#include <linux/err.h> #include <linux/gfp.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/hardirq.h> #include "extent_map.h" static struct kmem_cache *extent_map_cache; int __init extent_map_init(void) { extent_map_cache = kmem_cache_create("extent_map", sizeof(struct extent_map), 0, SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); if (!extent_map_cache) return -ENOMEM; return 0; } void extent_map_exit(void) { if (extent_map_cache) kmem_cache_destroy(extent_map_cache); } /** * extent_map_tree_init - initialize extent map tree * @tree: tree to initialize * @mask: flags for memory allocations during tree operations * * Initialize the extent tree @tree. Should be called for each new inode * or other user of the extent_map interface. */ void extent_map_tree_init(struct extent_map_tree *tree, gfp_t mask) { tree->map.rb_node = NULL; rwlock_init(&tree->lock); } /** * alloc_extent_map - allocate new extent map structure * @mask: memory allocation flags * * Allocate a new extent_map structure. The new structure is * returned with a reference count of one and needs to be * freed using free_extent_map() */ struct extent_map *alloc_extent_map(gfp_t mask) { struct extent_map *em; em = kmem_cache_alloc(extent_map_cache, mask); if (!em || IS_ERR(em)) return em; em->in_tree = 0; em->flags = 0; atomic_set(&em->refs, 1); return em; } /** * free_extent_map - drop reference count of an extent_map * @em: extent map beeing releasead * * Drops the reference out on @em by one and free the structure * if the reference count hits zero. */ void free_extent_map(struct extent_map *em) { if (!em) return; WARN_ON(atomic_read(&em->refs) == 0); if (atomic_dec_and_test(&em->refs)) { WARN_ON(em->in_tree); kmem_cache_free(extent_map_cache, em); } } static struct rb_node *tree_insert(struct rb_root *root, u64 offset, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct extent_map *entry; while (*p) { parent = *p; entry = rb_entry(parent, struct extent_map, rb_node); WARN_ON(!entry->in_tree); if (offset < entry->start) p = &(*p)->rb_left; else if (offset >= extent_map_end(entry)) p = &(*p)->rb_right; else return parent; } entry = rb_entry(node, struct extent_map, rb_node); entry->in_tree = 1; rb_link_node(node, parent, p); rb_insert_color(node, root); return NULL; } /* * search through the tree for an extent_map with a given offset. If * it can't be found, try to find some neighboring extents */ static struct rb_node *__tree_search(struct rb_root *root, u64 offset, struct rb_node **prev_ret, struct rb_node **next_ret) { struct rb_node *n = root->rb_node; struct rb_node *prev = NULL; struct rb_node *orig_prev = NULL; struct extent_map *entry; struct extent_map *prev_entry = NULL; while (n) { entry = rb_entry(n, struct extent_map, rb_node); prev = n; prev_entry = entry; WARN_ON(!entry->in_tree); if (offset < entry->start) n = n->rb_left; else if (offset >= extent_map_end(entry)) n = n->rb_right; else return n; } if (prev_ret) { orig_prev = prev; while (prev && offset >= extent_map_end(prev_entry)) { prev = rb_next(prev); prev_entry = rb_entry(prev, struct extent_map, rb_node); } *prev_ret = prev; prev = orig_prev; } if (next_ret) { prev_entry = rb_entry(prev, struct extent_map, rb_node); while (prev && offset < prev_entry->start) { prev = rb_prev(prev); prev_entry = rb_entry(prev, struct extent_map, rb_node); } *next_ret = prev; } return NULL; } /* * look for an offset in the tree, and if it can't be found, return * the first offset we can find smaller than 'offset'. */ static inline struct rb_node *tree_search(struct rb_root *root, u64 offset) { struct rb_node *prev; struct rb_node *ret; ret = __tree_search(root, offset, &prev, NULL); if (!ret) return prev; return ret; } /* check to see if two extent_map structs are adjacent and safe to merge */ static int mergable_maps(struct extent_map *prev, struct extent_map *next) { if (test_bit(EXTENT_FLAG_PINNED, &prev->flags)) return 0; /* * don't merge compressed extents, we need to know their * actual size */ if (test_bit(EXTENT_FLAG_COMPRESSED, &prev->flags)) return 0; if (extent_map_end(prev) == next->start && prev->flags == next->flags && prev->bdev == next->bdev && ((next->block_start == EXTENT_MAP_HOLE && prev->block_start == EXTENT_MAP_HOLE) || (next->block_start == EXTENT_MAP_INLINE && prev->block_start == EXTENT_MAP_INLINE) || (next->block_start == EXTENT_MAP_DELALLOC && prev->block_start == EXTENT_MAP_DELALLOC) || (next->block_start < EXTENT_MAP_LAST_BYTE - 1 && next->block_start == extent_map_block_end(prev)))) { return 1; } return 0; } int unpin_extent_cache(struct extent_map_tree *tree, u64 start, u64 len) { int ret = 0; struct extent_map *merge = NULL; struct rb_node *rb; struct extent_map *em; write_lock(&tree->lock); em = lookup_extent_mapping(tree, start, len); WARN_ON(!em || em->start != start); if (!em) goto out; clear_bit(EXTENT_FLAG_PINNED, &em->flags); if (em->start != 0) { rb = rb_prev(&em->rb_node); if (rb) merge = rb_entry(rb, struct extent_map, rb_node); if (rb && mergable_maps(merge, em)) { em->start = merge->start; em->len += merge->len; em->block_len += merge->block_len; em->block_start = merge->block_start; merge->in_tree = 0; rb_erase(&merge->rb_node, &tree->map); free_extent_map(merge); } } rb = rb_next(&em->rb_node); if (rb) merge = rb_entry(rb, struct extent_map, rb_node); if (rb && mergable_maps(em, merge)) { em->len += merge->len; em->block_len += merge->len; rb_erase(&merge->rb_node, &tree->map); merge->in_tree = 0; free_extent_map(merge); } free_extent_map(em); out: write_unlock(&tree->lock); return ret; } /** * add_extent_mapping - add new extent map to the extent tree * @tree: tree to insert new map in * @em: map to insert * * Insert @em into @tree or perform a simple forward/backward merge with * existing mappings. The extent_map struct passed in will be inserted * into the tree directly, with an additional reference taken, or a * reference dropped if the merge attempt was successfull. */ int add_extent_mapping(struct extent_map_tree *tree, struct extent_map *em) { int ret = 0; struct extent_map *merge = NULL; struct rb_node *rb; struct extent_map *exist; exist = lookup_extent_mapping(tree, em->start, em->len); if (exist) { free_extent_map(exist); ret = -EEXIST; goto out; } rb = tree_insert(&tree->map, em->start, &em->rb_node); if (rb) { ret = -EEXIST; goto out; } atomic_inc(&em->refs); if (em->start != 0) { rb = rb_prev(&em->rb_node); if (rb) merge = rb_entry(rb, struct extent_map, rb_node); if (rb && mergable_maps(merge, em)) { em->start = merge->start; em->len += merge->len; em->block_len += merge->block_len; em->block_start = merge->block_start; merge->in_tree = 0; rb_erase(&merge->rb_node, &tree->map); free_extent_map(merge); } } rb = rb_next(&em->rb_node); if (rb) merge = rb_entry(rb, struct extent_map, rb_node); if (rb && mergable_maps(em, merge)) { em->len += merge->len; em->block_len += merge->len; rb_erase(&merge->rb_node, &tree->map); merge->in_tree = 0; free_extent_map(merge); } out: return ret; } /* simple helper to do math around the end of an extent, handling wrap */ static u64 range_end(u64 start, u64 len) { if (start + len < start) return (u64)-1; return start + len; } /** * lookup_extent_mapping - lookup extent_map * @tree: tree to lookup in * @start: byte offset to start the search * @len: length of the lookup range * * Find and return the first extent_map struct in @tree that intersects the * [start, len] range. There may be additional objects in the tree that * intersect, so check the object returned carefully to make sure that no * additional lookups are needed. */ struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree, u64 start, u64 len) { struct extent_map *em; struct rb_node *rb_node; struct rb_node *prev = NULL; struct rb_node *next = NULL; u64 end = range_end(start, len); rb_node = __tree_search(&tree->map, start, &prev, &next); if (!rb_node && prev) { em = rb_entry(prev, struct extent_map, rb_node); if (end > em->start && start < extent_map_end(em)) goto found; } if (!rb_node && next) { em = rb_entry(next, struct extent_map, rb_node); if (end > em->start && start < extent_map_end(em)) goto found; } if (!rb_node) { em = NULL; goto out; } if (IS_ERR(rb_node)) { em = ERR_PTR(PTR_ERR(rb_node)); goto out; } em = rb_entry(rb_node, struct extent_map, rb_node); if (end > em->start && start < extent_map_end(em)) goto found; em = NULL; goto out; found: atomic_inc(&em->refs); out: return em; } /** * search_extent_mapping - find a nearby extent map * @tree: tree to lookup in * @start: byte offset to start the search * @len: length of the lookup range * * Find and return the first extent_map struct in @tree that intersects the * [start, len] range. * * If one can't be found, any nearby extent may be returned */ struct extent_map *search_extent_mapping(struct extent_map_tree *tree, u64 start, u64 len) { struct extent_map *em; struct rb_node *rb_node; struct rb_node *prev = NULL; struct rb_node *next = NULL; rb_node = __tree_search(&tree->map, start, &prev, &next); if (!rb_node && prev) { em = rb_entry(prev, struct extent_map, rb_node); goto found; } if (!rb_node && next) { em = rb_entry(next, struct extent_map, rb_node); goto found; } if (!rb_node) { em = NULL; goto out; } if (IS_ERR(rb_node)) { em = ERR_PTR(PTR_ERR(rb_node)); goto out; } em = rb_entry(rb_node, struct extent_map, rb_node); goto found; em = NULL; goto out; found: atomic_inc(&em->refs); out: return em; } /** * remove_extent_mapping - removes an extent_map from the extent tree * @tree: extent tree to remove from * @em: extent map beeing removed * * Removes @em from @tree. No reference counts are dropped, and no checks * are done to see if the range is in use */ int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em) { int ret = 0; WARN_ON(test_bit(EXTENT_FLAG_PINNED, &em->flags)); rb_erase(&em->rb_node, &tree->map); em->in_tree = 0; return ret; }