#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "extent_io.h" #include "extent_map.h" /* temporary define until extent_map moves out of btrfs */ struct kmem_cache *btrfs_cache_create(const char *name, size_t size, unsigned long extra_flags, void (*ctor)(void *, struct kmem_cache *, unsigned long)); static struct kmem_cache *extent_state_cache; static struct kmem_cache *extent_buffer_cache; static LIST_HEAD(buffers); static LIST_HEAD(states); static spinlock_t leak_lock = SPIN_LOCK_UNLOCKED; #define BUFFER_LRU_MAX 64 struct tree_entry { u64 start; u64 end; struct rb_node rb_node; }; struct extent_page_data { struct bio *bio; struct extent_io_tree *tree; get_extent_t *get_extent; }; int __init extent_io_init(void) { extent_state_cache = btrfs_cache_create("extent_state", sizeof(struct extent_state), 0, NULL); if (!extent_state_cache) return -ENOMEM; extent_buffer_cache = btrfs_cache_create("extent_buffers", sizeof(struct extent_buffer), 0, NULL); if (!extent_buffer_cache) goto free_state_cache; return 0; free_state_cache: kmem_cache_destroy(extent_state_cache); return -ENOMEM; } void extent_io_exit(void) { struct extent_state *state; struct extent_buffer *eb; while (!list_empty(&states)) { state = list_entry(states.next, struct extent_state, leak_list); printk("state leak: start %Lu end %Lu state %lu in tree %p refs %d\n", state->start, state->end, state->state, state->tree, atomic_read(&state->refs)); list_del(&state->leak_list); kmem_cache_free(extent_state_cache, state); } while (!list_empty(&buffers)) { eb = list_entry(buffers.next, struct extent_buffer, leak_list); printk("buffer leak start %Lu len %lu refs %d\n", eb->start, eb->len, atomic_read(&eb->refs)); list_del(&eb->leak_list); kmem_cache_free(extent_buffer_cache, eb); } if (extent_state_cache) kmem_cache_destroy(extent_state_cache); if (extent_buffer_cache) kmem_cache_destroy(extent_buffer_cache); } void extent_io_tree_init(struct extent_io_tree *tree, struct address_space *mapping, gfp_t mask) { tree->state.rb_node = NULL; tree->ops = NULL; tree->dirty_bytes = 0; spin_lock_init(&tree->lock); spin_lock_init(&tree->lru_lock); tree->mapping = mapping; INIT_LIST_HEAD(&tree->buffer_lru); tree->lru_size = 0; tree->last = NULL; } EXPORT_SYMBOL(extent_io_tree_init); void extent_io_tree_empty_lru(struct extent_io_tree *tree) { struct extent_buffer *eb; while(!list_empty(&tree->buffer_lru)) { eb = list_entry(tree->buffer_lru.next, struct extent_buffer, lru); list_del_init(&eb->lru); free_extent_buffer(eb); } } EXPORT_SYMBOL(extent_io_tree_empty_lru); struct extent_state *alloc_extent_state(gfp_t mask) { struct extent_state *state; unsigned long flags; state = kmem_cache_alloc(extent_state_cache, mask); if (!state) return state; state->state = 0; state->private = 0; state->tree = NULL; spin_lock_irqsave(&leak_lock, flags); list_add(&state->leak_list, &states); spin_unlock_irqrestore(&leak_lock, flags); atomic_set(&state->refs, 1); init_waitqueue_head(&state->wq); return state; } EXPORT_SYMBOL(alloc_extent_state); void free_extent_state(struct extent_state *state) { if (!state) return; if (atomic_dec_and_test(&state->refs)) { unsigned long flags; WARN_ON(state->tree); spin_lock_irqsave(&leak_lock, flags); list_del(&state->leak_list); spin_unlock_irqrestore(&leak_lock, flags); kmem_cache_free(extent_state_cache, state); } } EXPORT_SYMBOL(free_extent_state); static struct rb_node *tree_insert(struct rb_root *root, u64 offset, struct rb_node *node) { struct rb_node ** p = &root->rb_node; struct rb_node * parent = NULL; struct tree_entry *entry; while(*p) { parent = *p; entry = rb_entry(parent, struct tree_entry, rb_node); if (offset < entry->start) p = &(*p)->rb_left; else if (offset > entry->end) p = &(*p)->rb_right; else return parent; } entry = rb_entry(node, struct tree_entry, rb_node); rb_link_node(node, parent, p); rb_insert_color(node, root); return NULL; } static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, struct rb_node **prev_ret, struct rb_node **next_ret) { struct rb_root *root = &tree->state; struct rb_node * n = root->rb_node; struct rb_node *prev = NULL; struct rb_node *orig_prev = NULL; struct tree_entry *entry; struct tree_entry *prev_entry = NULL; if (tree->last) { struct extent_state *state; state = tree->last; if (state->start <= offset && offset <= state->end) return &tree->last->rb_node; } while(n) { entry = rb_entry(n, struct tree_entry, rb_node); prev = n; prev_entry = entry; if (offset < entry->start) n = n->rb_left; else if (offset > entry->end) n = n->rb_right; else { tree->last = rb_entry(n, struct extent_state, rb_node); return n; } } if (prev_ret) { orig_prev = prev; while(prev && offset > prev_entry->end) { prev = rb_next(prev); prev_entry = rb_entry(prev, struct tree_entry, rb_node); } *prev_ret = prev; prev = orig_prev; } if (next_ret) { prev_entry = rb_entry(prev, struct tree_entry, rb_node); while(prev && offset < prev_entry->start) { prev = rb_prev(prev); prev_entry = rb_entry(prev, struct tree_entry, rb_node); } *next_ret = prev; } return NULL; } static inline struct rb_node *tree_search(struct extent_io_tree *tree, u64 offset) { struct rb_node *prev = NULL; struct rb_node *ret; ret = __etree_search(tree, offset, &prev, NULL); if (!ret) { if (prev) { tree->last = rb_entry(prev, struct extent_state, rb_node); } return prev; } return ret; } /* * utility function to look for merge candidates inside a given range. * Any extents with matching state are merged together into a single * extent in the tree. Extents with EXTENT_IO in their state field * are not merged because the end_io handlers need to be able to do * operations on them without sleeping (or doing allocations/splits). * * This should be called with the tree lock held. */ static int merge_state(struct extent_io_tree *tree, struct extent_state *state) { struct extent_state *other; struct rb_node *other_node; if (state->state & EXTENT_IOBITS) return 0; other_node = rb_prev(&state->rb_node); if (other_node) { other = rb_entry(other_node, struct extent_state, rb_node); if (other->end == state->start - 1 && other->state == state->state) { state->start = other->start; other->tree = NULL; if (tree->last == other) tree->last = state; rb_erase(&other->rb_node, &tree->state); free_extent_state(other); } } other_node = rb_next(&state->rb_node); if (other_node) { other = rb_entry(other_node, struct extent_state, rb_node); if (other->start == state->end + 1 && other->state == state->state) { other->start = state->start; state->tree = NULL; if (tree->last == state) tree->last = other; rb_erase(&state->rb_node, &tree->state); free_extent_state(state); } } return 0; } static void set_state_cb(struct extent_io_tree *tree, struct extent_state *state, unsigned long bits) { if (tree->ops && tree->ops->set_bit_hook) { tree->ops->set_bit_hook(tree->mapping->host, state->start, state->end, state->state, bits); } } static void clear_state_cb(struct extent_io_tree *tree, struct extent_state *state, unsigned long bits) { if (tree->ops && tree->ops->set_bit_hook) { tree->ops->clear_bit_hook(tree->mapping->host, state->start, state->end, state->state, bits); } } /* * insert an extent_state struct into the tree. 'bits' are set on the * struct before it is inserted. * * This may return -EEXIST if the extent is already there, in which case the * state struct is freed. * * The tree lock is not taken internally. This is a utility function and * probably isn't what you want to call (see set/clear_extent_bit). */ static int insert_state(struct extent_io_tree *tree, struct extent_state *state, u64 start, u64 end, int bits) { struct rb_node *node; if (end < start) { printk("end < start %Lu %Lu\n", end, start); WARN_ON(1); } if (bits & EXTENT_DIRTY) tree->dirty_bytes += end - start + 1; set_state_cb(tree, state, bits); state->state |= bits; state->start = start; state->end = end; node = tree_insert(&tree->state, end, &state->rb_node); if (node) { struct extent_state *found; found = rb_entry(node, struct extent_state, rb_node); printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end); free_extent_state(state); return -EEXIST; } state->tree = tree; tree->last = state; merge_state(tree, state); return 0; } /* * split a given extent state struct in two, inserting the preallocated * struct 'prealloc' as the newly created second half. 'split' indicates an * offset inside 'orig' where it should be split. * * Before calling, * the tree has 'orig' at [orig->start, orig->end]. After calling, there * are two extent state structs in the tree: * prealloc: [orig->start, split - 1] * orig: [ split, orig->end ] * * The tree locks are not taken by this function. They need to be held * by the caller. */ static int split_state(struct extent_io_tree *tree, struct extent_state *orig, struct extent_state *prealloc, u64 split) { struct rb_node *node; prealloc->start = orig->start; prealloc->end = split - 1; prealloc->state = orig->state; orig->start = split; node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); if (node) { struct extent_state *found; found = rb_entry(node, struct extent_state, rb_node); printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end); free_extent_state(prealloc); return -EEXIST; } prealloc->tree = tree; return 0; } /* * utility function to clear some bits in an extent state struct. * it will optionally wake up any one waiting on this state (wake == 1), or * forcibly remove the state from the tree (delete == 1). * * If no bits are set on the state struct after clearing things, the * struct is freed and removed from the tree */ static int clear_state_bit(struct extent_io_tree *tree, struct extent_state *state, int bits, int wake, int delete) { int ret = state->state & bits; if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { u64 range = state->end - state->start + 1; WARN_ON(range > tree->dirty_bytes); tree->dirty_bytes -= range; } clear_state_cb(tree, state, bits); state->state &= ~bits; if (wake) wake_up(&state->wq); if (delete || state->state == 0) { if (state->tree) { clear_state_cb(tree, state, state->state); if (tree->last == state) { tree->last = extent_state_next(state); } rb_erase(&state->rb_node, &tree->state); state->tree = NULL; free_extent_state(state); } else { WARN_ON(1); } } else { merge_state(tree, state); } return ret; } /* * clear some bits on a range in the tree. This may require splitting * or inserting elements in the tree, so the gfp mask is used to * indicate which allocations or sleeping are allowed. * * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove * the given range from the tree regardless of state (ie for truncate). * * the range [start, end] is inclusive. * * This takes the tree lock, and returns < 0 on error, > 0 if any of the * bits were already set, or zero if none of the bits were already set. */ int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits, int wake, int delete, gfp_t mask) { struct extent_state *state; struct extent_state *prealloc = NULL; struct rb_node *node; unsigned long flags; int err; int set = 0; again: if (!prealloc && (mask & __GFP_WAIT)) { prealloc = alloc_extent_state(mask); if (!prealloc) return -ENOMEM; } spin_lock_irqsave(&tree->lock, flags); /* * this search will find the extents that end after * our range starts */ node = tree_search(tree, start); if (!node) goto out; state = rb_entry(node, struct extent_state, rb_node); if (state->start > end) goto out; WARN_ON(state->end < start); /* * | ---- desired range ---- | * | state | or * | ------------- state -------------- | * * We need to split the extent we found, and may flip * bits on second half. * * If the extent we found extends past our range, we * just split and search again. It'll get split again * the next time though. * * If the extent we found is inside our range, we clear * the desired bit on it. */ if (state->start < start) { if (!prealloc) prealloc = alloc_extent_state(GFP_ATOMIC); err = split_state(tree, state, prealloc, start); BUG_ON(err == -EEXIST); prealloc = NULL; if (err) goto out; if (state->end <= end) { start = state->end + 1; set |= clear_state_bit(tree, state, bits, wake, delete); } else { start = state->start; } goto search_again; } /* * | ---- desired range ---- | * | state | * We need to split the extent, and clear the bit * on the first half */ if (state->start <= end && state->end > end) { if (!prealloc) prealloc = alloc_extent_state(GFP_ATOMIC); err = split_state(tree, state, prealloc, end + 1); BUG_ON(err == -EEXIST); if (wake) wake_up(&state->wq); set |= clear_state_bit(tree, prealloc, bits, wake, delete); prealloc = NULL; goto out; } start = state->end + 1; set |= clear_state_bit(tree, state, bits, wake, delete); goto search_again; out: spin_unlock_irqrestore(&tree->lock, flags); if (prealloc) free_extent_state(prealloc); return set; search_again: if (start > end) goto out; spin_unlock_irqrestore(&tree->lock, flags); if (mask & __GFP_WAIT) cond_resched(); goto again; } EXPORT_SYMBOL(clear_extent_bit); static int wait_on_state(struct extent_io_tree *tree, struct extent_state *state) { DEFINE_WAIT(wait); prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_irq(&tree->lock); schedule(); spin_lock_irq(&tree->lock); finish_wait(&state->wq, &wait); return 0; } /* * waits for one or more bits to clear on a range in the state tree. * The range [start, end] is inclusive. * The tree lock is taken by this function */ int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) { struct extent_state *state; struct rb_node *node; spin_lock_irq(&tree->lock); again: while (1) { /* * this search will find all the extents that end after * our range starts */ node = tree_search(tree, start); if (!node) break; state = rb_entry(node, struct extent_state, rb_node); if (state->start > end) goto out; if (state->state & bits) { start = state->start; atomic_inc(&state->refs); wait_on_state(tree, state); free_extent_state(state); goto again; } start = state->end + 1; if (start > end) break; if (need_resched()) { spin_unlock_irq(&tree->lock); cond_resched(); spin_lock_irq(&tree->lock); } } out: spin_unlock_irq(&tree->lock); return 0; } EXPORT_SYMBOL(wait_extent_bit); static void set_state_bits(struct extent_io_tree *tree, struct extent_state *state, int bits) { if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { u64 range = state->end - state->start + 1; tree->dirty_bytes += range; } set_state_cb(tree, state, bits); state->state |= bits; } /* * set some bits on a range in the tree. This may require allocations * or sleeping, so the gfp mask is used to indicate what is allowed. * * If 'exclusive' == 1, this will fail with -EEXIST if some part of the * range already has the desired bits set. The start of the existing * range is returned in failed_start in this case. * * [start, end] is inclusive * This takes the tree lock. */ int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits, int exclusive, u64 *failed_start, gfp_t mask) { struct extent_state *state; struct extent_state *prealloc = NULL; struct rb_node *node; unsigned long flags; int err = 0; int set; u64 last_start; u64 last_end; again: if (!prealloc && (mask & __GFP_WAIT)) { prealloc = alloc_extent_state(mask); if (!prealloc) return -ENOMEM; } spin_lock_irqsave(&tree->lock, flags); /* * this search will find all the extents that end after * our range starts. */ node = tree_search(tree, start); if (!node) { err = insert_state(tree, prealloc, start, end, bits); prealloc = NULL; BUG_ON(err == -EEXIST); goto out; } state = rb_entry(node, struct extent_state, rb_node); last_start = state->start; last_end = state->end; /* * | ---- desired range ---- | * | state | * * Just lock what we found and keep going */ if (state->start == start && state->end <= end) { set = state->state & bits; if (set && exclusive) { *failed_start = state->start; err = -EEXIST; goto out; } set_state_bits(tree, state, bits); start = state->end + 1; merge_state(tree, state); goto search_again; } /* * | ---- desired range ---- | * | state | * or * | ------------- state -------------- | * * We need to split the extent we found, and may flip bits on * second half. * * If the extent we found extends past our * range, we just split and search again. It'll get split * again the next time though. * * If the extent we found is inside our range, we set the * desired bit on it. */ if (state->start < start) { set = state->state & bits; if (exclusive && set) { *failed_start = start; err = -EEXIST; goto out; } err = split_state(tree, state, prealloc, start); BUG_ON(err == -EEXIST); prealloc = NULL; if (err) goto out; if (state->end <= end) { set_state_bits(tree, state, bits); start = state->end + 1; merge_state(tree, state); } else { start = state->start; } goto search_again; } /* * | ---- desired range ---- | * | state | or | state | * * There's a hole, we need to insert something in it and * ignore the extent we found. */ if (state->start > start) { u64 this_end; if (end < last_start) this_end = end; else this_end = last_start -1; err = insert_state(tree, prealloc, start, this_end, bits); prealloc = NULL; BUG_ON(err == -EEXIST); if (err) goto out; start = this_end + 1; goto search_again; } /* * | ---- desired range ---- | * | state | * We need to split the extent, and set the bit * on the first half */ if (state->start <= end && state->end > end) { set = state->state & bits; if (exclusive && set) { *failed_start = start; err = -EEXIST; goto out; } err = split_state(tree, state, prealloc, end + 1); BUG_ON(err == -EEXIST); set_state_bits(tree, prealloc, bits); merge_state(tree, prealloc); prealloc = NULL; goto out; } goto search_again; out: spin_unlock_irqrestore(&tree->lock, flags); if (prealloc) free_extent_state(prealloc); return err; search_again: if (start > end) goto out; spin_unlock_irqrestore(&tree->lock, flags); if (mask & __GFP_WAIT) cond_resched(); goto again; } EXPORT_SYMBOL(set_extent_bit); /* wrappers around set/clear extent bit */ int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) { return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL, mask); } EXPORT_SYMBOL(set_extent_dirty); int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, int bits, gfp_t mask) { return set_extent_bit(tree, start, end, bits, 0, NULL, mask); } EXPORT_SYMBOL(set_extent_bits); int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, int bits, gfp_t mask) { return clear_extent_bit(tree, start, end, bits, 0, 0, mask); } EXPORT_SYMBOL(clear_extent_bits); int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) { return set_extent_bit(tree, start, end, EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL, mask); } EXPORT_SYMBOL(set_extent_delalloc); int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) { return clear_extent_bit(tree, start, end, EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask); } EXPORT_SYMBOL(clear_extent_dirty); int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) { return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL, mask); } EXPORT_SYMBOL(set_extent_new); int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) { return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask); } EXPORT_SYMBOL(clear_extent_new); int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) { return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL, mask); } EXPORT_SYMBOL(set_extent_uptodate); int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) { return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask); } EXPORT_SYMBOL(clear_extent_uptodate); int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) { return set_extent_bit(tree, start, end, EXTENT_WRITEBACK, 0, NULL, mask); } EXPORT_SYMBOL(set_extent_writeback); int clear_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) { return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask); } EXPORT_SYMBOL(clear_extent_writeback); int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end) { return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK); } EXPORT_SYMBOL(wait_on_extent_writeback); int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) { int err; u64 failed_start; while (1) { err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1, &failed_start, mask); if (err == -EEXIST && (mask & __GFP_WAIT)) { wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); start = failed_start; } else { break; } WARN_ON(start > end); } return err; } EXPORT_SYMBOL(lock_extent); int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) { return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask); } EXPORT_SYMBOL(unlock_extent); /* * helper function to set pages and extents in the tree dirty */ int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end) { unsigned long index = start >> PAGE_CACHE_SHIFT; unsigned long end_index = end >> PAGE_CACHE_SHIFT; struct page *page; while (index <= end_index) { page = find_get_page(tree->mapping, index); BUG_ON(!page); __set_page_dirty_nobuffers(page); page_cache_release(page); index++; } set_extent_dirty(tree, start, end, GFP_NOFS); return 0; } EXPORT_SYMBOL(set_range_dirty); /* * helper function to set both pages and extents in the tree writeback */ int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) { unsigned long index = start >> PAGE_CACHE_SHIFT; unsigned long end_index = end >> PAGE_CACHE_SHIFT; struct page *page; while (index <= end_index) { page = find_get_page(tree->mapping, index); BUG_ON(!page); set_page_writeback(page); page_cache_release(page); index++; } set_extent_writeback(tree, start, end, GFP_NOFS); return 0; } EXPORT_SYMBOL(set_range_writeback); int find_first_extent_bit(struct extent_io_tree *tree, u64 start, u64 *start_ret, u64 *end_ret, int bits) { struct rb_node *node; struct extent_state *state; int ret = 1; spin_lock_irq(&tree->lock); /* * this search will find all the extents that end after * our range starts. */ node = tree_search(tree, start); if (!node) { goto out; } while(1) { state = rb_entry(node, struct extent_state, rb_node); if (state->end >= start && (state->state & bits)) { *start_ret = state->start; *end_ret = state->end; ret = 0; break; } node = rb_next(node); if (!node) break; } out: spin_unlock_irq(&tree->lock); return ret; } EXPORT_SYMBOL(find_first_extent_bit); struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, int bits) { struct rb_node *node; struct extent_state *state; /* * this search will find all the extents that end after * our range starts. */ node = tree_search(tree, start); if (!node) { goto out; } while(1) { state = rb_entry(node, struct extent_state, rb_node); if (state->end >= start && (state->state & bits)) { return state; } node = rb_next(node); if (!node) break; } out: return NULL; } EXPORT_SYMBOL(find_first_extent_bit_state); u64 find_lock_delalloc_range(struct extent_io_tree *tree, u64 *start, u64 *end, u64 max_bytes) { struct rb_node *node; struct extent_state *state; u64 cur_start = *start; u64 found = 0; u64 total_bytes = 0; spin_lock_irq(&tree->lock); /* * this search will find all the extents that end after * our range starts. */ search_again: node = tree_search(tree, cur_start); if (!node) { if (!found) *end = (u64)-1; goto out; } while(1) { state = rb_entry(node, struct extent_state, rb_node); if (found && state->start != cur_start) { goto out; } if (!(state->state & EXTENT_DELALLOC)) { if (!found) *end = state->end; goto out; } if (!found) { struct extent_state *prev_state; struct rb_node *prev_node = node; while(1) { prev_node = rb_prev(prev_node); if (!prev_node) break; prev_state = rb_entry(prev_node, struct extent_state, rb_node); if (!(prev_state->state & EXTENT_DELALLOC)) break; state = prev_state; node = prev_node; } } if (state->state & EXTENT_LOCKED) { DEFINE_WAIT(wait); atomic_inc(&state->refs); prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); spin_unlock_irq(&tree->lock); schedule(); spin_lock_irq(&tree->lock); finish_wait(&state->wq, &wait); free_extent_state(state); goto search_again; } set_state_cb(tree, state, EXTENT_LOCKED); state->state |= EXTENT_LOCKED; if (!found) *start = state->start; found++; *end = state->end; cur_start = state->end + 1; node = rb_next(node); if (!node) break; total_bytes += state->end - state->start + 1; if (total_bytes >= max_bytes) break; } out: spin_unlock_irq(&tree->lock); return found; } u64 count_range_bits(struct extent_io_tree *tree, u64 *start, u64 search_end, u64 max_bytes, unsigned long bits) { struct rb_node *node; struct extent_state *state; u64 cur_start = *start; u64 total_bytes = 0; int found = 0; if (search_end <= cur_start) { printk("search_end %Lu start %Lu\n", search_end, cur_start); WARN_ON(1); return 0; } spin_lock_irq(&tree->lock); if (cur_start == 0 && bits == EXTENT_DIRTY) { total_bytes = tree->dirty_bytes; goto out; } /* * this search will find all the extents that end after * our range starts. */ node = tree_search(tree, cur_start); if (!node) { goto out; } while(1) { state = rb_entry(node, struct extent_state, rb_node); if (state->start > search_end) break; if (state->end >= cur_start && (state->state & bits)) { total_bytes += min(search_end, state->end) + 1 - max(cur_start, state->start); if (total_bytes >= max_bytes) break; if (!found) { *start = state->start; found = 1; } } node = rb_next(node); if (!node) break; } out: spin_unlock_irq(&tree->lock); return total_bytes; } /* * helper function to lock both pages and extents in the tree. * pages must be locked first. */ int lock_range(struct extent_io_tree *tree, u64 start, u64 end) { unsigned long index = start >> PAGE_CACHE_SHIFT; unsigned long end_index = end >> PAGE_CACHE_SHIFT; struct page *page; int err; while (index <= end_index) { page = grab_cache_page(tree->mapping, index); if (!page) { err = -ENOMEM; goto failed; } if (IS_ERR(page)) { err = PTR_ERR(page); goto failed; } index++; } lock_extent(tree, start, end, GFP_NOFS); return 0; failed: /* * we failed above in getting the page at 'index', so we undo here * up to but not including the page at 'index' */ end_index = index; index = start >> PAGE_CACHE_SHIFT; while (index < end_index) { page = find_get_page(tree->mapping, index); unlock_page(page); page_cache_release(page); index++; } return err; } EXPORT_SYMBOL(lock_range); /* * helper function to unlock both pages and extents in the tree. */ int unlock_range(struct extent_io_tree *tree, u64 start, u64 end) { unsigned long index = start >> PAGE_CACHE_SHIFT; unsigned long end_index = end >> PAGE_CACHE_SHIFT; struct page *page; while (index <= end_index) { page = find_get_page(tree->mapping, index); unlock_page(page); page_cache_release(page); index++; } unlock_extent(tree, start, end, GFP_NOFS); return 0; } EXPORT_SYMBOL(unlock_range); int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) { struct rb_node *node; struct extent_state *state; int ret = 0; spin_lock_irq(&tree->lock); /* * this search will find all the extents that end after * our range starts. */ node = tree_search(tree, start); if (!node) { ret = -ENOENT; goto out; } state = rb_entry(node, struct extent_state, rb_node); if (state->start != start) { ret = -ENOENT; goto out; } state->private = private; out: spin_unlock_irq(&tree->lock); return ret; } int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) { struct rb_node *node; struct extent_state *state; int ret = 0; spin_lock_irq(&tree->lock); /* * this search will find all the extents that end after * our range starts. */ node = tree_search(tree, start); if (!node) { ret = -ENOENT; goto out; } state = rb_entry(node, struct extent_state, rb_node); if (state->start != start) { ret = -ENOENT; goto out; } *private = state->private; out: spin_unlock_irq(&tree->lock); return ret; } /* * searches a range in the state tree for a given mask. * If 'filled' == 1, this returns 1 only if every extent in the tree * has the bits set. Otherwise, 1 is returned if any bit in the * range is found set. */ int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits, int filled) { struct extent_state *state = NULL; struct rb_node *node; int bitset = 0; unsigned long flags; spin_lock_irqsave(&tree->lock, flags); node = tree_search(tree, start); while (node && start <= end) { state = rb_entry(node, struct extent_state, rb_node); if (filled && state->start > start) { bitset = 0; break; } if (state->start > end) break; if (state->state & bits) { bitset = 1; if (!filled) break; } else if (filled) { bitset = 0; break; } start = state->end + 1; if (start > end) break; node = rb_next(node); if (!node) { if (filled) bitset = 0; break; } } spin_unlock_irqrestore(&tree->lock, flags); return bitset; } EXPORT_SYMBOL(test_range_bit); /* * helper function to set a given page up to date if all the * extents in the tree for that page are up to date */ static int check_page_uptodate(struct extent_io_tree *tree, struct page *page) { u64 start = (u64)page->index << PAGE_CACHE_SHIFT; u64 end = start + PAGE_CACHE_SIZE - 1; if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1)) SetPageUptodate(page); return 0; } /* * helper function to unlock a page if all the extents in the tree * for that page are unlocked */ static int check_page_locked(struct extent_io_tree *tree, struct page *page) { u64 start = (u64)page->index << PAGE_CACHE_SHIFT; u64 end = start + PAGE_CACHE_SIZE - 1; if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0)) unlock_page(page); return 0; } /* * helper function to end page writeback if all the extents * in the tree for that page are done with writeback */ static int check_page_writeback(struct extent_io_tree *tree, struct page *page) { u64 start = (u64)page->index << PAGE_CACHE_SHIFT; u64 end = start + PAGE_CACHE_SIZE - 1; if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0)) end_page_writeback(page); return 0; } /* lots and lots of room for performance fixes in the end_bio funcs */ /* * after a writepage IO is done, we need to: * clear the uptodate bits on error * clear the writeback bits in the extent tree for this IO * end_page_writeback if the page has no more pending IO * * Scheduling is not allowed, so the extent state tree is expected * to have one and only one object corresponding to this IO. */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) static void end_bio_extent_writepage(struct bio *bio, int err) #else static int end_bio_extent_writepage(struct bio *bio, unsigned int bytes_done, int err) #endif { const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; struct extent_state *state = bio->bi_private; struct extent_io_tree *tree = state->tree; struct rb_node *node; u64 start; u64 end; u64 cur; int whole_page; unsigned long flags; #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) if (bio->bi_size) return 1; #endif do { struct page *page = bvec->bv_page; start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; end = start + bvec->bv_len - 1; if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) whole_page = 1; else whole_page = 0; if (--bvec >= bio->bi_io_vec) prefetchw(&bvec->bv_page->flags); if (!uptodate) { clear_extent_uptodate(tree, start, end, GFP_ATOMIC); ClearPageUptodate(page); SetPageError(page); } if (tree->ops && tree->ops->writepage_end_io_hook) { tree->ops->writepage_end_io_hook(page, start, end, state); } /* * bios can get merged in funny ways, and so we need to * be careful with the state variable. We know the * state won't be merged with others because it has * WRITEBACK set, but we can't be sure each biovec is * sequential in the file. So, if our cached state * doesn't match the expected end, search the tree * for the correct one. */ spin_lock_irqsave(&tree->lock, flags); if (!state || state->end != end) { state = NULL; node = __etree_search(tree, start, NULL, NULL); if (node) { state = rb_entry(node, struct extent_state, rb_node); if (state->end != end || !(state->state & EXTENT_WRITEBACK)) state = NULL; } if (!state) { spin_unlock_irqrestore(&tree->lock, flags); clear_extent_writeback(tree, start, end, GFP_ATOMIC); goto next_io; } } cur = end; while(1) { struct extent_state *clear = state; cur = state->start; node = rb_prev(&state->rb_node); if (node) { state = rb_entry(node, struct extent_state, rb_node); } else { state = NULL; } clear_state_bit(tree, clear, EXTENT_WRITEBACK, 1, 0); if (cur == start) break; if (cur < start) { WARN_ON(1); break; } if (!node) break; } /* before releasing the lock, make sure the next state * variable has the expected bits set and corresponds * to the correct offsets in the file */ if (state && (state->end + 1 != start || !(state->state & EXTENT_WRITEBACK))) { state = NULL; } spin_unlock_irqrestore(&tree->lock, flags); next_io: if (whole_page) end_page_writeback(page); else check_page_writeback(tree, page); } while (bvec >= bio->bi_io_vec); bio_put(bio); #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) return 0; #endif } /* * after a readpage IO is done, we need to: * clear the uptodate bits on error * set the uptodate bits if things worked * set the page up to date if all extents in the tree are uptodate * clear the lock bit in the extent tree * unlock the page if there are no other extents locked for it * * Scheduling is not allowed, so the extent state tree is expected * to have one and only one object corresponding to this IO. */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) static void end_bio_extent_readpage(struct bio *bio, int err) #else static int end_bio_extent_readpage(struct bio *bio, unsigned int bytes_done, int err) #endif { int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; struct extent_state *state = bio->bi_private; struct extent_io_tree *tree = state->tree; struct rb_node *node; u64 start; u64 end; u64 cur; unsigned long flags; int whole_page; int ret; #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) if (bio->bi_size) return 1; #endif do { struct page *page = bvec->bv_page; start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; end = start + bvec->bv_len - 1; if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) whole_page = 1; else whole_page = 0; if (--bvec >= bio->bi_io_vec) prefetchw(&bvec->bv_page->flags); if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { ret = tree->ops->readpage_end_io_hook(page, start, end, state); if (ret) uptodate = 0; } if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) { ret = tree->ops->readpage_io_failed_hook(bio, page, start, end, state); if (ret == 0) { state = NULL; uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); continue; } } spin_lock_irqsave(&tree->lock, flags); if (!state || state->end != end) { state = NULL; node = __etree_search(tree, start, NULL, NULL); if (node) { state = rb_entry(node, struct extent_state, rb_node); if (state->end != end || !(state->state & EXTENT_LOCKED)) state = NULL; } if (!state) { spin_unlock_irqrestore(&tree->lock, flags); if (uptodate) set_extent_uptodate(tree, start, end, GFP_ATOMIC); unlock_extent(tree, start, end, GFP_ATOMIC); goto next_io; } } cur = end; while(1) { struct extent_state *clear = state; cur = state->start; node = rb_prev(&state->rb_node); if (node) { state = rb_entry(node, struct extent_state, rb_node); } else { state = NULL; } if (uptodate) { set_state_cb(tree, clear, EXTENT_UPTODATE); clear->state |= EXTENT_UPTODATE; } clear_state_bit(tree, clear, EXTENT_LOCKED, 1, 0); if (cur == start) break; if (cur < start) { WARN_ON(1); break; } if (!node) break; } /* before releasing the lock, make sure the next state * variable has the expected bits set and corresponds * to the correct offsets in the file */ if (state && (state->end + 1 != start || !(state->state & EXTENT_LOCKED))) { state = NULL; } spin_unlock_irqrestore(&tree->lock, flags); next_io: if (whole_page) { if (uptodate) { SetPageUptodate(page); } else { ClearPageUptodate(page); SetPageError(page); } unlock_page(page); } else { if (uptodate) { check_page_uptodate(tree, page); } else { ClearPageUptodate(page); SetPageError(page); } check_page_locked(tree, page); } } while (bvec >= bio->bi_io_vec); bio_put(bio); #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) return 0; #endif } /* * IO done from prepare_write is pretty simple, we just unlock * the structs in the extent tree when done, and set the uptodate bits * as appropriate. */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) static void end_bio_extent_preparewrite(struct bio *bio, int err) #else static int end_bio_extent_preparewrite(struct bio *bio, unsigned int bytes_done, int err) #endif { const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; struct extent_state *state = bio->bi_private; struct extent_io_tree *tree = state->tree; u64 start; u64 end; #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) if (bio->bi_size) return 1; #endif do { struct page *page = bvec->bv_page; start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; end = start + bvec->bv_len - 1; if (--bvec >= bio->bi_io_vec) prefetchw(&bvec->bv_page->flags); if (uptodate) { set_extent_uptodate(tree, start, end, GFP_ATOMIC); } else { ClearPageUptodate(page); SetPageError(page); } unlock_extent(tree, start, end, GFP_ATOMIC); } while (bvec >= bio->bi_io_vec); bio_put(bio); #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) return 0; #endif } static struct bio * extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, gfp_t gfp_flags) { struct bio *bio; bio = bio_alloc(gfp_flags, nr_vecs); if (bio == NULL && (current->flags & PF_MEMALLOC)) { while (!bio && (nr_vecs /= 2)) bio = bio_alloc(gfp_flags, nr_vecs); } if (bio) { bio->bi_bdev = bdev; bio->bi_sector = first_sector; } return bio; } static int submit_one_bio(int rw, struct bio *bio, int mirror_num) { u64 maxsector; int ret = 0; struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; struct page *page = bvec->bv_page; struct extent_io_tree *tree = bio->bi_private; struct rb_node *node; struct extent_state *state; u64 start; u64 end; start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; end = start + bvec->bv_len - 1; spin_lock_irq(&tree->lock); node = __etree_search(tree, start, NULL, NULL); BUG_ON(!node); state = rb_entry(node, struct extent_state, rb_node); while(state->end < end) { node = rb_next(node); state = rb_entry(node, struct extent_state, rb_node); } BUG_ON(state->end != end); spin_unlock_irq(&tree->lock); bio->bi_private = state; bio_get(bio); maxsector = bio->bi_bdev->bd_inode->i_size >> 9; if (maxsector < bio->bi_sector) { printk("sector too large max %Lu got %llu\n", maxsector, (unsigned long long)bio->bi_sector); WARN_ON(1); } if (tree->ops && tree->ops->submit_bio_hook) tree->ops->submit_bio_hook(page->mapping->host, rw, bio, mirror_num); else submit_bio(rw, bio); if (bio_flagged(bio, BIO_EOPNOTSUPP)) ret = -EOPNOTSUPP; bio_put(bio); return ret; } static int submit_extent_page(int rw, struct extent_io_tree *tree, struct page *page, sector_t sector, size_t size, unsigned long offset, struct block_device *bdev, struct bio **bio_ret, unsigned long max_pages, bio_end_io_t end_io_func, int mirror_num) { int ret = 0; struct bio *bio; int nr; if (bio_ret && *bio_ret) { bio = *bio_ret; if (bio->bi_sector + (bio->bi_size >> 9) != sector || (tree->ops && tree->ops->merge_bio_hook && tree->ops->merge_bio_hook(page, offset, size, bio)) || bio_add_page(bio, page, size, offset) < size) { ret = submit_one_bio(rw, bio, mirror_num); bio = NULL; } else { return 0; } } nr = bio_get_nr_vecs(bdev); bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); if (!bio) { printk("failed to allocate bio nr %d\n", nr); } bio_add_page(bio, page, size, offset); bio->bi_end_io = end_io_func; bio->bi_private = tree; if (bio_ret) { *bio_ret = bio; } else { ret = submit_one_bio(rw, bio, mirror_num); } return ret; } void set_page_extent_mapped(struct page *page) { if (!PagePrivate(page)) { SetPagePrivate(page); WARN_ON(!page->mapping->a_ops->invalidatepage); set_page_private(page, EXTENT_PAGE_PRIVATE); page_cache_get(page); } } void set_page_extent_head(struct page *page, unsigned long len) { set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2); } /* * basic readpage implementation. Locked extent state structs are inserted * into the tree that are removed when the IO is done (by the end_io * handlers) */ static int __extent_read_full_page(struct extent_io_tree *tree, struct page *page, get_extent_t *get_extent, struct bio **bio, int mirror_num) { struct inode *inode = page->mapping->host; u64 start = (u64)page->index << PAGE_CACHE_SHIFT; u64 page_end = start + PAGE_CACHE_SIZE - 1; u64 end; u64 cur = start; u64 extent_offset; u64 last_byte = i_size_read(inode); u64 block_start; u64 cur_end; sector_t sector; struct extent_map *em; struct block_device *bdev; int ret; int nr = 0; size_t page_offset = 0; size_t iosize; size_t blocksize = inode->i_sb->s_blocksize; set_page_extent_mapped(page); end = page_end; lock_extent(tree, start, end, GFP_NOFS); while (cur <= end) { if (cur >= last_byte) { char *userpage; iosize = PAGE_CACHE_SIZE - page_offset; userpage = kmap_atomic(page, KM_USER0); memset(userpage + page_offset, 0, iosize); flush_dcache_page(page); kunmap_atomic(userpage, KM_USER0); set_extent_uptodate(tree, cur, cur + iosize - 1, GFP_NOFS); unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); break; } em = get_extent(inode, page, page_offset, cur, end - cur + 1, 0); if (IS_ERR(em) || !em) { SetPageError(page); unlock_extent(tree, cur, end, GFP_NOFS); break; } extent_offset = cur - em->start; BUG_ON(extent_map_end(em) <= cur); BUG_ON(end < cur); iosize = min(extent_map_end(em) - cur, end - cur + 1); cur_end = min(extent_map_end(em) - 1, end); iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); sector = (em->block_start + extent_offset) >> 9; bdev = em->bdev; block_start = em->block_start; free_extent_map(em); em = NULL; /* we've found a hole, just zero and go on */ if (block_start == EXTENT_MAP_HOLE) { char *userpage; userpage = kmap_atomic(page, KM_USER0); memset(userpage + page_offset, 0, iosize); flush_dcache_page(page); kunmap_atomic(userpage, KM_USER0); set_extent_uptodate(tree, cur, cur + iosize - 1, GFP_NOFS); unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); cur = cur + iosize; page_offset += iosize; continue; } /* the get_extent function already copied into the page */ if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) { unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); cur = cur + iosize; page_offset += iosize; continue; } /* we have an inline extent but it didn't get marked up * to date. Error out */ if (block_start == EXTENT_MAP_INLINE) { SetPageError(page); unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); cur = cur + iosize; page_offset += iosize; continue; } ret = 0; if (tree->ops && tree->ops->readpage_io_hook) { ret = tree->ops->readpage_io_hook(page, cur, cur + iosize - 1); } if (!ret) { unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1; nr -= page->index; ret = submit_extent_page(READ, tree, page, sector, iosize, page_offset, bdev, bio, nr, end_bio_extent_readpage, mirror_num); } if (ret) SetPageError(page); cur = cur + iosize; page_offset += iosize; nr++; } if (!nr) { if (!PageError(page)) SetPageUptodate(page); unlock_page(page); } return 0; } int extent_read_full_page(struct extent_io_tree *tree, struct page *page, get_extent_t *get_extent) { struct bio *bio = NULL; int ret; ret = __extent_read_full_page(tree, page, get_extent, &bio, 0); if (bio) submit_one_bio(READ, bio, 0); return ret; } EXPORT_SYMBOL(extent_read_full_page); /* * the writepage semantics are similar to regular writepage. extent * records are inserted to lock ranges in the tree, and as dirty areas * are found, they are marked writeback. Then the lock bits are removed * and the end_io handler clears the writeback ranges */ static int __extent_writepage(struct page *page, struct writeback_control *wbc, void *data) { struct inode *inode = page->mapping->host; struct extent_page_data *epd = data; struct extent_io_tree *tree = epd->tree; u64 start = (u64)page->index << PAGE_CACHE_SHIFT; u64 delalloc_start; u64 page_end = start + PAGE_CACHE_SIZE - 1; u64 end; u64 cur = start; u64 extent_offset; u64 last_byte = i_size_read(inode); u64 block_start; u64 iosize; sector_t sector; struct extent_map *em; struct block_device *bdev; int ret; int nr = 0; size_t page_offset = 0; size_t blocksize; loff_t i_size = i_size_read(inode); unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; u64 nr_delalloc; u64 delalloc_end; WARN_ON(!PageLocked(page)); if (page->index > end_index) { clear_extent_dirty(tree, start, page_end, GFP_NOFS); unlock_page(page); return 0; } if (page->index == end_index) { char *userpage; size_t offset = i_size & (PAGE_CACHE_SIZE - 1); userpage = kmap_atomic(page, KM_USER0); memset(userpage + offset, 0, PAGE_CACHE_SIZE - offset); flush_dcache_page(page); kunmap_atomic(userpage, KM_USER0); } set_page_extent_mapped(page); delalloc_start = start; delalloc_end = 0; while(delalloc_end < page_end) { nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start, &delalloc_end, 128 * 1024 * 1024); if (nr_delalloc == 0) { delalloc_start = delalloc_end + 1; continue; } tree->ops->fill_delalloc(inode, delalloc_start, delalloc_end); clear_extent_bit(tree, delalloc_start, delalloc_end, EXTENT_LOCKED | EXTENT_DELALLOC, 1, 0, GFP_NOFS); delalloc_start = delalloc_end + 1; } lock_extent(tree, start, page_end, GFP_NOFS); end = page_end; if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) { printk("found delalloc bits after lock_extent\n"); } if (last_byte <= start) { clear_extent_dirty(tree, start, page_end, GFP_NOFS); goto done; } set_extent_uptodate(tree, start, page_end, GFP_NOFS); blocksize = inode->i_sb->s_blocksize; while (cur <= end) { if (cur >= last_byte) { clear_extent_dirty(tree, cur, page_end, GFP_NOFS); break; } em = epd->get_extent(inode, page, page_offset, cur, end - cur + 1, 1); if (IS_ERR(em) || !em) { SetPageError(page); break; } extent_offset = cur - em->start; BUG_ON(extent_map_end(em) <= cur); BUG_ON(end < cur); iosize = min(extent_map_end(em) - cur, end - cur + 1); iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); sector = (em->block_start + extent_offset) >> 9; bdev = em->bdev; block_start = em->block_start; free_extent_map(em); em = NULL; if (block_start == EXTENT_MAP_HOLE || block_start == EXTENT_MAP_INLINE) { clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS); cur = cur + iosize; page_offset += iosize; continue; } /* leave this out until we have a page_mkwrite call */ if (0 && !test_range_bit(tree, cur, cur + iosize - 1, EXTENT_DIRTY, 0)) { cur = cur + iosize; page_offset += iosize; continue; } clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS); if (tree->ops && tree->ops->writepage_io_hook) { ret = tree->ops->writepage_io_hook(page, cur, cur + iosize - 1); } else { ret = 0; } if (ret) SetPageError(page); else { unsigned long max_nr = end_index + 1; set_range_writeback(tree, cur, cur + iosize - 1); if (!PageWriteback(page)) { printk("warning page %lu not writeback, " "cur %llu end %llu\n", page->index, (unsigned long long)cur, (unsigned long long)end); } ret = submit_extent_page(WRITE, tree, page, sector, iosize, page_offset, bdev, &epd->bio, max_nr, end_bio_extent_writepage, 0); if (ret) SetPageError(page); } cur = cur + iosize; page_offset += iosize; nr++; } done: if (nr == 0) { /* make sure the mapping tag for page dirty gets cleared */ set_page_writeback(page); end_page_writeback(page); } unlock_extent(tree, start, page_end, GFP_NOFS); unlock_page(page); return 0; } #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,20) /* Taken directly from 2.6.23 for 2.6.18 back port */ typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc, void *data); /** * write_cache_pages - walk the list of dirty pages of the given address space * and write all of them. * @mapping: address space structure to write * @wbc: subtract the number of written pages from *@wbc->nr_to_write * @writepage: function called for each page * @data: data passed to writepage function * * If a page is already under I/O, write_cache_pages() skips it, even * if it's dirty. This is desirable behaviour for memory-cleaning writeback, * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() * and msync() need to guarantee that all the data which was dirty at the time * the call was made get new I/O started against them. If wbc->sync_mode is * WB_SYNC_ALL then we were called for data integrity and we must wait for * existing IO to complete. */ static int write_cache_pages(struct address_space *mapping, struct writeback_control *wbc, writepage_t writepage, void *data) { struct backing_dev_info *bdi = mapping->backing_dev_info; int ret = 0; int done = 0; struct pagevec pvec; int nr_pages; pgoff_t index; pgoff_t end; /* Inclusive */ int scanned = 0; int range_whole = 0; if (wbc->nonblocking && bdi_write_congested(bdi)) { wbc->encountered_congestion = 1; return 0; } pagevec_init(&pvec, 0); if (wbc->range_cyclic) { index = mapping->writeback_index; /* Start from prev offset */ end = -1; } else { index = wbc->range_start >> PAGE_CACHE_SHIFT; end = wbc->range_end >> PAGE_CACHE_SHIFT; if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) range_whole = 1; scanned = 1; } retry: while (!done && (index <= end) && (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY, min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { unsigned i; scanned = 1; for (i = 0; i < nr_pages; i++) { struct page *page = pvec.pages[i]; /* * At this point we hold neither mapping->tree_lock nor * lock on the page itself: the page may be truncated or * invalidated (changing page->mapping to NULL), or even * swizzled back from swapper_space to tmpfs file * mapping */ lock_page(page); if (unlikely(page->mapping != mapping)) { unlock_page(page); continue; } if (!wbc->range_cyclic && page->index > end) { done = 1; unlock_page(page); continue; } if (wbc->sync_mode != WB_SYNC_NONE) wait_on_page_writeback(page); if (PageWriteback(page) || !clear_page_dirty_for_io(page)) { unlock_page(page); continue; } ret = (*writepage)(page, wbc, data); if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { unlock_page(page); ret = 0; } if (ret || (--(wbc->nr_to_write) <= 0)) done = 1; if (wbc->nonblocking && bdi_write_congested(bdi)) { wbc->encountered_congestion = 1; done = 1; } } pagevec_release(&pvec); cond_resched(); } if (!scanned && !done) { /* * We hit the last page and there is more work to be done: wrap * back to the start of the file */ scanned = 1; index = 0; goto retry; } if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) mapping->writeback_index = index; return ret; } #endif int extent_write_full_page(struct extent_io_tree *tree, struct page *page, get_extent_t *get_extent, struct writeback_control *wbc) { int ret; struct address_space *mapping = page->mapping; struct extent_page_data epd = { .bio = NULL, .tree = tree, .get_extent = get_extent, }; struct writeback_control wbc_writepages = { .bdi = wbc->bdi, .sync_mode = WB_SYNC_NONE, .older_than_this = NULL, .nr_to_write = 64, .range_start = page_offset(page) + PAGE_CACHE_SIZE, .range_end = (loff_t)-1, }; ret = __extent_writepage(page, wbc, &epd); write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd); if (epd.bio) { submit_one_bio(WRITE, epd.bio, 0); } return ret; } EXPORT_SYMBOL(extent_write_full_page); int extent_writepages(struct extent_io_tree *tree, struct address_space *mapping, get_extent_t *get_extent, struct writeback_control *wbc) { int ret = 0; struct extent_page_data epd = { .bio = NULL, .tree = tree, .get_extent = get_extent, }; ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd); if (epd.bio) { submit_one_bio(WRITE, epd.bio, 0); } return ret; } EXPORT_SYMBOL(extent_writepages); int extent_readpages(struct extent_io_tree *tree, struct address_space *mapping, struct list_head *pages, unsigned nr_pages, get_extent_t get_extent) { struct bio *bio = NULL; unsigned page_idx; struct pagevec pvec; pagevec_init(&pvec, 0); for (page_idx = 0; page_idx < nr_pages; page_idx++) { struct page *page = list_entry(pages->prev, struct page, lru); prefetchw(&page->flags); list_del(&page->lru); /* * what we want to do here is call add_to_page_cache_lru, * but that isn't exported, so we reproduce it here */ if (!add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) { /* open coding of lru_cache_add, also not exported */ page_cache_get(page); if (!pagevec_add(&pvec, page)) __pagevec_lru_add(&pvec); __extent_read_full_page(tree, page, get_extent, &bio, 0); } page_cache_release(page); } if (pagevec_count(&pvec)) __pagevec_lru_add(&pvec); BUG_ON(!list_empty(pages)); if (bio) submit_one_bio(READ, bio, 0); return 0; } EXPORT_SYMBOL(extent_readpages); /* * basic invalidatepage code, this waits on any locked or writeback * ranges corresponding to the page, and then deletes any extent state * records from the tree */ int extent_invalidatepage(struct extent_io_tree *tree, struct page *page, unsigned long offset) { u64 start = ((u64)page->index << PAGE_CACHE_SHIFT); u64 end = start + PAGE_CACHE_SIZE - 1; size_t blocksize = page->mapping->host->i_sb->s_blocksize; start += (offset + blocksize -1) & ~(blocksize - 1); if (start > end) return 0; lock_extent(tree, start, end, GFP_NOFS); wait_on_extent_writeback(tree, start, end); clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC, 1, 1, GFP_NOFS); return 0; } EXPORT_SYMBOL(extent_invalidatepage); /* * simple commit_write call, set_range_dirty is used to mark both * the pages and the extent records as dirty */ int extent_commit_write(struct extent_io_tree *tree, struct inode *inode, struct page *page, unsigned from, unsigned to) { loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; set_page_extent_mapped(page); set_page_dirty(page); if (pos > inode->i_size) { i_size_write(inode, pos); mark_inode_dirty(inode); } return 0; } EXPORT_SYMBOL(extent_commit_write); int extent_prepare_write(struct extent_io_tree *tree, struct inode *inode, struct page *page, unsigned from, unsigned to, get_extent_t *get_extent) { u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT; u64 page_end = page_start + PAGE_CACHE_SIZE - 1; u64 block_start; u64 orig_block_start; u64 block_end; u64 cur_end; struct extent_map *em; unsigned blocksize = 1 << inode->i_blkbits; size_t page_offset = 0; size_t block_off_start; size_t block_off_end; int err = 0; int iocount = 0; int ret = 0; int isnew; set_page_extent_mapped(page); block_start = (page_start + from) & ~((u64)blocksize - 1); block_end = (page_start + to - 1) | (blocksize - 1); orig_block_start = block_start; lock_extent(tree, page_start, page_end, GFP_NOFS); while(block_start <= block_end) { em = get_extent(inode, page, page_offset, block_start, block_end - block_start + 1, 1); if (IS_ERR(em) || !em) { goto err; } cur_end = min(block_end, extent_map_end(em) - 1); block_off_start = block_start & (PAGE_CACHE_SIZE - 1); block_off_end = block_off_start + blocksize; isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS); if (!PageUptodate(page) && isnew && (block_off_end > to || block_off_start < from)) { void *kaddr; kaddr = kmap_atomic(page, KM_USER0); if (block_off_end > to) memset(kaddr + to, 0, block_off_end - to); if (block_off_start < from) memset(kaddr + block_off_start, 0, from - block_off_start); flush_dcache_page(page); kunmap_atomic(kaddr, KM_USER0); } if ((em->block_start != EXTENT_MAP_HOLE && em->block_start != EXTENT_MAP_INLINE) && !isnew && !PageUptodate(page) && (block_off_end > to || block_off_start < from) && !test_range_bit(tree, block_start, cur_end, EXTENT_UPTODATE, 1)) { u64 sector; u64 extent_offset = block_start - em->start; size_t iosize; sector = (em->block_start + extent_offset) >> 9; iosize = (cur_end - block_start + blocksize) & ~((u64)blocksize - 1); /* * we've already got the extent locked, but we * need to split the state such that our end_bio * handler can clear the lock. */ set_extent_bit(tree, block_start, block_start + iosize - 1, EXTENT_LOCKED, 0, NULL, GFP_NOFS); ret = submit_extent_page(READ, tree, page, sector, iosize, page_offset, em->bdev, NULL, 1, end_bio_extent_preparewrite, 0); iocount++; block_start = block_start + iosize; } else { set_extent_uptodate(tree, block_start, cur_end, GFP_NOFS); unlock_extent(tree, block_start, cur_end, GFP_NOFS); block_start = cur_end + 1; } page_offset = block_start & (PAGE_CACHE_SIZE - 1); free_extent_map(em); } if (iocount) { wait_extent_bit(tree, orig_block_start, block_end, EXTENT_LOCKED); } check_page_uptodate(tree, page); err: /* FIXME, zero out newly allocated blocks on error */ return err; } EXPORT_SYMBOL(extent_prepare_write); /* * a helper for releasepage. As long as there are no locked extents * in the range corresponding to the page, both state records and extent * map records are removed */ int try_release_extent_mapping(struct extent_map_tree *map, struct extent_io_tree *tree, struct page *page, gfp_t mask) { struct extent_map *em; u64 start = (u64)page->index << PAGE_CACHE_SHIFT; u64 end = start + PAGE_CACHE_SIZE - 1; u64 orig_start = start; int ret = 1; if ((mask & __GFP_WAIT) && page->mapping->host->i_size > 16 * 1024 * 1024) { u64 len; while (start <= end) { len = end - start + 1; spin_lock(&map->lock); em = lookup_extent_mapping(map, start, len); if (!em || IS_ERR(em)) { spin_unlock(&map->lock); break; } if (em->start != start) { spin_unlock(&map->lock); free_extent_map(em); break; } if (!test_range_bit(tree, em->start, extent_map_end(em) - 1, EXTENT_LOCKED, 0)) { remove_extent_mapping(map, em); /* once for the rb tree */ free_extent_map(em); } start = extent_map_end(em); spin_unlock(&map->lock); /* once for us */ free_extent_map(em); } } if (test_range_bit(tree, orig_start, end, EXTENT_IOBITS, 0)) ret = 0; else { if ((mask & GFP_NOFS) == GFP_NOFS) mask = GFP_NOFS; clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE, 1, 1, mask); } return ret; } EXPORT_SYMBOL(try_release_extent_mapping); sector_t extent_bmap(struct address_space *mapping, sector_t iblock, get_extent_t *get_extent) { struct inode *inode = mapping->host; u64 start = iblock << inode->i_blkbits; sector_t sector = 0; struct extent_map *em; em = get_extent(inode, NULL, 0, start, (1 << inode->i_blkbits), 0); if (!em || IS_ERR(em)) return 0; if (em->block_start == EXTENT_MAP_INLINE || em->block_start == EXTENT_MAP_HOLE) goto out; sector = (em->block_start + start - em->start) >> inode->i_blkbits; out: free_extent_map(em); return sector; } static int add_lru(struct extent_io_tree *tree, struct extent_buffer *eb) { if (list_empty(&eb->lru)) { extent_buffer_get(eb); list_add(&eb->lru, &tree->buffer_lru); tree->lru_size++; if (tree->lru_size >= BUFFER_LRU_MAX) { struct extent_buffer *rm; rm = list_entry(tree->buffer_lru.prev, struct extent_buffer, lru); tree->lru_size--; list_del_init(&rm->lru); free_extent_buffer(rm); } } else list_move(&eb->lru, &tree->buffer_lru); return 0; } static struct extent_buffer *find_lru(struct extent_io_tree *tree, u64 start, unsigned long len) { struct list_head *lru = &tree->buffer_lru; struct list_head *cur = lru->next; struct extent_buffer *eb; if (list_empty(lru)) return NULL; do { eb = list_entry(cur, struct extent_buffer, lru); if (eb->start == start && eb->len == len) { extent_buffer_get(eb); return eb; } cur = cur->next; } while (cur != lru); return NULL; } static inline unsigned long num_extent_pages(u64 start, u64 len) { return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT); } static inline struct page *extent_buffer_page(struct extent_buffer *eb, unsigned long i) { struct page *p; struct address_space *mapping; if (i == 0) return eb->first_page; i += eb->start >> PAGE_CACHE_SHIFT; mapping = eb->first_page->mapping; read_lock_irq(&mapping->tree_lock); p = radix_tree_lookup(&mapping->page_tree, i); read_unlock_irq(&mapping->tree_lock); return p; } int release_extent_buffer_tail_pages(struct extent_buffer *eb) { unsigned long num_pages = num_extent_pages(eb->start, eb->len); struct page *page; unsigned long i; if (num_pages == 1) return 0; for (i = 1; i < num_pages; i++) { page = extent_buffer_page(eb, i); page_cache_release(page); } return 0; } int invalidate_extent_lru(struct extent_io_tree *tree, u64 start, unsigned long len) { struct list_head *lru = &tree->buffer_lru; struct list_head *cur = lru->next; struct extent_buffer *eb; int found = 0; spin_lock(&tree->lru_lock); if (list_empty(lru)) goto out; do { eb = list_entry(cur, struct extent_buffer, lru); if (eb->start <= start && eb->start + eb->len > start) { eb->flags &= ~EXTENT_UPTODATE; } cur = cur->next; } while (cur != lru); out: spin_unlock(&tree->lru_lock); return found; } static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, u64 start, unsigned long len, gfp_t mask) { struct extent_buffer *eb = NULL; unsigned long flags; spin_lock(&tree->lru_lock); eb = find_lru(tree, start, len); spin_unlock(&tree->lru_lock); if (eb) { return eb; } eb = kmem_cache_zalloc(extent_buffer_cache, mask); INIT_LIST_HEAD(&eb->lru); eb->start = start; eb->len = len; spin_lock_irqsave(&leak_lock, flags); list_add(&eb->leak_list, &buffers); spin_unlock_irqrestore(&leak_lock, flags); atomic_set(&eb->refs, 1); return eb; } static void __free_extent_buffer(struct extent_buffer *eb) { unsigned long flags; spin_lock_irqsave(&leak_lock, flags); list_del(&eb->leak_list); spin_unlock_irqrestore(&leak_lock, flags); kmem_cache_free(extent_buffer_cache, eb); } struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, u64 start, unsigned long len, struct page *page0, gfp_t mask) { unsigned long num_pages = num_extent_pages(start, len); unsigned long i; unsigned long index = start >> PAGE_CACHE_SHIFT; struct extent_buffer *eb; struct page *p; struct address_space *mapping = tree->mapping; int uptodate = 1; eb = __alloc_extent_buffer(tree, start, len, mask); if (!eb) return NULL; if (eb->flags & EXTENT_BUFFER_FILLED) goto lru_add; if (page0) { eb->first_page = page0; i = 1; index++; page_cache_get(page0); mark_page_accessed(page0); set_page_extent_mapped(page0); set_page_extent_head(page0, len); uptodate = PageUptodate(page0); } else { i = 0; } for (; i < num_pages; i++, index++) { p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM); if (!p) { WARN_ON(1); goto fail; } set_page_extent_mapped(p); mark_page_accessed(p); if (i == 0) { eb->first_page = p; set_page_extent_head(p, len); } else { set_page_private(p, EXTENT_PAGE_PRIVATE); } if (!PageUptodate(p)) uptodate = 0; unlock_page(p); } if (uptodate) eb->flags |= EXTENT_UPTODATE; eb->flags |= EXTENT_BUFFER_FILLED; lru_add: spin_lock(&tree->lru_lock); add_lru(tree, eb); spin_unlock(&tree->lru_lock); return eb; fail: spin_lock(&tree->lru_lock); list_del_init(&eb->lru); spin_unlock(&tree->lru_lock); if (!atomic_dec_and_test(&eb->refs)) return NULL; for (index = 1; index < i; index++) { page_cache_release(extent_buffer_page(eb, index)); } if (i > 0) page_cache_release(extent_buffer_page(eb, 0)); __free_extent_buffer(eb); return NULL; } EXPORT_SYMBOL(alloc_extent_buffer); struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, u64 start, unsigned long len, gfp_t mask) { unsigned long num_pages = num_extent_pages(start, len); unsigned long i; unsigned long index = start >> PAGE_CACHE_SHIFT; struct extent_buffer *eb; struct page *p; struct address_space *mapping = tree->mapping; int uptodate = 1; eb = __alloc_extent_buffer(tree, start, len, mask); if (!eb) return NULL; if (eb->flags & EXTENT_BUFFER_FILLED) goto lru_add; for (i = 0; i < num_pages; i++, index++) { p = find_lock_page(mapping, index); if (!p) { goto fail; } set_page_extent_mapped(p); mark_page_accessed(p); if (i == 0) { eb->first_page = p; set_page_extent_head(p, len); } else { set_page_private(p, EXTENT_PAGE_PRIVATE); } if (!PageUptodate(p)) uptodate = 0; unlock_page(p); } if (uptodate) eb->flags |= EXTENT_UPTODATE; eb->flags |= EXTENT_BUFFER_FILLED; lru_add: spin_lock(&tree->lru_lock); add_lru(tree, eb); spin_unlock(&tree->lru_lock); return eb; fail: spin_lock(&tree->lru_lock); list_del_init(&eb->lru); spin_unlock(&tree->lru_lock); if (!atomic_dec_and_test(&eb->refs)) return NULL; for (index = 1; index < i; index++) { page_cache_release(extent_buffer_page(eb, index)); } if (i > 0) page_cache_release(extent_buffer_page(eb, 0)); __free_extent_buffer(eb); return NULL; } EXPORT_SYMBOL(find_extent_buffer); void free_extent_buffer(struct extent_buffer *eb) { unsigned long i; unsigned long num_pages; if (!eb) return; if (!atomic_dec_and_test(&eb->refs)) return; WARN_ON(!list_empty(&eb->lru)); num_pages = num_extent_pages(eb->start, eb->len); for (i = 1; i < num_pages; i++) { page_cache_release(extent_buffer_page(eb, i)); } page_cache_release(extent_buffer_page(eb, 0)); __free_extent_buffer(eb); } EXPORT_SYMBOL(free_extent_buffer); int clear_extent_buffer_dirty(struct extent_io_tree *tree, struct extent_buffer *eb) { int set; unsigned long i; unsigned long num_pages; struct page *page; u64 start = eb->start; u64 end = start + eb->len - 1; set = clear_extent_dirty(tree, start, end, GFP_NOFS); num_pages = num_extent_pages(eb->start, eb->len); for (i = 0; i < num_pages; i++) { page = extent_buffer_page(eb, i); lock_page(page); if (i == 0) set_page_extent_head(page, eb->len); else set_page_private(page, EXTENT_PAGE_PRIVATE); /* * if we're on the last page or the first page and the * block isn't aligned on a page boundary, do extra checks * to make sure we don't clean page that is partially dirty */ if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) || ((i == num_pages - 1) && ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) { start = (u64)page->index << PAGE_CACHE_SHIFT; end = start + PAGE_CACHE_SIZE - 1; if (test_range_bit(tree, start, end, EXTENT_DIRTY, 0)) { unlock_page(page); continue; } } clear_page_dirty_for_io(page); read_lock_irq(&page->mapping->tree_lock); if (!PageDirty(page)) { radix_tree_tag_clear(&page->mapping->page_tree, page_index(page), PAGECACHE_TAG_DIRTY); } read_unlock_irq(&page->mapping->tree_lock); unlock_page(page); } return 0; } EXPORT_SYMBOL(clear_extent_buffer_dirty); int wait_on_extent_buffer_writeback(struct extent_io_tree *tree, struct extent_buffer *eb) { return wait_on_extent_writeback(tree, eb->start, eb->start + eb->len - 1); } EXPORT_SYMBOL(wait_on_extent_buffer_writeback); int set_extent_buffer_dirty(struct extent_io_tree *tree, struct extent_buffer *eb) { unsigned long i; unsigned long num_pages; num_pages = num_extent_pages(eb->start, eb->len); for (i = 0; i < num_pages; i++) { struct page *page = extent_buffer_page(eb, i); /* writepage may need to do something special for the * first page, we have to make sure page->private is * properly set. releasepage may drop page->private * on us if the page isn't already dirty. */ if (i == 0) { lock_page(page); set_page_extent_head(page, eb->len); } else if (PagePrivate(page) && page->private != EXTENT_PAGE_PRIVATE) { lock_page(page); set_page_extent_mapped(page); unlock_page(page); } __set_page_dirty_nobuffers(extent_buffer_page(eb, i)); if (i == 0) unlock_page(page); } return set_extent_dirty(tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); } EXPORT_SYMBOL(set_extent_buffer_dirty); int set_extent_buffer_uptodate(struct extent_io_tree *tree, struct extent_buffer *eb) { unsigned long i; struct page *page; unsigned long num_pages; num_pages = num_extent_pages(eb->start, eb->len); set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); for (i = 0; i < num_pages; i++) { page = extent_buffer_page(eb, i); if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) || ((i == num_pages - 1) && ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) { check_page_uptodate(tree, page); continue; } SetPageUptodate(page); } return 0; } EXPORT_SYMBOL(set_extent_buffer_uptodate); int extent_range_uptodate(struct extent_io_tree *tree, u64 start, u64 end) { struct page *page; int ret; int pg_uptodate = 1; int uptodate; unsigned long index; ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1); if (ret) return 1; while(start <= end) { index = start >> PAGE_CACHE_SHIFT; page = find_get_page(tree->mapping, index); uptodate = PageUptodate(page); page_cache_release(page); if (!uptodate) { pg_uptodate = 0; break; } start += PAGE_CACHE_SIZE; } return pg_uptodate; } int extent_buffer_uptodate(struct extent_io_tree *tree, struct extent_buffer *eb) { int ret = 0; int ret2; unsigned long num_pages; unsigned long i; struct page *page; int pg_uptodate = 1; if (eb->flags & EXTENT_UPTODATE) ret = 1; ret2 = test_range_bit(tree, eb->start, eb->start + eb->len - 1, EXTENT_UPTODATE, 1); num_pages = num_extent_pages(eb->start, eb->len); for (i = 0; i < num_pages; i++) { page = extent_buffer_page(eb, i); if (!PageUptodate(page)) { pg_uptodate = 0; break; } } if ((ret || ret2) && !pg_uptodate) { printk("uptodate error2 eb %Lu ret %d ret2 %d pg_uptodate %d\n", eb->start, ret, ret2, pg_uptodate); WARN_ON(1); } return (ret || ret2); } EXPORT_SYMBOL(extent_buffer_uptodate); int read_extent_buffer_pages(struct extent_io_tree *tree, struct extent_buffer *eb, u64 start, int wait, get_extent_t *get_extent, int mirror_num) { unsigned long i; unsigned long start_i; struct page *page; int err; int ret = 0; int locked_pages = 0; int all_uptodate = 1; int inc_all_pages = 0; unsigned long num_pages; struct bio *bio = NULL; if (eb->flags & EXTENT_UPTODATE) return 0; if (test_range_bit(tree, eb->start, eb->start + eb->len - 1, EXTENT_UPTODATE, 1)) { return 0; } if (start) { WARN_ON(start < eb->start); start_i = (start >> PAGE_CACHE_SHIFT) - (eb->start >> PAGE_CACHE_SHIFT); } else { start_i = 0; } num_pages = num_extent_pages(eb->start, eb->len); for (i = start_i; i < num_pages; i++) { page = extent_buffer_page(eb, i); if (!wait) { if (TestSetPageLocked(page)) goto unlock_exit; } else { lock_page(page); } locked_pages++; if (!PageUptodate(page)) { all_uptodate = 0; } } if (all_uptodate) { if (start_i == 0) eb->flags |= EXTENT_UPTODATE; goto unlock_exit; } for (i = start_i; i < num_pages; i++) { page = extent_buffer_page(eb, i); if (inc_all_pages) page_cache_get(page); if (!PageUptodate(page)) { if (start_i == 0) inc_all_pages = 1; ClearPageError(page); err = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num); if (err) { ret = err; } } else { unlock_page(page); } } if (bio) submit_one_bio(READ, bio, mirror_num); if (ret || !wait) { return ret; } for (i = start_i; i < num_pages; i++) { page = extent_buffer_page(eb, i); wait_on_page_locked(page); if (!PageUptodate(page)) { ret = -EIO; } } if (!ret) eb->flags |= EXTENT_UPTODATE; return ret; unlock_exit: i = start_i; while(locked_pages > 0) { page = extent_buffer_page(eb, i); i++; unlock_page(page); locked_pages--; } return ret; } EXPORT_SYMBOL(read_extent_buffer_pages); void read_extent_buffer(struct extent_buffer *eb, void *dstv, unsigned long start, unsigned long len) { size_t cur; size_t offset; struct page *page; char *kaddr; char *dst = (char *)dstv; size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; WARN_ON(start > eb->len); WARN_ON(start + len > eb->start + eb->len); offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); while(len > 0) { page = extent_buffer_page(eb, i); cur = min(len, (PAGE_CACHE_SIZE - offset)); kaddr = kmap_atomic(page, KM_USER1); memcpy(dst, kaddr + offset, cur); kunmap_atomic(kaddr, KM_USER1); dst += cur; len -= cur; offset = 0; i++; } } EXPORT_SYMBOL(read_extent_buffer); int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, unsigned long min_len, char **token, char **map, unsigned long *map_start, unsigned long *map_len, int km) { size_t offset = start & (PAGE_CACHE_SIZE - 1); char *kaddr; struct page *p; size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; unsigned long end_i = (start_offset + start + min_len - 1) >> PAGE_CACHE_SHIFT; if (i != end_i) return -EINVAL; if (i == 0) { offset = start_offset; *map_start = 0; } else { offset = 0; *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; } if (start + min_len > eb->len) { printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len); WARN_ON(1); } p = extent_buffer_page(eb, i); kaddr = kmap_atomic(p, km); *token = kaddr; *map = kaddr + offset; *map_len = PAGE_CACHE_SIZE - offset; return 0; } EXPORT_SYMBOL(map_private_extent_buffer); int map_extent_buffer(struct extent_buffer *eb, unsigned long start, unsigned long min_len, char **token, char **map, unsigned long *map_start, unsigned long *map_len, int km) { int err; int save = 0; if (eb->map_token) { unmap_extent_buffer(eb, eb->map_token, km); eb->map_token = NULL; save = 1; } err = map_private_extent_buffer(eb, start, min_len, token, map, map_start, map_len, km); if (!err && save) { eb->map_token = *token; eb->kaddr = *map; eb->map_start = *map_start; eb->map_len = *map_len; } return err; } EXPORT_SYMBOL(map_extent_buffer); void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km) { kunmap_atomic(token, km); } EXPORT_SYMBOL(unmap_extent_buffer); int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, unsigned long start, unsigned long len) { size_t cur; size_t offset; struct page *page; char *kaddr; char *ptr = (char *)ptrv; size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; int ret = 0; WARN_ON(start > eb->len); WARN_ON(start + len > eb->start + eb->len); offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); while(len > 0) { page = extent_buffer_page(eb, i); cur = min(len, (PAGE_CACHE_SIZE - offset)); kaddr = kmap_atomic(page, KM_USER0); ret = memcmp(ptr, kaddr + offset, cur); kunmap_atomic(kaddr, KM_USER0); if (ret) break; ptr += cur; len -= cur; offset = 0; i++; } return ret; } EXPORT_SYMBOL(memcmp_extent_buffer); void write_extent_buffer(struct extent_buffer *eb, const void *srcv, unsigned long start, unsigned long len) { size_t cur; size_t offset; struct page *page; char *kaddr; char *src = (char *)srcv; size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; WARN_ON(start > eb->len); WARN_ON(start + len > eb->start + eb->len); offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); while(len > 0) { page = extent_buffer_page(eb, i); WARN_ON(!PageUptodate(page)); cur = min(len, PAGE_CACHE_SIZE - offset); kaddr = kmap_atomic(page, KM_USER1); memcpy(kaddr + offset, src, cur); kunmap_atomic(kaddr, KM_USER1); src += cur; len -= cur; offset = 0; i++; } } EXPORT_SYMBOL(write_extent_buffer); void memset_extent_buffer(struct extent_buffer *eb, char c, unsigned long start, unsigned long len) { size_t cur; size_t offset; struct page *page; char *kaddr; size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; WARN_ON(start > eb->len); WARN_ON(start + len > eb->start + eb->len); offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); while(len > 0) { page = extent_buffer_page(eb, i); WARN_ON(!PageUptodate(page)); cur = min(len, PAGE_CACHE_SIZE - offset); kaddr = kmap_atomic(page, KM_USER0); memset(kaddr + offset, c, cur); kunmap_atomic(kaddr, KM_USER0); len -= cur; offset = 0; i++; } } EXPORT_SYMBOL(memset_extent_buffer); void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, unsigned long dst_offset, unsigned long src_offset, unsigned long len) { u64 dst_len = dst->len; size_t cur; size_t offset; struct page *page; char *kaddr; size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; WARN_ON(src->len != dst_len); offset = (start_offset + dst_offset) & ((unsigned long)PAGE_CACHE_SIZE - 1); while(len > 0) { page = extent_buffer_page(dst, i); WARN_ON(!PageUptodate(page)); cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); kaddr = kmap_atomic(page, KM_USER0); read_extent_buffer(src, kaddr + offset, src_offset, cur); kunmap_atomic(kaddr, KM_USER0); src_offset += cur; len -= cur; offset = 0; i++; } } EXPORT_SYMBOL(copy_extent_buffer); static void move_pages(struct page *dst_page, struct page *src_page, unsigned long dst_off, unsigned long src_off, unsigned long len) { char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); if (dst_page == src_page) { memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); } else { char *src_kaddr = kmap_atomic(src_page, KM_USER1); char *p = dst_kaddr + dst_off + len; char *s = src_kaddr + src_off + len; while (len--) *--p = *--s; kunmap_atomic(src_kaddr, KM_USER1); } kunmap_atomic(dst_kaddr, KM_USER0); } static void copy_pages(struct page *dst_page, struct page *src_page, unsigned long dst_off, unsigned long src_off, unsigned long len) { char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); char *src_kaddr; if (dst_page != src_page) src_kaddr = kmap_atomic(src_page, KM_USER1); else src_kaddr = dst_kaddr; memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); kunmap_atomic(dst_kaddr, KM_USER0); if (dst_page != src_page) kunmap_atomic(src_kaddr, KM_USER1); } void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, unsigned long src_offset, unsigned long len) { size_t cur; size_t dst_off_in_page; size_t src_off_in_page; size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); unsigned long dst_i; unsigned long src_i; if (src_offset + len > dst->len) { printk("memmove bogus src_offset %lu move len %lu len %lu\n", src_offset, len, dst->len); BUG_ON(1); } if (dst_offset + len > dst->len) { printk("memmove bogus dst_offset %lu move len %lu len %lu\n", dst_offset, len, dst->len); BUG_ON(1); } while(len > 0) { dst_off_in_page = (start_offset + dst_offset) & ((unsigned long)PAGE_CACHE_SIZE - 1); src_off_in_page = (start_offset + src_offset) & ((unsigned long)PAGE_CACHE_SIZE - 1); dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - src_off_in_page)); cur = min_t(unsigned long, cur, (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); copy_pages(extent_buffer_page(dst, dst_i), extent_buffer_page(dst, src_i), dst_off_in_page, src_off_in_page, cur); src_offset += cur; dst_offset += cur; len -= cur; } } EXPORT_SYMBOL(memcpy_extent_buffer); void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, unsigned long src_offset, unsigned long len) { size_t cur; size_t dst_off_in_page; size_t src_off_in_page; unsigned long dst_end = dst_offset + len - 1; unsigned long src_end = src_offset + len - 1; size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); unsigned long dst_i; unsigned long src_i; if (src_offset + len > dst->len) { printk("memmove bogus src_offset %lu move len %lu len %lu\n", src_offset, len, dst->len); BUG_ON(1); } if (dst_offset + len > dst->len) { printk("memmove bogus dst_offset %lu move len %lu len %lu\n", dst_offset, len, dst->len); BUG_ON(1); } if (dst_offset < src_offset) { memcpy_extent_buffer(dst, dst_offset, src_offset, len); return; } while(len > 0) { dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; dst_off_in_page = (start_offset + dst_end) & ((unsigned long)PAGE_CACHE_SIZE - 1); src_off_in_page = (start_offset + src_end) & ((unsigned long)PAGE_CACHE_SIZE - 1); cur = min_t(unsigned long, len, src_off_in_page + 1); cur = min(cur, dst_off_in_page + 1); move_pages(extent_buffer_page(dst, dst_i), extent_buffer_page(dst, src_i), dst_off_in_page - cur + 1, src_off_in_page - cur + 1, cur); dst_end -= cur; src_end -= cur; len -= cur; } } EXPORT_SYMBOL(memmove_extent_buffer);