret = bdi_setup_and_register(&sbi->bdi, "exofs", BDI_CAP_MAP_COPY); if (ret) { EXOFS_DBGMSG("Failed to bdi_setup_and_register\n"); goto free_sbi; } _exofs_print_device("Mounting", opts->dev_name, sbi->layout.s_ods[0], sbi->layout.s_pid); if (opts->is_osdname) kfree(opts->dev_name); return 0; free_sbi: EXOFS_ERR("Unable to mount exofs on %s pid=0x%llx err=%d\n", opts->dev_name, sbi->layout.s_pid, ret); exofs_free_sbi(sbi); if (opts->is_osdname) kfree(opts->dev_name); return ret; } /* * Set up the superblock (calls exofs_fill_super eventually) */ static struct dentry *exofs_mount(struct file_system_type *type, int flags, const char *dev_name, void *data) { struct exofs_mountopt opts; int ret; ret = parse_options(data, &opts); if (ret) return ERR_PTR(ret); if (!opts.dev_name) opts.dev_name = dev_name; return mount_nodev(type, flags, &opts, exofs_fill_super); } /* * Return information about the file system state in the buffer. This is used * by the 'df' command, for example. */ static int exofs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct exofs_sb_info *sbi = sb->s_fs_info; struct exofs_io_state *ios; struct osd_attr attrs[] = { ATTR_DEF(OSD_APAGE_PARTITION_QUOTAS, OSD_ATTR_PQ_CAPACITY_QUOTA, sizeof(__be64)), ATTR_DEF(OSD_APAGE_PARTITION_INFORMATION, OSD_ATTR_PI_USED_CAPACITY, sizeof(__be64)), }; uint64_t capacity = ULLONG_MAX; uint64_t used = ULLONG_MAX; uint8_t cred_a[OSD_CAP_LEN]; int ret; ret = exofs_get_io_state(&sbi->layout, &ios); if (ret) { EXOFS_DBGMSG("exofs_get_io_state failed.\n"); return ret; } exofs_make_credential(cred_a, &ios->obj); ios->cred = sbi->s_cred; ios->in_attr = attrs; ios->in_attr_len = ARRAY_SIZE(attrs); ret = exofs_sbi_read(ios); if (unlikely(ret)) goto out; ret = extract_attr_from_ios(ios, &attrs[0]); if (likely(!ret)) { capacity = get_unaligned_be64(attrs[0].val_ptr); if (unlikely(!capacity)) capacity = ULLONG_MAX; } else EXOFS_DBGMSG("exofs_statfs: get capacity failed.\n"); ret = extract_attr_from_ios(ios, &attrs[1]); if (likely(!ret)) used = get_unaligned_be64(attrs[1].val_ptr); else EXOFS_DBGMSG("exofs_statfs: get used-space failed.\n"); /* fill in the stats buffer */ buf->f_type = EXOFS_SUPER_MAGIC; buf->f_bsize = EXOFS_BLKSIZE; buf->f_blocks = capacity >> 9; buf->f_bfree = (capacity - used) >> 9; buf->f_bavail = buf->f_bfree; buf->f_files = sbi->s_numfiles; buf->f_ffree = EXOFS_MAX_ID - sbi->s_numfiles; buf->f_namelen = EXOFS_NAME_LEN; out: exofs_put_io_state(ios); return ret; } static const struct super_operations exofs_sops = { .alloc_inode = exofs_alloc_inode, .destroy_inode = exofs_destroy_inode, .write_inode = exofs_write_inode, .evict_inode = exofs_evict_inode, .put_super = exofs_put_super, .write_super = exofs_write_super, .sync_fs = exofs_sync_fs, .statfs = exofs_statfs, }; /****************************************************************************** * EXPORT OPERATIONS *****************************************************************************/ struct dentry *exofs_get_parent(struct dentry *child) { unsigned long ino = exofs_parent_ino(child); if (!ino) return ERR_PTR(-ESTALE); return d_obtain_alias(exofs_iget(child->d_inode->i_sb, ino)); } static struct inode *exofs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct inode *inode; inode = exofs_iget(sb, ino); if (IS_ERR(inode)) return ERR_CAST(inode); if (generation && inode->i_generation != generation) { /* we didn't find the right inode.. */ iput(inode); return ERR_PTR(-ESTALE); } return inode; } static struct dentry *exofs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, exofs_nfs_get_inode); } static struct dentry *exofs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, exofs_nfs_get_inode); } static const struct export_operations exofs_export_ops = { .fh_to_dentry = exofs_fh_to_dentry, .fh_to_parent = exofs_fh_to_parent, .get_parent = exofs_get_parent, }; /****************************************************************************** * INSMOD/RMMOD *****************************************************************************/ /* * struct that describes this file system */ static struct file_system_type exofs_type = { .owner = THIS_MODULE, .name = "exofs", .mount = exofs_mount, .kill_sb = generic_shutdown_super, }; static int __init init_exofs(void) { int err; err = init_inodecache(); if (err) goto out; err = register_filesystem(&exofs_type); if (err) goto out_d; return 0; out_d: destroy_inodecache(); out: return err; } static void __exit exit_exofs(void) { unregister_filesystem(&exofs_type); destroy_inodecache(); } MODULE_AUTHOR("Avishay Traeger "); MODULE_DESCRIPTION("exofs"); MODULE_LICENSE("GPL"); module_init(init_exofs) module_exit(exit_exofs)