/* * linux/drivers/video/savagefb.c -- S3 Savage Framebuffer Driver * * Copyright (c) 2001-2002 Denis Oliver Kropp * Sven Neumann * * * Card specific code is based on XFree86's savage driver. * Framebuffer framework code is based on code of cyber2000fb and tdfxfb. * * This file is subject to the terms and conditions of the GNU General * Public License. See the file COPYING in the main directory of this * archive for more details. * * 0.4.0 (neo) * - hardware accelerated clear and move * * 0.3.2 (dok) * - wait for vertical retrace before writing to cr67 * at the beginning of savagefb_set_par * - use synchronization registers cr23 and cr26 * * 0.3.1 (dok) * - reset 3D engine * - don't return alpha bits for 32bit format * * 0.3.0 (dok) * - added WaitIdle functions for all Savage types * - do WaitIdle before mode switching * - code cleanup * * 0.2.0 (dok) * - first working version * * * TODO * - clock validations in decode_var * * BUGS * - white margin on bootup * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MTRR #include #endif #include "savagefb.h" #define SAVAGEFB_VERSION "0.4.0_2.6" /* --------------------------------------------------------------------- */ static char *mode_option __devinitdata = NULL; #ifdef MODULE MODULE_AUTHOR("(c) 2001-2002 Denis Oliver Kropp "); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("FBDev driver for S3 Savage PCI/AGP Chips"); #endif /* --------------------------------------------------------------------- */ static void vgaHWSeqReset (struct savagefb_par *par, int start) { if (start) VGAwSEQ (0x00, 0x01, par); /* Synchronous Reset */ else VGAwSEQ (0x00, 0x03, par); /* End Reset */ } static void vgaHWProtect (struct savagefb_par *par, int on) { unsigned char tmp; if (on) { /* * Turn off screen and disable sequencer. */ tmp = VGArSEQ (0x01, par); vgaHWSeqReset (par, 1); /* start synchronous reset */ VGAwSEQ (0x01, tmp | 0x20, par);/* disable the display */ VGAenablePalette(par); } else { /* * Reenable sequencer, then turn on screen. */ tmp = VGArSEQ (0x01, par); VGAwSEQ (0x01, tmp & ~0x20, par);/* reenable display */ vgaHWSeqReset (par, 0); /* clear synchronous reset */ VGAdisablePalette(par); } } static void vgaHWRestore (struct savagefb_par *par, struct savage_reg *reg) { int i; VGAwMISC (reg->MiscOutReg, par); for (i = 1; i < 5; i++) VGAwSEQ (i, reg->Sequencer[i], par); /* Ensure CRTC registers 0-7 are unlocked by clearing bit 7 or CRTC[17] */ VGAwCR (17, reg->CRTC[17] & ~0x80, par); for (i = 0; i < 25; i++) VGAwCR (i, reg->CRTC[i], par); for (i = 0; i < 9; i++) VGAwGR (i, reg->Graphics[i], par); VGAenablePalette(par); for (i = 0; i < 21; i++) VGAwATTR (i, reg->Attribute[i], par); VGAdisablePalette(par); } static void vgaHWInit (struct fb_var_screeninfo *var, struct savagefb_par *par, struct xtimings *timings, struct savage_reg *reg) { reg->MiscOutReg = 0x23; if (!(timings->sync & FB_SYNC_HOR_HIGH_ACT)) reg->MiscOutReg |= 0x40; if (!(timings->sync & FB_SYNC_VERT_HIGH_ACT)) reg->MiscOutReg |= 0x80; /* * Time Sequencer */ reg->Sequencer[0x00] = 0x00; reg->Sequencer[0x01] = 0x01; reg->Sequencer[0x02] = 0x0F; reg->Sequencer[0x03] = 0x00; /* Font select */ reg->Sequencer[0x04] = 0x0E; /* Misc */ /* * CRTC Controller */ reg->CRTC[0x00] = (timings->HTotal >> 3) - 5; reg->CRTC[0x01] = (timings->HDisplay >> 3) - 1; reg->CRTC[0x02] = (timings->HSyncStart >> 3) - 1; reg->CRTC[0x03] = (((timings->HSyncEnd >> 3) - 1) & 0x1f) | 0x80; reg->CRTC[0x04] = (timings->HSyncStart >> 3); reg->CRTC[0x05] = ((((timings->HSyncEnd >> 3) - 1) & 0x20) << 2) | (((timings->HSyncEnd >> 3)) & 0x1f); reg->CRTC[0x06] = (timings->VTotal - 2) & 0xFF; reg->CRTC[0x07] = (((timings->VTotal - 2) & 0x100) >> 8) | (((timings->VDisplay - 1) & 0x100) >> 7) | ((timings->VSyncStart & 0x100) >> 6) | (((timings->VSyncStart - 1) & 0x100) >> 5) | 0x10 | (((timings->VTotal - 2) & 0x200) >> 4) | (((timings->VDisplay - 1) & 0x200) >> 3) | ((timings->VSyncStart & 0x200) >> 2); reg->CRTC[0x08] = 0x00; reg->CRTC[0x09] = (((timings->VSyncStart - 1) & 0x200) >> 4) | 0x40; if (timings->dblscan) reg->CRTC[0x09] |= 0x80; reg->CRTC[0x0a] = 0x00; reg->CRTC[0x0b] = 0x00; reg->CRTC[0x0c] = 0x00; reg->CRTC[0x0d] = 0x00; reg->CRTC[0x0e] = 0x00; reg->CRTC[0x0f] = 0x00; reg->CRTC[0x10] = timings->VSyncStart & 0xff; reg->CRTC[0x11] = (timings->VSyncEnd & 0x0f) | 0x20; reg->CRTC[0x12] = (timings->VDisplay - 1) & 0xff; reg->CRTC[0x13] = var->xres_virtual >> 4; reg->CRTC[0x14] = 0x00; reg->CRTC[0x15] = (timings->VSyncStart - 1) & 0xff; reg->CRTC[0x16] = (timings->VSyncEnd - 1) & 0xff; reg->CRTC[0x17] = 0xc3; reg->CRTC[0x18] = 0xff; /* * are these unnecessary? * vgaHWHBlankKGA(mode, regp, 0, KGA_FIX_OVERSCAN|KGA_ENABLE_ON_ZERO); * vgaHWVBlankKGA(mode, regp, 0, KGA_FIX_OVERSCAN|KGA_ENABLE_ON_ZERO); */ /* * Graphics Display Controller */ reg->Graphics[0x00] = 0x00; reg->Graphics[0x01] = 0x00; reg->Graphics[0x02] = 0x00; reg->Graphics[0x03] = 0x00; reg->Graphics[0x04] = 0x00; reg->Graphics[0x05] = 0x40; reg->Graphics[0x06] = 0x05; /* only map 64k VGA memory !!!! */ reg->Graphics[0x07] = 0x0F; reg->Graphics[0x08] = 0xFF; reg->Attribute[0x00] = 0x00; /* standard colormap translation */ reg->Attribute[0x01] = 0x01; reg->Attribute[0x02] = 0x02; reg->Attribute[0x03] = 0x03; reg->Attribute[0x04] = 0x04; reg->Attribute[0x05] = 0x05; reg->Attribute[0x06] = 0x06; reg->Attribute[0x07] = 0x07; reg->Attribute[0x08] = 0x08; reg->Attribute[0x09] = 0x09; reg->Attribute[0x0a] = 0x0A; reg->Attribute[0x0b] = 0x0B; reg->Attribute[0x0c] = 0x0C; reg->Attribute[0x0d] = 0x0D; reg->Attribute[0x0e] = 0x0E; reg->Attribute[0x0f] = 0x0F; reg->Attribute[0x10] = 0x41; reg->Attribute[0x11] = 0xFF; reg->Attribute[0x12] = 0x0F; reg->Attribute[0x13] = 0x00; reg->Attribute[0x14] = 0x00; } /* -------------------- Hardware specific routines ------------------------- */ /* * Hardware Acceleration for SavageFB */ /* Wait for fifo space */ static void savage3D_waitfifo(struct savagefb_par *par, int space) { int slots = MAXFIFO - space; while ((savage_in32(0x48C00, par) & 0x0000ffff) > slots); } static void savage4_waitfifo(struct savagefb_par *par, int space) { int slots = MAXFIFO - space; while ((savage_in32(0x48C60, par) & 0x001fffff) > slots); } static void savage2000_waitfifo(struct savagefb_par *par, int space) { int slots = MAXFIFO - space; while ((savage_in32(0x48C60, par) & 0x0000ffff) > slots); } /* Wait for idle accelerator */ static void savage3D_waitidle(struct savagefb_par *par) { while ((savage_in32(0x48C00, par) & 0x0008ffff) != 0x80000); } static void savage4_waitidle(struct savagefb_par *par) { while ((savage_in32(0x48C60, par) & 0x00a00000) != 0x00a00000); } static void savage2000_waitidle(struct savagefb_par *par) { while ((savage_in32(0x48C60, par) & 0x009fffff)); } #ifdef CONFIG_FB_SAVAGE_ACCEL static void SavageSetup2DEngine (struct savagefb_par *par) { unsigned long GlobalBitmapDescriptor; GlobalBitmapDescriptor = 1 | 8 | BCI_BD_BW_DISABLE; BCI_BD_SET_BPP (GlobalBitmapDescriptor, par->depth); BCI_BD_SET_STRIDE (GlobalBitmapDescriptor, par->vwidth); switch(par->chip) { case S3_SAVAGE3D: case S3_SAVAGE_MX: /* Disable BCI */ savage_out32(0x48C18, savage_in32(0x48C18, par) & 0x3FF0, par); /* Setup BCI command overflow buffer */ savage_out32(0x48C14, (par->cob_offset >> 11) | (par->cob_index << 29), par); /* Program shadow status update. */ savage_out32(0x48C10, 0x78207220, par); savage_out32(0x48C0C, 0, par); /* Enable BCI and command overflow buffer */ savage_out32(0x48C18, savage_in32(0x48C18, par) | 0x0C, par); break; case S3_SAVAGE4: case S3_PROSAVAGE: case S3_SUPERSAVAGE: /* Disable BCI */ savage_out32(0x48C18, savage_in32(0x48C18, par) & 0x3FF0, par); /* Program shadow status update */ savage_out32(0x48C10, 0x00700040, par); savage_out32(0x48C0C, 0, par); /* Enable BCI without the COB */ savage_out32(0x48C18, savage_in32(0x48C18, par) | 0x08, par); break; case S3_SAVAGE2000: /* Disable BCI */ savage_out32(0x48C18, 0, par); /* Setup BCI command overflow buffer */ savage_out32(0x48C18, (par->cob_offset >> 7) | (par->cob_index), par); /* Disable shadow status update */ savage_out32(0x48A30, 0, par); /* Enable BCI and command overflow buffer */ savage_out32(0x48C18, savage_in32(0x48C18, par) | 0x00280000, par); break; default: break; } /* Turn on 16-bit register access. */ vga_out8(0x3d4, 0x31, par); vga_out8(0x3d5, 0x0c, par); /* Set stride to use GBD. */ vga_out8 (0x3d4, 0x50, par); vga_out8 (0x3d5, vga_in8(0x3d5, par) | 0xC1, par); /* Enable 2D engine. */ vga_out8 (0x3d4, 0x40, par); vga_out8 (0x3d5, 0x01, par); savage_out32 (MONO_PAT_0, ~0, par); savage_out32 (MONO_PAT_1, ~0, par); /* Setup plane masks */ savage_out32 (0x8128, ~0, par); /* enable all write planes */ savage_out32 (0x812C, ~0, par); /* enable all read planes */ savage_out16 (0x8134, 0x27, par); savage_out16 (0x8136, 0x07, par); /* Now set the GBD */ par->bci_ptr = 0; par->SavageWaitFifo (par, 4); BCI_SEND( BCI_CMD_SETREG | (1 << 16) | BCI_GBD1 ); BCI_SEND( 0 ); BCI_SEND( BCI_CMD_SETREG | (1 << 16) | BCI_GBD2 ); BCI_SEND( GlobalBitmapDescriptor ); } static void savagefb_set_clip(struct fb_info *info) { struct savagefb_par *par = info->par; int cmd; cmd = BCI_CMD_NOP | BCI_CMD_CLIP_NEW; par->bci_ptr = 0; par->SavageWaitFifo(par,3); BCI_SEND(cmd); BCI_SEND(BCI_CLIP_TL(0, 0)); BCI_SEND(BCI_CLIP_BR(0xfff, 0xfff)); } #else static void SavageSetup2DEngine (struct savagefb_par *par) {} #endif static void SavageCalcClock(long freq, int min_m, int min_n1, int max_n1, int min_n2, int max_n2, long freq_min, long freq_max, unsigned int *mdiv, unsigned int *ndiv, unsigned int *r) { long diff, best_diff; unsigned int m; unsigned char n1, n2, best_n1=16+2, best_n2=2, best_m=125+2; if (freq < freq_min / (1 << max_n2)) { printk (KERN_ERR "invalid frequency %ld Khz\n", freq); freq = freq_min / (1 << max_n2); } if (freq > freq_max / (1 << min_n2)) { printk (KERN_ERR "invalid frequency %ld Khz\n", freq); freq = freq_max / (1 << min_n2); } /* work out suitable timings */ best_diff = freq; for (n2=min_n2; n2<=max_n2; n2++) { for (n1=min_n1+2; n1<=max_n1+2; n1++) { m = (freq * n1 * (1 << n2) + HALF_BASE_FREQ) / BASE_FREQ; if (m < min_m+2 || m > 127+2) continue; if ((m * BASE_FREQ >= freq_min * n1) && (m * BASE_FREQ <= freq_max * n1)) { diff = freq * (1 << n2) * n1 - BASE_FREQ * m; if (diff < 0) diff = -diff; if (diff < best_diff) { best_diff = diff; best_m = m; best_n1 = n1; best_n2 = n2; } } } } *ndiv = best_n1 - 2; *r = best_n2; *mdiv = best_m - 2; } static int common_calc_clock(long freq, int min_m, int min_n1, int max_n1, int min_n2, int max_n2, long freq_min, long freq_max, unsigned char *mdiv, unsigned char *ndiv) { long diff, best_diff; unsigned int m; unsigned char n1, n2; unsigned char best_n1 = 16+2, best_n2 = 2, best_m = 125+2; best_diff = freq; for (n2 = min_n2; n2 <= max_n2; n2++) { for (n1 = min_n1+2; n1 <= max_n1+2; n1++) { m = (freq * n1 * (1 << n2) + HALF_BASE_FREQ) / BASE_FREQ; if (m < min_m + 2 || m > 127+2) continue; if((m * BASE_FREQ >= freq_min * n1) && (m * BASE_FREQ <= freq_max * n1)) { diff = freq * (1 << n2) * n1 - BASE_FREQ * m; if(diff < 0) diff = -diff; if(diff < best_diff) { best_diff = diff; best_m = m; best_n1 = n1; best_n2 = n2; } } } } if(max_n1 == 63) *ndiv = (best_n1 - 2) | (best_n2 << 6); else *ndiv = (best_n1 - 2) | (best_n2 << 5); *mdiv = best_m - 2; return 0; } #ifdef SAVAGEFB_DEBUG /* This function is used to debug, it prints out the contents of s3 regs */ static void SavagePrintRegs(void) { unsigned char i; int vgaCRIndex = 0x3d4; int vgaCRReg = 0x3d5; printk(KERN_DEBUG "SR x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE " "xF" ); for( i = 0; i < 0x70; i++ ) { if( !(i % 16) ) printk(KERN_DEBUG "\nSR%xx ", i >> 4 ); vga_out8( 0x3c4, i, par); printk(KERN_DEBUG " %02x", vga_in8(0x3c5, par) ); } printk(KERN_DEBUG "\n\nCR x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC " "xD xE xF" ); for( i = 0; i < 0xB7; i++ ) { if( !(i % 16) ) printk(KERN_DEBUG "\nCR%xx ", i >> 4 ); vga_out8( vgaCRIndex, i, par); printk(KERN_DEBUG " %02x", vga_in8(vgaCRReg, par) ); } printk(KERN_DEBUG "\n\n"); } #endif /* --------------------------------------------------------------------- */ static void savage_get_default_par(struct savagefb_par *par, struct savage_reg *reg) { unsigned char cr3a, cr53, cr66; vga_out16 (0x3d4, 0x4838, par); vga_out16 (0x3d4, 0xa039, par); vga_out16 (0x3c4, 0x0608, par); vga_out8 (0x3d4, 0x66, par); cr66 = vga_in8 (0x3d5, par); vga_out8 (0x3d5, cr66 | 0x80, par); vga_out8 (0x3d4, 0x3a, par); cr3a = vga_in8 (0x3d5, par); vga_out8 (0x3d5, cr3a | 0x80, par); vga_out8 (0x3d4, 0x53, par); cr53 = vga_in8 (0x3d5, par); vga_out8 (0x3d5, cr53 & 0x7f, par); vga_out8 (0x3d4, 0x66, par); vga_out8 (0x3d5, cr66, par); vga_out8 (0x3d4, 0x3a, par); vga_out8 (0x3d5, cr3a, par); vga_out8 (0x3d4, 0x66, par); vga_out8 (0x3d5, cr66, par); vga_out8 (0x3d4, 0x3a, par); vga_out8 (0x3d5, cr3a, par); /* unlock extended seq regs */ vga_out8 (0x3c4, 0x08, par); reg->SR08 = vga_in8 (0x3c5, par); vga_out8 (0x3c5, 0x06, par); /* now save all the extended regs we need */ vga_out8 (0x3d4, 0x31, par); reg->CR31 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x32, par); reg->CR32 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x34, par); reg->CR34 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x36, par); reg->CR36 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x3a, par); reg->CR3A = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x40, par); reg->CR40 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x42, par); reg->CR42 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x45, par); reg->CR45 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x50, par); reg->CR50 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x51, par); reg->CR51 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x53, par); reg->CR53 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x58, par); reg->CR58 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x60, par); reg->CR60 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x66, par); reg->CR66 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x67, par); reg->CR67 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x68, par); reg->CR68 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x69, par); reg->CR69 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x6f, par); reg->CR6F = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x33, par); reg->CR33 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x86, par); reg->CR86 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x88, par); reg->CR88 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x90, par); reg->CR90 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x91, par); reg->CR91 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0xb0, par); reg->CRB0 = vga_in8 (0x3d5, par) | 0x80; /* extended mode timing regs */ vga_out8 (0x3d4, 0x3b, par); reg->CR3B = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x3c, par); reg->CR3C = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x43, par); reg->CR43 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x5d, par); reg->CR5D = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x5e, par); reg->CR5E = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x65, par); reg->CR65 = vga_in8 (0x3d5, par); /* save seq extended regs for DCLK PLL programming */ vga_out8 (0x3c4, 0x0e, par); reg->SR0E = vga_in8 (0x3c5, par); vga_out8 (0x3c4, 0x0f, par); reg->SR0F = vga_in8 (0x3c5, par); vga_out8 (0x3c4, 0x10, par); reg->SR10 = vga_in8 (0x3c5, par); vga_out8 (0x3c4, 0x11, par); reg->SR11 = vga_in8 (0x3c5, par); vga_out8 (0x3c4, 0x12, par); reg->SR12 = vga_in8 (0x3c5, par); vga_out8 (0x3c4, 0x13, par); reg->SR13 = vga_in8 (0x3c5, par); vga_out8 (0x3c4, 0x29, par); reg->SR29 = vga_in8 (0x3c5, par); vga_out8 (0x3c4, 0x15, par); reg->SR15 = vga_in8 (0x3c5, par); vga_out8 (0x3c4, 0x30, par); reg->SR30 = vga_in8 (0x3c5, par); vga_out8 (0x3c4, 0x18, par); reg->SR18 = vga_in8 (0x3c5, par); /* Save flat panel expansion regsters. */ if (par->chip == S3_SAVAGE_MX) { int i; for (i = 0; i < 8; i++) { vga_out8 (0x3c4, 0x54+i, par); reg->SR54[i] = vga_in8 (0x3c5, par); } } vga_out8 (0x3d4, 0x66, par); cr66 = vga_in8 (0x3d5, par); vga_out8 (0x3d5, cr66 | 0x80, par); vga_out8 (0x3d4, 0x3a, par); cr3a = vga_in8 (0x3d5, par); vga_out8 (0x3d5, cr3a | 0x80, par); /* now save MIU regs */ if (par->chip != S3_SAVAGE_MX) { reg->MMPR0 = savage_in32(FIFO_CONTROL_REG, par); reg->MMPR1 = savage_in32(MIU_CONTROL_REG, par); reg->MMPR2 = savage_in32(STREAMS_TIMEOUT_REG, par); reg->MMPR3 = savage_in32(MISC_TIMEOUT_REG, par); } vga_out8 (0x3d4, 0x3a, par); vga_out8 (0x3d5, cr3a, par); vga_out8 (0x3d4, 0x66, par); vga_out8 (0x3d5, cr66, par); } static void savage_set_default_par(struct savagefb_par *par, struct savage_reg *reg) { unsigned char cr3a, cr53, cr66; vga_out16(0x3d4, 0x4838, par); vga_out16(0x3d4, 0xa039, par); vga_out16(0x3c4, 0x0608, par); vga_out8(0x3d4, 0x66, par); cr66 = vga_in8(0x3d5, par); vga_out8(0x3d5, cr66 | 0x80, par); vga_out8(0x3d4, 0x3a, par); cr3a = vga_in8(0x3d5, par); vga_out8(0x3d5, cr3a | 0x80, par); vga_out8(0x3d4, 0x53, par); cr53 = vga_in8(0x3d5, par); vga_out8(0x3d5, cr53 & 0x7f, par); vga_out8(0x3d4, 0x66, par); vga_out8(0x3d5, cr66, par); vga_out8(0x3d4, 0x3a, par); vga_out8(0x3d5, cr3a, par); vga_out8(0x3d4, 0x66, par); vga_out8(0x3d5, cr66, par); vga_out8(0x3d4, 0x3a, par); vga_out8(0x3d5, cr3a, par); /* unlock extended seq regs */ vga_out8(0x3c4, 0x08, par); vga_out8(0x3c5, reg->SR08, par); vga_out8(0x3c5, 0x06, par); /* now restore all the extended regs we need */ vga_out8(0x3d4, 0x31, par); vga_out8(0x3d5, reg->CR31, par); vga_out8(0x3d4, 0x32, par); vga_out8(0x3d5, reg->CR32, par); vga_out8(0x3d4, 0x34, par); vga_out8(0x3d5, reg->CR34, par); vga_out8(0x3d4, 0x36, par); vga_out8(0x3d5,reg->CR36, par); vga_out8(0x3d4, 0x3a, par); vga_out8(0x3d5, reg->CR3A, par); vga_out8(0x3d4, 0x40, par); vga_out8(0x3d5, reg->CR40, par); vga_out8(0x3d4, 0x42, par); vga_out8(0x3d5, reg->CR42, par); vga_out8(0x3d4, 0x45, par); vga_out8(0x3d5, reg->CR45, par); vga_out8(0x3d4, 0x50, par); vga_out8(0x3d5, reg->CR50, par); vga_out8(0x3d4, 0x51, par); vga_out8(0x3d5, reg->CR51, par); vga_out8(0x3d4, 0x53, par); vga_out8(0x3d5, reg->CR53, par); vga_out8(0x3d4, 0x58, par); vga_out8(0x3d5, reg->CR58, par); vga_out8(0x3d4, 0x60, par); vga_out8(0x3d5, reg->CR60, par); vga_out8(0x3d4, 0x66, par); vga_out8(0x3d5, reg->CR66, par); vga_out8(0x3d4, 0x67, par); vga_out8(0x3d5, reg->CR67, par); vga_out8(0x3d4, 0x68, par); vga_out8(0x3d5, reg->CR68, par); vga_out8(0x3d4, 0x69, par); vga_out8(0x3d5, reg->CR69, par); vga_out8(0x3d4, 0x6f, par); vga_out8(0x3d5, reg->CR6F, par); vga_out8(0x3d4, 0x33, par); vga_out8(0x3d5, reg->CR33, par); vga_out8(0x3d4, 0x86, par); vga_out8(0x3d5, reg->CR86, par); vga_out8(0x3d4, 0x88, par); vga_out8(0x3d5, reg->CR88, par); vga_out8(0x3d4, 0x90, par); vga_out8(0x3d5, reg->CR90, par); vga_out8(0x3d4, 0x91, par); vga_out8(0x3d5, reg->CR91, par); vga_out8(0x3d4, 0xb0, par); vga_out8(0x3d5, reg->CRB0, par); /* extended mode timing regs */ vga_out8(0x3d4, 0x3b, par); vga_out8(0x3d5, reg->CR3B, par); vga_out8(0x3d4, 0x3c, par); vga_out8(0x3d5, reg->CR3C, par); vga_out8(0x3d4, 0x43, par); vga_out8(0x3d5, reg->CR43, par); vga_out8(0x3d4, 0x5d, par); vga_out8(0x3d5, reg->CR5D, par); vga_out8(0x3d4, 0x5e, par); vga_out8(0x3d5, reg->CR5E, par); vga_out8(0x3d4, 0x65, par); vga_out8(0x3d5, reg->CR65, par); /* save seq extended regs for DCLK PLL programming */ vga_out8(0x3c4, 0x0e, par); vga_out8(0x3c5, reg->SR0E, par); vga_out8(0x3c4, 0x0f, par); vga_out8(0x3c5, reg->SR0F, par); vga_out8(0x3c4, 0x10, par); vga_out8(0x3c5, reg->SR10, par); vga_out8(0x3c4, 0x11, par); vga_out8(0x3c5, reg->SR11, par); vga_out8(0x3c4, 0x12, par); vga_out8(0x3c5, reg->SR12, par); vga_out8(0x3c4, 0x13, par); vga_out8(0x3c5, reg->SR13, par); vga_out8(0x3c4, 0x29, par); vga_out8(0x3c5, reg->SR29, par); vga_out8(0x3c4, 0x15, par); vga_out8(0x3c5, reg->SR15, par); vga_out8(0x3c4, 0x30, par); vga_out8(0x3c5, reg->SR30, par); vga_out8(0x3c4, 0x18, par); vga_out8(0x3c5, reg->SR18, par); /* Save flat panel expansion regsters. */ if (par->chip == S3_SAVAGE_MX) { int i; for (i = 0; i < 8; i++) { vga_out8(0x3c4, 0x54+i, par); vga_out8(0x3c5, reg->SR54[i], par); } } vga_out8(0x3d4, 0x66, par); cr66 = vga_in8(0x3d5, par); vga_out8(0x3d5, cr66 | 0x80, par); vga_out8(0x3d4, 0x3a, par); cr3a = vga_in8(0x3d5, par); vga_out8(0x3d5, cr3a | 0x80, par); /* now save MIU regs */ if (par->chip != S3_SAVAGE_MX) { savage_out32(FIFO_CONTROL_REG, reg->MMPR0, par); savage_out32(MIU_CONTROL_REG, reg->MMPR1, par); savage_out32(STREAMS_TIMEOUT_REG, reg->MMPR2, par); savage_out32(MISC_TIMEOUT_REG, reg->MMPR3, par); } vga_out8(0x3d4, 0x3a, par); vga_out8(0x3d5, cr3a, par); vga_out8(0x3d4, 0x66, par); vga_out8(0x3d5, cr66, par); } static void savage_update_var(struct fb_var_screeninfo *var, struct fb_videomode *modedb) { var->xres = var->xres_virtual = modedb->xres; var->yres = modedb->yres; if (var->yres_virtual < var->yres) var->yres_virtual = var->yres; var->xoffset = var->yoffset = 0; var->pixclock = modedb->pixclock; var->left_margin = modedb->left_margin; var->right_margin = modedb->right_margin; var->upper_margin = modedb->upper_margin; var->lower_margin = modedb->lower_margin; var->hsync_len = modedb->hsync_len; var->vsync_len = modedb->vsync_len; var->sync = modedb->sync; var->vmode = modedb->vmode; } static int savagefb_check_var (struct fb_var_screeninfo *var, struct fb_info *info) { struct savagefb_par *par = info->par; int memlen, vramlen, mode_valid = 0; DBG("savagefb_check_var"); var->transp.offset = 0; var->transp.length = 0; switch (var->bits_per_pixel) { case 8: var->red.offset = var->green.offset = var->blue.offset = 0; var->red.length = var->green.length = var->blue.length = var->bits_per_pixel; break; case 16: var->red.offset = 11; var->red.length = 5; var->green.offset = 5; var->green.length = 6; var->blue.offset = 0; var->blue.length = 5; break; case 32: var->transp.offset = 24; var->transp.length = 8; var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; break; default: return -EINVAL; } if (!info->monspecs.hfmax || !info->monspecs.vfmax || !info->monspecs.dclkmax || !fb_validate_mode(var, info)) mode_valid = 1; /* calculate modeline if supported by monitor */ if (!mode_valid && info->monspecs.gtf) { if (!fb_get_mode(FB_MAXTIMINGS, 0, var, info)) mode_valid = 1; } if (!mode_valid) { struct fb_videomode *mode; mode = fb_find_best_mode(var, &info->modelist); if (mode) { savage_update_var(var, mode); mode_valid = 1; } } if (!mode_valid && info->monspecs.modedb_len) return -EINVAL; /* Is the mode larger than the LCD panel? */ if (par->SavagePanelWidth && (var->xres > par->SavagePanelWidth || var->yres > par->SavagePanelHeight)) { printk (KERN_INFO "Mode (%dx%d) larger than the LCD panel " "(%dx%d)\n", var->xres, var->yres, par->SavagePanelWidth, par->SavagePanelHeight); return -1; } if (var->yres_virtual < var->yres) var->yres_virtual = var->yres; if (var->xres_virtual < var->xres) var->xres_virtual = var->xres; vramlen = info->fix.smem_len; memlen = var->xres_virtual * var->bits_per_pixel * var->yres_virtual / 8; if (memlen > vramlen) { var->yres_virtual = vramlen * 8 / (var->xres_virtual * var->bits_per_pixel); memlen = var->xres_virtual * var->bits_per_pixel * var->yres_virtual / 8; } /* we must round yres/xres down, we already rounded y/xres_virtual up if it was possible. We should return -EINVAL, but I disagree */ if (var->yres_virtual < var->yres) var->yres = var->yres_virtual; if (var->xres_virtual < var->xres) var->xres = var->xres_virtual; if (var->xoffset + var->xres > var->xres_virtual) var->xoffset = var->xres_virtual - var->xres; if (var->yoffset + var->yres > var->yres_virtual) var->yoffset = var->yres_virtual - var->yres; return 0; } static int savagefb_decode_var (struct fb_var_screeninfo *var, struct savagefb_par *par, struct savage_reg *reg) { struct xtimings timings; int width, dclk, i, j; /*, refresh; */ unsigned int m, n, r; unsigned char tmp = 0; unsigned int pixclock = var->pixclock; DBG("savagefb_decode_var"); memset (&timings, 0, sizeof(timings)); if (!pixclock) pixclock = 10000; /* 10ns = 100MHz */ timings.Clock = 1000000000 / pixclock; if (timings.Clock < 1) timings.Clock = 1; timings.dblscan = var->vmode & FB_VMODE_DOUBLE; timings.interlaced = var->vmode & FB_VMODE_INTERLACED; timings.HDisplay = var->xres; timings.HSyncStart = timings.HDisplay + var->right_margin; timings.HSyncEnd = timings.HSyncStart + var->hsync_len; timings.HTotal = timings.HSyncEnd + var->left_margin; timings.VDisplay = var->yres; timings.VSyncStart = timings.VDisplay + var->lower_margin; timings.VSyncEnd = timings.VSyncStart + var->vsync_len; timings.VTotal = timings.VSyncEnd + var->upper_margin; timings.sync = var->sync; par->depth = var->bits_per_pixel; par->vwidth = var->xres_virtual; if (var->bits_per_pixel == 16 && par->chip == S3_SAVAGE3D) { timings.HDisplay *= 2; timings.HSyncStart *= 2; timings.HSyncEnd *= 2; timings.HTotal *= 2; } /* * This will allocate the datastructure and initialize all of the * generic VGA registers. */ vgaHWInit (var, par, &timings, reg); /* We need to set CR67 whether or not we use the BIOS. */ dclk = timings.Clock; reg->CR67 = 0x00; switch( var->bits_per_pixel ) { case 8: if( (par->chip == S3_SAVAGE2000) && (dclk >= 230000) ) reg->CR67 = 0x10; /* 8bpp, 2 pixels/clock */ else reg->CR67 = 0x00; /* 8bpp, 1 pixel/clock */ break; case 15: if ( S3_SAVAGE_MOBILE_SERIES(par->chip) || ((par->chip == S3_SAVAGE2000) && (dclk >= 230000)) ) reg->CR67 = 0x30; /* 15bpp, 2 pixel/clock */ else reg->CR67 = 0x20; /* 15bpp, 1 pixels/clock */ break; case 16: if( S3_SAVAGE_MOBILE_SERIES(par->chip) || ((par->chip == S3_SAVAGE2000) && (dclk >= 230000)) ) reg->CR67 = 0x50; /* 16bpp, 2 pixel/clock */ else reg->CR67 = 0x40; /* 16bpp, 1 pixels/clock */ break; case 24: reg->CR67 = 0x70; break; case 32: reg->CR67 = 0xd0; break; } /* * Either BIOS use is disabled, or we failed to find a suitable * match. Fall back to traditional register-crunching. */ vga_out8 (0x3d4, 0x3a, par); tmp = vga_in8 (0x3d5, par); if (1 /*FIXME:psav->pci_burst*/) reg->CR3A = (tmp & 0x7f) | 0x15; else reg->CR3A = tmp | 0x95; reg->CR53 = 0x00; reg->CR31 = 0x8c; reg->CR66 = 0x89; vga_out8 (0x3d4, 0x58, par); reg->CR58 = vga_in8 (0x3d5, par) & 0x80; reg->CR58 |= 0x13; reg->SR15 = 0x03 | 0x80; reg->SR18 = 0x00; reg->CR43 = reg->CR45 = reg->CR65 = 0x00; vga_out8 (0x3d4, 0x40, par); reg->CR40 = vga_in8 (0x3d5, par) & ~0x01; reg->MMPR0 = 0x010400; reg->MMPR1 = 0x00; reg->MMPR2 = 0x0808; reg->MMPR3 = 0x08080810; SavageCalcClock (dclk, 1, 1, 127, 0, 4, 180000, 360000, &m, &n, &r); /* m = 107; n = 4; r = 2; */ if (par->MCLK <= 0) { reg->SR10 = 255; reg->SR11 = 255; } else { common_calc_clock (par->MCLK, 1, 1, 31, 0, 3, 135000, 270000, ®->SR11, ®->SR10); /* reg->SR10 = 80; // MCLK == 286000 */ /* reg->SR11 = 125; */ } reg->SR12 = (r << 6) | (n & 0x3f); reg->SR13 = m & 0xff; reg->SR29 = (r & 4) | (m & 0x100) >> 5 | (n & 0x40) >> 2; if (var->bits_per_pixel < 24) reg->MMPR0 -= 0x8000; else reg->MMPR0 -= 0x4000; if (timings.interlaced) reg->CR42 = 0x20; else reg->CR42 = 0x00; reg->CR34 = 0x10; /* display fifo */ i = ((((timings.HTotal >> 3) - 5) & 0x100) >> 8) | ((((timings.HDisplay >> 3) - 1) & 0x100) >> 7) | ((((timings.HSyncStart >> 3) - 1) & 0x100) >> 6) | ((timings.HSyncStart & 0x800) >> 7); if ((timings.HSyncEnd >> 3) - (timings.HSyncStart >> 3) > 64) i |= 0x08; if ((timings.HSyncEnd >> 3) - (timings.HSyncStart >> 3) > 32) i |= 0x20; j = (reg->CRTC[0] + ((i & 0x01) << 8) + reg->CRTC[4] + ((i & 0x10) << 4) + 1) / 2; if (j - (reg->CRTC[4] + ((i & 0x10) << 4)) < 4) { if (reg->CRTC[4] + ((i & 0x10) << 4) + 4 <= reg->CRTC[0] + ((i & 0x01) << 8)) j = reg->CRTC[4] + ((i & 0x10) << 4) + 4; else j = reg->CRTC[0] + ((i & 0x01) << 8) + 1; } reg->CR3B = j & 0xff; i |= (j & 0x100) >> 2; reg->CR3C = (reg->CRTC[0] + ((i & 0x01) << 8)) / 2; reg->CR5D = i; reg->CR5E = (((timings.VTotal - 2) & 0x400) >> 10) | (((timings.VDisplay - 1) & 0x400) >> 9) | (((timings.VSyncStart) & 0x400) >> 8) | (((timings.VSyncStart) & 0x400) >> 6) | 0x40; width = (var->xres_virtual * ((var->bits_per_pixel+7) / 8)) >> 3; reg->CR91 = reg->CRTC[19] = 0xff & width; reg->CR51 = (0x300 & width) >> 4; reg->CR90 = 0x80 | (width >> 8); reg->MiscOutReg |= 0x0c; /* Set frame buffer description. */ if (var->bits_per_pixel <= 8) reg->CR50 = 0; else if (var->bits_per_pixel <= 16) reg->CR50 = 0x10; else reg->CR50 = 0x30; if (var->xres_virtual <= 640) reg->CR50 |= 0x40; else if (var->xres_virtual == 800) reg->CR50 |= 0x80; else if (var->xres_virtual == 1024) reg->CR50 |= 0x00; else if (var->xres_virtual == 1152) reg->CR50 |= 0x01; else if (var->xres_virtual == 1280) reg->CR50 |= 0xc0; else if (var->xres_virtual == 1600) reg->CR50 |= 0x81; else reg->CR50 |= 0xc1; /* Use GBD */ if( par->chip == S3_SAVAGE2000 ) reg->CR33 = 0x08; else reg->CR33 = 0x20; reg->CRTC[0x17] = 0xeb; reg->CR67 |= 1; vga_out8(0x3d4, 0x36, par); reg->CR36 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x68, par); reg->CR68 = vga_in8 (0x3d5, par); reg->CR69 = 0; vga_out8 (0x3d4, 0x6f, par); reg->CR6F = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x86, par); reg->CR86 = vga_in8 (0x3d5, par); vga_out8 (0x3d4, 0x88, par); reg->CR88 = vga_in8 (0x3d5, par) | 0x08; vga_out8 (0x3d4, 0xb0, par); reg->CRB0 = vga_in8 (0x3d5, par) | 0x80; return 0; } /* --------------------------------------------------------------------- */ /* * Set a single color register. Return != 0 for invalid regno. */ static int savagefb_setcolreg(unsigned regno, unsigned red, unsigned green, unsigned blue, unsigned transp, struct fb_info *info) { struct savagefb_par *par = info->par; if (regno >= NR_PALETTE) return -EINVAL; par->palette[regno].red = red; par->palette[regno].green = green; par->palette[regno].blue = blue; par->palette[regno].transp = transp; switch (info->var.bits_per_pixel) { case 8: vga_out8 (0x3c8, regno, par); vga_out8 (0x3c9, red >> 10, par); vga_out8 (0x3c9, green >> 10, par); vga_out8 (0x3c9, blue >> 10, par); break; case 16: if (regno < 16) ((u32 *)info->pseudo_palette)[regno] = ((red & 0xf800) ) | ((green & 0xfc00) >> 5) | ((blue & 0xf800) >> 11); break; case 24: if (regno < 16) ((u32 *)info->pseudo_palette)[regno] = ((red & 0xff00) << 8) | ((green & 0xff00) ) | ((blue & 0xff00) >> 8); break; case 32: if (regno < 16) ((u32 *)info->pseudo_palette)[regno] = ((transp & 0xff00) << 16) | ((red & 0xff00) << 8) | ((green & 0xff00) ) | ((blue & 0xff00) >> 8); break; default: return 1; } return 0; } static void savagefb_set_par_int (struct savagefb_par *par, struct savage_reg *reg) { unsigned char tmp, cr3a, cr66, cr67; DBG ("savagefb_set_par_int"); par->SavageWaitIdle (par); vga_out8 (0x3c2, 0x23, par); vga_out16 (0x3d4, 0x4838, par); vga_out16 (0x3d4, 0xa539, par); vga_out16 (0x3c4, 0x0608, par); vgaHWProtect (par, 1); /* * Some Savage/MX and /IX systems go nuts when trying to exit the * server after WindowMaker has displayed a gradient background. I * haven't been able to find what causes it, but a non-destructive * switch to mode 3 here seems to eliminate the issue. */ VerticalRetraceWait(par); vga_out8 (0x3d4, 0x67, par); cr67 = vga_in8 (0x3d5, par); vga_out8 (0x3d5, cr67/*par->CR67*/ & ~0x0c, par); /* no STREAMS yet */ vga_out8 (0x3d4, 0x23, par); vga_out8 (0x3d5, 0x00, par); vga_out8 (0x3d4, 0x26, par); vga_out8 (0x3d5, 0x00, par); /* restore extended regs */ vga_out8 (0x3d4, 0x66, par); vga_out8 (0x3d5, reg->CR66, par); vga_out8 (0x3d4, 0x3a, par); vga_out8 (0x3d5, reg->CR3A, par); vga_out8 (0x3d4, 0x31, par); vga_out8 (0x3d5, reg->CR31, par); vga_out8 (0x3d4, 0x32, par); vga_out8 (0x3d5, reg->CR32, par); vga_out8 (0x3d4, 0x58, par); vga_out8 (0x3d5, reg->CR58, par); vga_out8 (0x3d4, 0x53, par); vga_out8 (0x3d5, reg->CR53 & 0x7f, par); vga_out16 (0x3c4, 0x0608, par); /* Restore DCLK registers. */ vga_out8 (0x3c4, 0x0e, par); vga_out8 (0x3c5, reg->SR0E, par); vga_out8 (0x3c4, 0x0f, par); vga_out8 (0x3c5, reg->SR0F, par); vga_out8 (0x3c4, 0x29, par); vga_out8 (0x3c5, reg->SR29, par); vga_out8 (0x3c4, 0x15, par); vga_out8 (0x3c5, reg->SR15, par); /* Restore flat panel expansion regsters. */ if( par->chip == S3_SAVAGE_MX ) { int i; for( i = 0; i < 8; i++ ) { vga_out8 (0x3c4, 0x54+i, par); vga_out8 (0x3c5, reg->SR54[i], par); } } vgaHWRestore (par, reg); /* extended mode timing registers */ vga_out8 (0x3d4, 0x53, par); vga_out8 (0x3d5, reg->CR53, par); vga_out8 (0x3d4, 0x5d, par); vga_out8 (0x3d5, reg->CR5D, par); vga_out8 (0x3d4, 0x5e, par); vga_out8 (0x3d5, reg->CR5E, par); vga_out8 (0x3d4, 0x3b, par); vga_out8 (0x3d5, reg->CR3B, par); vga_out8 (0x3d4, 0x3c, par); vga_out8 (0x3d5, reg->CR3C, par); vga_out8 (0x3d4, 0x43, par); vga_out8 (0x3d5, reg->CR43, par); vga_out8 (0x3d4, 0x65, par); vga_out8 (0x3d5, reg->CR65, par); /* restore the desired video mode with cr67 */ vga_out8 (0x3d4, 0x67, par); /* following part not present in X11 driver */ cr67 = vga_in8 (0x3d5, par) & 0xf; vga_out8 (0x3d5, 0x50 | cr67, par); udelay (10000); vga_out8 (0x3d4, 0x67, par); /* end of part */ vga_out8 (0x3d5, reg->CR67 & ~0x0c, par); /* other mode timing and extended regs */ vga_out8 (0x3d4, 0x34, par); vga_out8 (0x3d5, reg->CR34, par); vga_out8 (0x3d4, 0x40, par); vga_out8 (0x3d5, reg->CR40, par); vga_out8 (0x3d4, 0x42, par); vga_out8 (0x3d5, reg->CR42, par); vga_out8 (0x3d4, 0x45, par); vga_out8 (0x3d5, reg->CR45, par); vga_out8 (0x3d4, 0x50, par); vga_out8 (0x3d5, reg->CR50, par); vga_out8 (0x3d4, 0x51, par); vga_out8 (0x3d5, reg->CR51, par); /* memory timings */ vga_out8 (0x3d4, 0x36, par); vga_out8 (0x3d5, reg->CR36, par); vga_out8 (0x3d4, 0x60, par); vga_out8 (0x3d5, reg->CR60, par); vga_out8 (0x3d4, 0x68, par); vga_out8 (0x3d5, reg->CR68, par); vga_out8 (0x3d4, 0x69, par); vga_out8 (0x3d5, reg->CR69, par); vga_out8 (0x3d4, 0x6f, par); vga_out8 (0x3d5, reg->CR6F, par); vga_out8 (0x3d4, 0x33, par); vga_out8 (0x3d5, reg->CR33, par); vga_out8 (0x3d4, 0x86, par); vga_out8 (0x3d5, reg->CR86, par); vga_out8 (0x3d4, 0x88, par); vga_out8 (0x3d5, reg->CR88, par); vga_out8 (0x3d4, 0x90, par); vga_out8 (0x3d5, reg->CR90, par); vga_out8 (0x3d4, 0x91, par); vga_out8 (0x3d5, reg->CR91, par); if (par->chip == S3_SAVAGE4) { vga_out8 (0x3d4, 0xb0, par); vga_out8 (0x3d5, reg->CRB0, par); } vga_out8 (0x3d4, 0x32, par); vga_out8 (0x3d5, reg->CR32, par); /* unlock extended seq regs */ vga_out8 (0x3c4, 0x08, par); vga_out8 (0x3c5, 0x06, par); /* Restore extended sequencer regs for MCLK. SR10 == 255 indicates * that we should leave the default SR10 and SR11 values there. */ if (reg->SR10 != 255) { vga_out8 (0x3c4, 0x10, par); vga_out8 (0x3c5, reg->SR10, par); vga_out8 (0x3c4, 0x11, par); vga_out8 (0x3c5, reg->SR11, par); } /* restore extended seq regs for dclk */ vga_out8 (0x3c4, 0x0e, par); vga_out8 (0x3c5, reg->SR0E, par); vga_out8 (0x3c4, 0x0f, par); vga_out8 (0x3c5, reg->SR0F, par); vga_out8 (0x3c4, 0x12, par); vga_out8 (0x3c5, reg->SR12, par); vga_out8 (0x3c4, 0x13, par); vga_out8 (0x3c5, reg->SR13, par); vga_out8 (0x3c4, 0x29, par); vga_out8 (0x3c5, reg->SR29, par); vga_out8 (0x3c4, 0x18, par); vga_out8 (0x3c5, reg->SR18, par); /* load new m, n pll values for dclk & mclk */ vga_out8 (0x3c4, 0x15, par); tmp = vga_in8 (0x3c5, par) & ~0x21; vga_out8 (0x3c5, tmp | 0x03, par); vga_out8 (0x3c5, tmp | 0x23, par); vga_out8 (0x3c5, tmp | 0x03, par); vga_out8 (0x3c5, reg->SR15, par); udelay (100); vga_out8 (0x3c4, 0x30, par); vga_out8 (0x3c5, reg->SR30, par); vga_out8 (0x3c4, 0x08, par); vga_out8 (0x3c5, reg->SR08, par); /* now write out cr67 in full, possibly starting STREAMS */ VerticalRetraceWait(par); vga_out8 (0x3d4, 0x67, par); vga_out8 (0x3d5, reg->CR67, par); vga_out8 (0x3d4, 0x66, par); cr66 = vga_in8 (0x3d5, par); vga_out8 (0x3d5, cr66 | 0x80, par); vga_out8 (0x3d4, 0x3a, par); cr3a = vga_in8 (0x3d5, par); vga_out8 (0x3d5, cr3a | 0x80, par); if (par->chip != S3_SAVAGE_MX) { VerticalRetraceWait(par); savage_out32 (FIFO_CONTROL_REG, reg->MMPR0, par); par->SavageWaitIdle (par); savage_out32 (MIU_CONTROL_REG, reg->MMPR1, par); par->SavageWaitIdle (par); savage_out32 (STREAMS_TIMEOUT_REG, reg->MMPR2, par); par->SavageWaitIdle (par); savage_out32 (MISC_TIMEOUT_REG, reg->MMPR3, par); } vga_out8 (0x3d4, 0x66, par); vga_out8 (0x3d5, cr66, par); vga_out8 (0x3d4, 0x3a, par); vga_out8 (0x3d5, cr3a, par); SavageSetup2DEngine (par); vgaHWProtect (par, 0); } static void savagefb_update_start (struct savagefb_par *par, struct fb_var_screeninfo *var) { int base; base = ((var->yoffset * var->xres_virtual + (var->xoffset & ~1)) * ((var->bits_per_pixel+7) / 8)) >> 2; /* now program the start address registers */ vga_out16(0x3d4, (base & 0x00ff00) | 0x0c, par); vga_out16(0x3d4, ((base & 0x00ff) << 8) | 0x0d, par); vga_out8 (0x3d4, 0x69, par); vga_out8 (0x3d5, (base & 0x7f0000) >> 16, par); } static void savagefb_set_fix(struct fb_info *info) { info->fix.line_length = info->var.xres_virtual * info->var.bits_per_pixel / 8; if (info->var.bits_per_pixel == 8) { info->fix.visual = FB_VISUAL_PSEUDOCOLOR; info->fix.xpanstep = 4; } else { info->fix.visual = FB_VISUAL_TRUECOLOR; info->fix.xpanstep = 2; } } static int savagefb_set_par (struct fb_info *info) { struct savagefb_par *par = info->par; struct fb_var_screeninfo *var = &info->var; int err; DBG("savagefb_set_par"); err = savagefb_decode_var (var, par, &par->state); if (err) return err; if (par->dacSpeedBpp <= 0) { if (var->bits_per_pixel > 24) par->dacSpeedBpp = par->clock[3]; else if (var->bits_per_pixel >= 24) par->dacSpeedBpp = par->clock[2]; else if ((var->bits_per_pixel > 8) && (var->bits_per_pixel < 24)) par->dacSpeedBpp = par->clock[1]; else if (var->bits_per_pixel <= 8) par->dacSpeedBpp = par->clock[0]; } /* Set ramdac limits */ par->maxClock = par->dacSpeedBpp; par->minClock = 10000; savagefb_set_par_int (par, &par->state); fb_set_cmap (&info->cmap, info); savagefb_set_fix(info); savagefb_set_clip(info); SavagePrintRegs(); return 0; } /* * Pan or Wrap the Display */ static int savagefb_pan_display (struct fb_var_screeninfo *var, struct fb_info *info) { struct savagefb_par *par = info->par; savagefb_update_start (par, var); return 0; } static int savagefb_blank(int blank, struct fb_info *info) { struct savagefb_par *par = info->par; u8 sr8 = 0, srd = 0; if (par->display_type == DISP_CRT) { vga_out8(0x3c4, 0x08, par); sr8 = vga_in8(0x3c5, par); sr8 |= 0x06; vga_out8(0x3c5, sr8, par); vga_out8(0x3c4, 0x0d, par); srd = vga_in8(0x3c5, par); srd &= 0x03; switch (blank) { case FB_BLANK_UNBLANK: case FB_BLANK_NORMAL: break; case FB_BLANK_VSYNC_SUSPEND: srd |= 0x10; break; case FB_BLANK_HSYNC_SUSPEND: srd |= 0x40; break; case FB_BLANK_POWERDOWN: srd |= 0x50; break; } vga_out8(0x3c4, 0x0d, par); vga_out8(0x3c5, srd, par); } if (par->display_type == DISP_LCD || par->display_type == DISP_DFP) { switch(blank) { case FB_BLANK_UNBLANK: case FB_BLANK_NORMAL: vga_out8(0x3c4, 0x31, par); /* SR31 bit 4 - FP enable */ vga_out8(0x3c5, vga_in8(0x3c5, par) | 0x10, par); break; case FB_BLANK_VSYNC_SUSPEND: case FB_BLANK_HSYNC_SUSPEND: case FB_BLANK_POWERDOWN: vga_out8(0x3c4, 0x31, par); /* SR31 bit 4 - FP enable */ vga_out8(0x3c5, vga_in8(0x3c5, par) & ~0x10, par); break; } } return (blank == FB_BLANK_NORMAL) ? 1 : 0; } static void savagefb_save_state(struct fb_info *info) { struct savagefb_par *par = info->par; savage_get_default_par(par, &par->save); } static void savagefb_restore_state(struct fb_info *info) { struct savagefb_par *par = info->par; savagefb_blank(FB_BLANK_POWERDOWN, info); savage_set_default_par(par, &par->save); savagefb_blank(FB_BLANK_UNBLANK, info); } static struct fb_ops savagefb_ops = { .owner = THIS_MODULE, .fb_check_var = savagefb_check_var, .fb_set_par = savagefb_set_par, .fb_setcolreg = savagefb_setcolreg, .fb_pan_display = savagefb_pan_display, .fb_blank = savagefb_blank, .fb_save_state = savagefb_save_state, .fb_restore_state = savagefb_restore_state, #if defined(CONFIG_FB_SAVAGE_ACCEL) .fb_fillrect = savagefb_fillrect, .fb_copyarea = savagefb_copyarea, .fb_imageblit = savagefb_imageblit, .fb_sync = savagefb_sync, #else .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, #endif }; /* --------------------------------------------------------------------- */ static struct fb_var_screeninfo __devinitdata savagefb_var800x600x8 = { .accel_flags = FB_ACCELF_TEXT, .xres = 800, .yres = 600, .xres_virtual = 800, .yres_virtual = 600, .bits_per_pixel = 8, .pixclock = 25000, .left_margin = 88, .right_margin = 40, .upper_margin = 23, .lower_margin = 1, .hsync_len = 128, .vsync_len = 4, .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, .vmode = FB_VMODE_NONINTERLACED }; static void savage_enable_mmio (struct savagefb_par *par) { unsigned char val; DBG ("savage_enable_mmio\n"); val = vga_in8 (0x3c3, par); vga_out8 (0x3c3, val | 0x01, par); val = vga_in8 (0x3cc, par); vga_out8 (0x3c2, val | 0x01, par); if (par->chip >= S3_SAVAGE4) { vga_out8 (0x3d4, 0x40, par); val = vga_in8 (0x3d5, par); vga_out8 (0x3d5, val | 1, par); } } static void savage_disable_mmio (struct savagefb_par *par) { unsigned char val; DBG ("savage_disable_mmio\n"); if(par->chip >= S3_SAVAGE4 ) { vga_out8 (0x3d4, 0x40, par); val = vga_in8 (0x3d5, par); vga_out8 (0x3d5, val | 1, par); } } static int __devinit savage_map_mmio (struct fb_info *info) { struct savagefb_par *par = info->par; DBG ("savage_map_mmio"); if (S3_SAVAGE3D_SERIES (par->chip)) par->mmio.pbase = pci_resource_start (par->pcidev, 0) + SAVAGE_NEWMMIO_REGBASE_S3; else par->mmio.pbase = pci_resource_start (par->pcidev, 0) + SAVAGE_NEWMMIO_REGBASE_S4; par->mmio.len = SAVAGE_NEWMMIO_REGSIZE; par->mmio.vbase = ioremap (par->mmio.pbase, par->mmio.len); if (!par->mmio.vbase) { printk ("savagefb: unable to map memory mapped IO\n"); return -ENOMEM; } else printk (KERN_INFO "savagefb: mapped io at %p\n", par->mmio.vbase); info->fix.mmio_start = par->mmio.pbase; info->fix.mmio_len = par->mmio.len; par->bci_base = (u32 __iomem *)(par->mmio.vbase + BCI_BUFFER_OFFSET); par->bci_ptr = 0; savage_enable_mmio (par); return 0; } static void savage_unmap_mmio (struct fb_info *info) { struct savagefb_par *par = info->par; DBG ("savage_unmap_mmio"); savage_disable_mmio(par); if (par->mmio.vbase) { iounmap(par->mmio.vbase); par->mmio.vbase = NULL; } } static int __devinit savage_map_video (struct fb_info *info, int video_len) { struct savagefb_par *par = info->par; int resource; DBG("savage_map_video"); if (S3_SAVAGE3D_SERIES (par->chip)) resource = 0; else resource = 1; par->video.pbase = pci_resource_start (par->pcidev, resource); par->video.len = video_len; par->video.vbase = ioremap (par->video.pbase, par->video.len); if (!par->video.vbase) { printk ("savagefb: unable to map screen memory\n"); return -ENOMEM; } else printk (KERN_INFO "savagefb: mapped framebuffer at %p, " "pbase == %x\n", par->video.vbase, par->video.pbase); info->fix.smem_start = par->video.pbase; info->fix.smem_len = par->video.len - par->cob_size; info->screen_base = par->video.vbase; #ifdef CONFIG_MTRR par->video.mtrr = mtrr_add (par->video.pbase, video_len, MTRR_TYPE_WRCOMB, 1); #endif /* Clear framebuffer, it's all white in memory after boot */ memset_io (par->video.vbase, 0, par->video.len); return 0; } static void savage_unmap_video (struct fb_info *info) { struct savagefb_par *par = info->par; DBG("savage_unmap_video"); if (par->video.vbase) { #ifdef CONFIG_MTRR mtrr_del (par->video.mtrr, par->video.pbase, par->video.len); #endif iounmap (par->video.vbase); par->video.vbase = NULL; info->screen_base = NULL; } } static int savage_init_hw (struct savagefb_par *par) { unsigned char config1, m, n, n1, n2, sr8, cr3f, cr66 = 0, tmp; static unsigned char RamSavage3D[] = { 8, 4, 4, 2 }; static unsigned char RamSavage4[] = { 2, 4, 8, 12, 16, 32, 64, 32 }; static unsigned char RamSavageMX[] = { 2, 8, 4, 16, 8, 16, 4, 16 }; static unsigned char RamSavageNB[] = { 0, 2, 4, 8, 16, 32, 2, 2 }; int videoRam, videoRambytes, dvi; DBG("savage_init_hw"); /* unprotect CRTC[0-7] */ vga_out8(0x3d4, 0x11, par); tmp = vga_in8(0x3d5, par); vga_out8(0x3d5, tmp & 0x7f, par); /* unlock extended regs */ vga_out16(0x3d4, 0x4838, par); vga_out16(0x3d4, 0xa039, par); vga_out16(0x3c4, 0x0608, par); vga_out8(0x3d4, 0x40, par); tmp = vga_in8(0x3d5, par); vga_out8(0x3d5, tmp & ~0x01, par); /* unlock sys regs */ vga_out8(0x3d4, 0x38, par); vga_out8(0x3d5, 0x48, par); /* Unlock system registers. */ vga_out16(0x3d4, 0x4838, par); /* Next go on to detect amount of installed ram */ vga_out8(0x3d4, 0x36, par); /* for register CR36 (CONFG_REG1), */ config1 = vga_in8(0x3d5, par); /* get amount of vram installed */ /* Compute the amount of video memory and offscreen memory. */ switch (par->chip) { case S3_SAVAGE3D: videoRam = RamSavage3D[ (config1 & 0xC0) >> 6 ] * 1024; break; case S3_SAVAGE4: /* * The Savage4 has one ugly special case to consider. On * systems with 4 banks of 2Mx32 SDRAM, the BIOS says 4MB * when it really means 8MB. Why do it the same when you * can do it different... */ vga_out8(0x3d4, 0x68, par); /* memory control 1 */ if( (vga_in8(0x3d5, par) & 0xC0) == (0x01 << 6) ) RamSavage4[1] = 8; /*FALLTHROUGH*/ case S3_SAVAGE2000: videoRam = RamSavage4[ (config1 & 0xE0) >> 5 ] * 1024; break; case S3_SAVAGE_MX: case S3_SUPERSAVAGE: videoRam = RamSavageMX[ (config1 & 0x0E) >> 1 ] * 1024; break; case S3_PROSAVAGE: videoRam = RamSavageNB[ (config1 & 0xE0) >> 5 ] * 1024; break; default: /* How did we get here? */ videoRam = 0; break; } videoRambytes = videoRam * 1024; printk (KERN_INFO "savagefb: probed videoram: %dk\n", videoRam); /* reset graphics engine to avoid memory corruption */ vga_out8 (0x3d4, 0x66, par); cr66 = vga_in8 (0x3d5, par); vga_out8 (0x3d5, cr66 | 0x02, par); udelay (10000); vga_out8 (0x3d4, 0x66, par); vga_out8 (0x3d5, cr66 & ~0x02, par); /* clear reset flag */ udelay (10000); /* * reset memory interface, 3D engine, AGP master, PCI master, * master engine unit, motion compensation/LPB */ vga_out8 (0x3d4, 0x3f, par); cr3f = vga_in8 (0x3d5, par); vga_out8 (0x3d5, cr3f | 0x08, par); udelay (10000); vga_out8 (0x3d4, 0x3f, par); vga_out8 (0x3d5, cr3f & ~0x08, par); /* clear reset flags */ udelay (10000); /* Savage ramdac speeds */ par->numClocks = 4; par->clock[0] = 250000; par->clock[1] = 250000; par->clock[2] = 220000; par->clock[3] = 220000; /* detect current mclk */ vga_out8(0x3c4, 0x08, par); sr8 = vga_in8(0x3c5, par); vga_out8(0x3c5, 0x06, par); vga_out8(0x3c4, 0x10, par); n = vga_in8(0x3c5, par); vga_out8(0x3c4, 0x11, par); m = vga_in8(0x3c5, par); vga_out8(0x3c4, 0x08, par); vga_out8(0x3c5, sr8, par); m &= 0x7f; n1 = n & 0x1f; n2 = (n >> 5) & 0x03; par->MCLK = ((1431818 * (m+2)) / (n1+2) / (1 << n2) + 50) / 100; printk (KERN_INFO "savagefb: Detected current MCLK value of %d kHz\n", par->MCLK); /* check for DVI/flat panel */ dvi = 0; if (par->chip == S3_SAVAGE4) { unsigned char sr30 = 0x00; vga_out8(0x3c4, 0x30, par); /* clear bit 1 */ vga_out8(0x3c5, vga_in8(0x3c5, par) & ~0x02, par); sr30 = vga_in8(0x3c5, par); if (sr30 & 0x02 /*0x04 */) { dvi = 1; printk("savagefb: Digital Flat Panel Detected\n"); } } if (S3_SAVAGE_MOBILE_SERIES(par->chip) && !par->crtonly) par->display_type = DISP_LCD; else if (dvi || (par->chip == S3_SAVAGE4 && par->dvi)) par->display_type = DISP_DFP; else par->display_type = DISP_CRT; /* Check LCD panel parrmation */ if (par->display_type == DISP_LCD) { unsigned char cr6b = VGArCR( 0x6b, par); int panelX = (VGArSEQ (0x61, par) + ((VGArSEQ (0x66, par) & 0x02) << 7) + 1) * 8; int panelY = (VGArSEQ (0x69, par) + ((VGArSEQ (0x6e, par) & 0x70) << 4) + 1); char * sTechnology = "Unknown"; /* OK, I admit it. I don't know how to limit the max dot clock * for LCD panels of various sizes. I thought I copied the * formula from the BIOS, but many users have parrmed me of * my folly. * * Instead, I'll abandon any attempt to automatically limit the * clock, and add an LCDClock option to XF86Config. Some day, * I should come back to this. */ enum ACTIVE_DISPLAYS { /* These are the bits in CR6B */ ActiveCRT = 0x01, ActiveLCD = 0x02, ActiveTV = 0x04, ActiveCRT2 = 0x20, ActiveDUO = 0x80 }; if ((VGArSEQ (0x39, par) & 0x03) == 0) { sTechnology = "TFT"; } else if ((VGArSEQ (0x30, par) & 0x01) == 0) { sTechnology = "DSTN"; } else { sTechnology = "STN"; } printk (KERN_INFO "savagefb: %dx%d %s LCD panel detected %s\n", panelX, panelY, sTechnology, cr6b & ActiveLCD ? "and active" : "but not active"); if( cr6b & ActiveLCD ) { /* * If the LCD is active and panel expansion is enabled, * we probably want to kill the HW cursor. */ printk (KERN_INFO "savagefb: Limiting video mode to " "%dx%d\n", panelX, panelY ); par->SavagePanelWidth = panelX; par->SavagePanelHeight = panelY; } else par->display_type = DISP_CRT; } savage_get_default_par (par, &par->state); par->save = par->state; if( S3_SAVAGE4_SERIES(par->chip) ) { /* * The Savage4 and ProSavage have COB coherency bugs which * render the buffer useless. We disable it. */ par->cob_index = 2; par->cob_size = 0x8000 << par->cob_index; par->cob_offset = videoRambytes; } else { /* We use 128kB for the COB on all chips. */ par->cob_index = 7; par->cob_size = 0x400 << par->cob_index; par->cob_offset = videoRambytes - par->cob_size; } return videoRambytes; } static int __devinit savage_init_fb_info (struct fb_info *info, struct pci_dev *dev, const struct pci_device_id *id) { struct savagefb_par *par = info->par; int err = 0; par->pcidev = dev; info->fix.type = FB_TYPE_PACKED_PIXELS; info->fix.type_aux = 0; info->fix.ypanstep = 1; info->fix.ywrapstep = 0; info->fix.accel = id->driver_data; switch (info->fix.accel) { case FB_ACCEL_SUPERSAVAGE: par->chip = S3_SUPERSAVAGE; snprintf (info->fix.id, 16, "SuperSavage"); break; case FB_ACCEL_SAVAGE4: par->chip = S3_SAVAGE4; snprintf (info->fix.id, 16, "Savage4"); break; case FB_ACCEL_SAVAGE3D: par->chip = S3_SAVAGE3D; snprintf (info->fix.id, 16, "Savage3D"); break; case FB_ACCEL_SAVAGE3D_MV: par->chip = S3_SAVAGE3D; snprintf (info->fix.id, 16, "Savage3D-MV"); break; case FB_ACCEL_SAVAGE2000: par->chip = S3_SAVAGE2000; snprintf (info->fix.id, 16, "Savage2000"); break; case FB_ACCEL_SAVAGE_MX_MV: par->chip = S3_SAVAGE_MX; snprintf (info->fix.id, 16, "Savage/MX-MV"); break; case FB_ACCEL_SAVAGE_MX: par->chip = S3_SAVAGE_MX; snprintf (info->fix.id, 16, "Savage/MX"); break; case FB_ACCEL_SAVAGE_IX_MV: par->chip = S3_SAVAGE_MX; snprintf (info->fix.id, 16, "Savage/IX-MV"); break; case FB_ACCEL_SAVAGE_IX: par->chip = S3_SAVAGE_MX; snprintf (info->fix.id, 16, "Savage/IX"); break; case FB_ACCEL_PROSAVAGE_PM: par->chip = S3_PROSAVAGE; snprintf (info->fix.id, 16, "ProSavagePM"); break; case FB_ACCEL_PROSAVAGE_KM: par->chip = S3_PROSAVAGE; snprintf (info->fix.id, 16, "ProSavageKM"); break; case FB_ACCEL_S3TWISTER_P: par->chip = S3_PROSAVAGE; snprintf (info->fix.id, 16, "TwisterP"); break; case FB_ACCEL_S3TWISTER_K: par->chip = S3_PROSAVAGE; snprintf (info->fix.id, 16, "TwisterK"); break; case FB_ACCEL_PROSAVAGE_DDR: par->chip = S3_PROSAVAGE; snprintf (info->fix.id, 16, "ProSavageDDR"); break; case FB_ACCEL_PROSAVAGE_DDRK: par->chip = S3_PROSAVAGE; snprintf (info->fix.id, 16, "ProSavage8"); break; } if (S3_SAVAGE3D_SERIES(par->chip)) { par->SavageWaitIdle = savage3D_waitidle; par->SavageWaitFifo = savage3D_waitfifo; } else if (S3_SAVAGE4_SERIES(par->chip) || S3_SUPERSAVAGE == par->chip) { par->SavageWaitIdle = savage4_waitidle; par->SavageWaitFifo = savage4_waitfifo; } else { par->SavageWaitIdle = savage2000_waitidle; par->SavageWaitFifo = savage2000_waitfifo; } info->var.nonstd = 0; info->var.activate = FB_ACTIVATE_NOW; info->var.width = -1; info->var.height = -1; info->var.accel_flags = 0; info->fbops = &savagefb_ops; info->flags = FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN | FBINFO_HWACCEL_XPAN; info->pseudo_palette = par->pseudo_palette; #if defined(CONFIG_FB_SAVAGE_ACCEL) /* FIFO size + padding for commands */ info->pixmap.addr = kmalloc(8*1024, GFP_KERNEL); err = -ENOMEM; if (info->pixmap.addr) { memset(info->pixmap.addr, 0, 8*1024); info->pixmap.size = 8*1024; info->pixmap.scan_align = 4; info->pixmap.buf_align = 4; info->pixmap.access_align = 32; err = fb_alloc_cmap (&info->cmap, NR_PALETTE, 0); if (!err) info->flags |= FBINFO_HWACCEL_COPYAREA | FBINFO_HWACCEL_FILLRECT | FBINFO_HWACCEL_IMAGEBLIT; } #endif return err; } /* --------------------------------------------------------------------- */ static int __devinit savagefb_probe (struct pci_dev* dev, const struct pci_device_id* id) { struct fb_info *info; struct savagefb_par *par; u_int h_sync, v_sync; int err, lpitch; int video_len; DBG("savagefb_probe"); SavagePrintRegs(); info = framebuffer_alloc(sizeof(struct savagefb_par), &dev->dev); if (!info) return -ENOMEM; par = info->par; err = pci_enable_device(dev); if (err) goto failed_enable; if ((err = pci_request_regions(dev, "savagefb"))) { printk(KERN_ERR "cannot request PCI regions\n"); goto failed_enable; } err = -ENOMEM; if ((err = savage_init_fb_info(info, dev, id))) goto failed_init; err = savage_map_mmio(info); if (err) goto failed_mmio; video_len = savage_init_hw(par); /* FIXME: cant be negative */ if (video_len < 0) { err = video_len; goto failed_mmio; } err = savage_map_video(info, video_len); if (err) goto failed_video; INIT_LIST_HEAD(&info->modelist); #if defined(CONFIG_FB_SAVAGE_I2C) savagefb_create_i2c_busses(info); savagefb_probe_i2c_connector(info, &par->edid); fb_edid_to_monspecs(par->edid, &info->monspecs); kfree(par->edid); fb_videomode_to_modelist(info->monspecs.modedb, info->monspecs.modedb_len, &info->modelist); #endif info->var = savagefb_var800x600x8; if (mode_option) { fb_find_mode(&info->var, info, mode_option, info->monspecs.modedb, info->monspecs.modedb_len, NULL, 8); } else if (info->monspecs.modedb != NULL) { struct fb_videomode *modedb; modedb = fb_find_best_display(&info->monspecs, &info->modelist); savage_update_var(&info->var, modedb); } /* maximize virtual vertical length */ lpitch = info->var.xres_virtual*((info->var.bits_per_pixel + 7) >> 3); info->var.yres_virtual = info->fix.smem_len/lpitch; if (info->var.yres_virtual < info->var.yres) goto failed; #if defined(CONFIG_FB_SAVAGE_ACCEL) /* * The clipping coordinates are masked with 0xFFF, so limit our * virtual resolutions to these sizes. */ if (info->var.yres_virtual > 0x1000) info->var.yres_virtual = 0x1000; if (info->var.xres_virtual > 0x1000) info->var.xres_virtual = 0x1000; #endif savagefb_check_var(&info->var, info); savagefb_set_fix(info); /* * Calculate the hsync and vsync frequencies. Note that * we split the 1e12 constant up so that we can preserve * the precision and fit the results into 32-bit registers. * (1953125000 * 512 = 1e12) */ h_sync = 1953125000 / info->var.pixclock; h_sync = h_sync * 512 / (info->var.xres + info->var.left_margin + info->var.right_margin + info->var.hsync_len); v_sync = h_sync / (info->var.yres + info->var.upper_margin + info->var.lower_margin + info->var.vsync_len); printk(KERN_INFO "savagefb v" SAVAGEFB_VERSION ": " "%dkB VRAM, using %dx%d, %d.%03dkHz, %dHz\n", info->fix.smem_len >> 10, info->var.xres, info->var.yres, h_sync / 1000, h_sync % 1000, v_sync); fb_destroy_modedb(info->monspecs.modedb); info->monspecs.modedb = NULL; err = register_framebuffer (info); if (err < 0) goto failed; printk (KERN_INFO "fb: S3 %s frame buffer device\n", info->fix.id); /* * Our driver data */ pci_set_drvdata(dev, info); return 0; failed: #ifdef CONFIG_FB_SAVAGE_I2C savagefb_delete_i2c_busses(info); #endif fb_alloc_cmap (&info->cmap, 0, 0); savage_unmap_video(info); failed_video: savage_unmap_mmio (info); failed_mmio: kfree(info->pixmap.addr); failed_init: pci_release_regions(dev); failed_enable: framebuffer_release(info); return err; } static void __devexit savagefb_remove (struct pci_dev *dev) { struct fb_info *info = pci_get_drvdata(dev); DBG("savagefb_remove"); if (info) { /* * If unregister_framebuffer fails, then * we will be leaving hooks that could cause * oopsen laying around. */ if (unregister_framebuffer (info)) printk (KERN_WARNING "savagefb: danger danger! " "Oopsen imminent!\n"); #ifdef CONFIG_FB_SAVAGE_I2C savagefb_delete_i2c_busses(info); #endif fb_alloc_cmap (&info->cmap, 0, 0); savage_unmap_video (info); savage_unmap_mmio (info); kfree(info->pixmap.addr); pci_release_regions(dev); framebuffer_release(info); /* * Ensure that the driver data is no longer * valid. */ pci_set_drvdata(dev, NULL); } } static int savagefb_suspend (struct pci_dev* dev, pm_message_t state) { struct fb_info *info = pci_get_drvdata(dev); struct savagefb_par *par = info->par; DBG("savagefb_suspend"); par->pm_state = state.event; /* * For PM_EVENT_FREEZE, do not power down so the console * can remain active. */ if (state.event == PM_EVENT_FREEZE) { dev->dev.power.power_state = state; return 0; } acquire_console_sem(); fb_set_suspend(info, 1); if (info->fbops->fb_sync) info->fbops->fb_sync(info); savagefb_blank(FB_BLANK_POWERDOWN, info); savage_set_default_par(par, &par->save); savage_disable_mmio(par); pci_save_state(dev); pci_disable_device(dev); pci_set_power_state(dev, pci_choose_state(dev, state)); release_console_sem(); return 0; } static int savagefb_resume (struct pci_dev* dev) { struct fb_info *info = pci_get_drvdata(dev); struct savagefb_par *par = info->par; int cur_state = par->pm_state; DBG("savage_resume"); par->pm_state = PM_EVENT_ON; /* * The adapter was not powered down coming back from a * PM_EVENT_FREEZE. */ if (cur_state == PM_EVENT_FREEZE) { pci_set_power_state(dev, PCI_D0); return 0; } acquire_console_sem(); pci_set_power_state(dev, PCI_D0); pci_restore_state(dev); if(pci_enable_device(dev)) DBG("err"); pci_set_master(dev); savage_enable_mmio(par); savage_init_hw(par); savagefb_set_par(info); fb_set_suspend (info, 0); savagefb_blank(FB_BLANK_UNBLANK, info); release_console_sem(); return 0; } static struct pci_device_id savagefb_devices[] __devinitdata = { {PCI_VENDOR_ID_S3, PCI_CHIP_SUPSAV_MX128, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SUPERSAVAGE}, {PCI_VENDOR_ID_S3, PCI_CHIP_SUPSAV_MX64, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SUPERSAVAGE}, {PCI_VENDOR_ID_S3, PCI_CHIP_SUPSAV_MX64C, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SUPERSAVAGE}, {PCI_VENDOR_ID_S3, PCI_CHIP_SUPSAV_IX128SDR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SUPERSAVAGE}, {PCI_VENDOR_ID_S3, PCI_CHIP_SUPSAV_IX128DDR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SUPERSAVAGE}, {PCI_VENDOR_ID_S3, PCI_CHIP_SUPSAV_IX64SDR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SUPERSAVAGE}, {PCI_VENDOR_ID_S3, PCI_CHIP_SUPSAV_IX64DDR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SUPERSAVAGE}, {PCI_VENDOR_ID_S3, PCI_CHIP_SUPSAV_IXCSDR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SUPERSAVAGE}, {PCI_VENDOR_ID_S3, PCI_CHIP_SUPSAV_IXCDDR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SUPERSAVAGE}, {PCI_VENDOR_ID_S3, PCI_CHIP_SAVAGE4, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SAVAGE4}, {PCI_VENDOR_ID_S3, PCI_CHIP_SAVAGE3D, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SAVAGE3D}, {PCI_VENDOR_ID_S3, PCI_CHIP_SAVAGE3D_MV, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SAVAGE3D_MV}, {PCI_VENDOR_ID_S3, PCI_CHIP_SAVAGE2000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SAVAGE2000}, {PCI_VENDOR_ID_S3, PCI_CHIP_SAVAGE_MX_MV, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SAVAGE_MX_MV}, {PCI_VENDOR_ID_S3, PCI_CHIP_SAVAGE_MX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SAVAGE_MX}, {PCI_VENDOR_ID_S3, PCI_CHIP_SAVAGE_IX_MV, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SAVAGE_IX_MV}, {PCI_VENDOR_ID_S3, PCI_CHIP_SAVAGE_IX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_SAVAGE_IX}, {PCI_VENDOR_ID_S3, PCI_CHIP_PROSAVAGE_PM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_PROSAVAGE_PM}, {PCI_VENDOR_ID_S3, PCI_CHIP_PROSAVAGE_KM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_PROSAVAGE_KM}, {PCI_VENDOR_ID_S3, PCI_CHIP_S3TWISTER_P, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_S3TWISTER_P}, {PCI_VENDOR_ID_S3, PCI_CHIP_S3TWISTER_K, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_S3TWISTER_K}, {PCI_VENDOR_ID_S3, PCI_CHIP_PROSAVAGE_DDR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_PROSAVAGE_DDR}, {PCI_VENDOR_ID_S3, PCI_CHIP_PROSAVAGE_DDRK, PCI_ANY_ID, PCI_ANY_ID, 0, 0, FB_ACCEL_PROSAVAGE_DDRK}, {0, 0, 0, 0, 0, 0, 0} }; MODULE_DEVICE_TABLE(pci, savagefb_devices); static struct pci_driver savagefb_driver = { .name = "savagefb", .id_table = savagefb_devices, .probe = savagefb_probe, .suspend = savagefb_suspend, .resume = savagefb_resume, .remove = __devexit_p(savagefb_remove) }; /* **************************** exit-time only **************************** */ static void __exit savage_done (void) { DBG("savage_done"); pci_unregister_driver (&savagefb_driver); } /* ************************* init in-kernel code ************************** */ static int __init savagefb_setup(char *options) { #ifndef MODULE char *this_opt; if (!options || !*options) return 0; while ((this_opt = strsep(&options, ",")) != NULL) { mode_option = this_opt; } #endif /* !MODULE */ return 0; } static int __init savagefb_init(void) { char *option; DBG("savagefb_init"); if (fb_get_options("savagefb", &option)) return -ENODEV; savagefb_setup(option); return pci_register_driver (&savagefb_driver); } module_init(savagefb_init); module_exit(savage_done); module_param(mode_option, charp, 0); MODULE_PARM_DESC(mode_option, "Specify initial video mode");