/* * Freescale SPI controller driver. * * Maintainer: Kumar Gala * * Copyright (C) 2006 Polycom, Inc. * Copyright 2010 Freescale Semiconductor, Inc. * * CPM SPI and QE buffer descriptors mode support: * Copyright (c) 2009 MontaVista Software, Inc. * Author: Anton Vorontsov <avorontsov@ru.mvista.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/irq.h> #include <linux/spi/spi.h> #include <linux/spi/spi_bitbang.h> #include <linux/platform_device.h> #include <linux/fsl_devices.h> #include <linux/dma-mapping.h> #include <linux/mm.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/gpio.h> #include <linux/of_gpio.h> #include <sysdev/fsl_soc.h> #include <asm/cpm.h> #include <asm/qe.h> #include "spi-fsl-lib.h" /* CPM1 and CPM2 are mutually exclusive. */ #ifdef CONFIG_CPM1 #include <asm/cpm1.h> #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_CH_SPI, 0) #else #include <asm/cpm2.h> #define CPM_SPI_CMD mk_cr_cmd(CPM_CR_SPI_PAGE, CPM_CR_SPI_SBLOCK, 0, 0) #endif /* SPI Controller registers */ struct fsl_spi_reg { u8 res1[0x20]; __be32 mode; __be32 event; __be32 mask; __be32 command; __be32 transmit; __be32 receive; }; /* SPI Controller mode register definitions */ #define SPMODE_LOOP (1 << 30) #define SPMODE_CI_INACTIVEHIGH (1 << 29) #define SPMODE_CP_BEGIN_EDGECLK (1 << 28) #define SPMODE_DIV16 (1 << 27) #define SPMODE_REV (1 << 26) #define SPMODE_MS (1 << 25) #define SPMODE_ENABLE (1 << 24) #define SPMODE_LEN(x) ((x) << 20) #define SPMODE_PM(x) ((x) << 16) #define SPMODE_OP (1 << 14) #define SPMODE_CG(x) ((x) << 7) /* * Default for SPI Mode: * SPI MODE 0 (inactive low, phase middle, MSB, 8-bit length, slow clk */ #define SPMODE_INIT_VAL (SPMODE_CI_INACTIVEHIGH | SPMODE_DIV16 | SPMODE_REV | \ SPMODE_MS | SPMODE_LEN(7) | SPMODE_PM(0xf)) /* SPIE register values */ #define SPIE_NE 0x00000200 /* Not empty */ #define SPIE_NF 0x00000100 /* Not full */ /* SPIM register values */ #define SPIM_NE 0x00000200 /* Not empty */ #define SPIM_NF 0x00000100 /* Not full */ #define SPIE_TXB 0x00000200 /* Last char is written to tx fifo */ #define SPIE_RXB 0x00000100 /* Last char is written to rx buf */ /* SPCOM register values */ #define SPCOM_STR (1 << 23) /* Start transmit */ #define SPI_PRAM_SIZE 0x100 #define SPI_MRBLR ((unsigned int)PAGE_SIZE) static void *fsl_dummy_rx; static DEFINE_MUTEX(fsl_dummy_rx_lock); static int fsl_dummy_rx_refcnt; static void fsl_spi_change_mode(struct spi_device *spi) { struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master); struct spi_mpc8xxx_cs *cs = spi->controller_state; struct fsl_spi_reg *reg_base = mspi->reg_base; __be32 __iomem *mode = ®_base->mode; unsigned long flags; if (cs->hw_mode == mpc8xxx_spi_read_reg(mode)) return; /* Turn off IRQs locally to minimize time that SPI is disabled. */ local_irq_save(flags); /* Turn off SPI unit prior changing mode */ mpc8xxx_spi_write_reg(mode, cs->hw_mode & ~SPMODE_ENABLE); /* When in CPM mode, we need to reinit tx and rx. */ if (mspi->flags & SPI_CPM_MODE) { if (mspi->flags & SPI_QE) { qe_issue_cmd(QE_INIT_TX_RX, mspi->subblock, QE_CR_PROTOCOL_UNSPECIFIED, 0); } else { cpm_command(CPM_SPI_CMD, CPM_CR_INIT_TRX); if (mspi->flags & SPI_CPM1) { out_be16(&mspi->pram->rbptr, in_be16(&mspi->pram->rbase)); out_be16(&mspi->pram->tbptr, in_be16(&mspi->pram->tbase)); } } } mpc8xxx_spi_write_reg(mode, cs->hw_mode); local_irq_restore(flags); } static void fsl_spi_chipselect(struct spi_device *spi, int value) { struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master); struct fsl_spi_platform_data *pdata = spi->dev.parent->platform_data; bool pol = spi->mode & SPI_CS_HIGH; struct spi_mpc8xxx_cs *cs = spi->controller_state; if (value == BITBANG_CS_INACTIVE) { if (pdata->cs_control) pdata->cs_control(spi, !pol); } if (value == BITBANG_CS_ACTIVE) { mpc8xxx_spi->rx_shift = cs->rx_shift; mpc8xxx_spi->tx_shift = cs->tx_shift; mpc8xxx_spi->get_rx = cs->get_rx; mpc8xxx_spi->get_tx = cs->get_tx; fsl_spi_change_mode(spi); if (pdata->cs_control) pdata->cs_control(spi, pol); } } static int mspi_apply_cpu_mode_quirks(struct spi_mpc8xxx_cs *cs, struct spi_device *spi, struct mpc8xxx_spi *mpc8xxx_spi, int bits_per_word) { cs->rx_shift = 0; cs->tx_shift = 0; if (bits_per_word <= 8) { cs->get_rx = mpc8xxx_spi_rx_buf_u8; cs->get_tx = mpc8xxx_spi_tx_buf_u8; if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) { cs->rx_shift = 16; cs->tx_shift = 24; } } else if (bits_per_word <= 16) { cs->get_rx = mpc8xxx_spi_rx_buf_u16; cs->get_tx = mpc8xxx_spi_tx_buf_u16; if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) { cs->rx_shift = 16; cs->tx_shift = 16; } } else if (bits_per_word <= 32) { cs->get_rx = mpc8xxx_spi_rx_buf_u32; cs->get_tx = mpc8xxx_spi_tx_buf_u32; } else return -EINVAL; if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE && spi->mode & SPI_LSB_FIRST) { cs->tx_shift = 0; if (bits_per_word <= 8) cs->rx_shift = 8; else cs->rx_shift = 0; } mpc8xxx_spi->rx_shift = cs->rx_shift; mpc8xxx_spi->tx_shift = cs->tx_shift; mpc8xxx_spi->get_rx = cs->get_rx; mpc8xxx_spi->get_tx = cs->get_tx; return bits_per_word; } static int mspi_apply_qe_mode_quirks(struct spi_mpc8xxx_cs *cs, struct spi_device *spi, int bits_per_word) { /* QE uses Little Endian for words > 8 * so transform all words > 8 into 8 bits * Unfortnatly that doesn't work for LSB so * reject these for now */ /* Note: 32 bits word, LSB works iff * tfcr/rfcr is set to CPMFCR_GBL */ if (spi->mode & SPI_LSB_FIRST && bits_per_word > 8) return -EINVAL; if (bits_per_word > 8) return 8; /* pretend its 8 bits */ return bits_per_word; } static int fsl_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct mpc8xxx_spi *mpc8xxx_spi; int bits_per_word = 0; u8 pm; u32 hz = 0; struct spi_mpc8xxx_cs *cs = spi->controller_state; mpc8xxx_spi = spi_master_get_devdata(spi->master); if (t) { bits_per_word = t->bits_per_word; hz = t->speed_hz; } /* spi_transfer level calls that work per-word */ if (!bits_per_word) bits_per_word = spi->bits_per_word; /* Make sure its a bit width we support [4..16, 32] */ if ((bits_per_word < 4) || ((bits_per_word > 16) && (bits_per_word != 32))) return -EINVAL; if (!hz) hz = spi->max_speed_hz; if (!(mpc8xxx_spi->flags & SPI_CPM_MODE)) bits_per_word = mspi_apply_cpu_mode_quirks(cs, spi, mpc8xxx_spi, bits_per_word); else if (mpc8xxx_spi->flags & SPI_QE) bits_per_word = mspi_apply_qe_mode_quirks(cs, spi, bits_per_word); if (bits_per_word < 0) return bits_per_word; if (bits_per_word == 32) bits_per_word = 0; else bits_per_word = bits_per_word - 1; /* mask out bits we are going to set */ cs->hw_mode &= ~(SPMODE_LEN(0xF) | SPMODE_DIV16 | SPMODE_PM(0xF)); cs->hw_mode |= SPMODE_LEN(bits_per_word); if ((mpc8xxx_spi->spibrg / hz) > 64) { cs->hw_mode |= SPMODE_DIV16; pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1; WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. " "Will use %d Hz instead.\n", dev_name(&spi->dev), hz, mpc8xxx_spi->spibrg / 1024); if (pm > 16) pm = 16; } else { pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1; } if (pm) pm--; cs->hw_mode |= SPMODE_PM(pm); fsl_spi_change_mode(spi); return 0; } static void fsl_spi_cpm_bufs_start(struct mpc8xxx_spi *mspi) { struct cpm_buf_desc __iomem *tx_bd = mspi->tx_bd; struct cpm_buf_desc __iomem *rx_bd = mspi->rx_bd; unsigned int xfer_len = min(mspi->count, SPI_MRBLR); unsigned int xfer_ofs; struct fsl_spi_reg *reg_base = mspi->reg_base; xfer_ofs = mspi->xfer_in_progress->len - mspi->count; if (mspi->rx_dma == mspi->dma_dummy_rx) out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma); else out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma + xfer_ofs); out_be16(&rx_bd->cbd_datlen, 0); out_be16(&rx_bd->cbd_sc, BD_SC_EMPTY | BD_SC_INTRPT | BD_SC_WRAP); if (mspi->tx_dma == mspi->dma_dummy_tx) out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma); else out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma + xfer_ofs); out_be16(&tx_bd->cbd_datlen, xfer_len); out_be16(&tx_bd->cbd_sc, BD_SC_READY | BD_SC_INTRPT | BD_SC_WRAP | BD_SC_LAST); /* start transfer */ mpc8xxx_spi_write_reg(®_base->command, SPCOM_STR); } static int fsl_spi_cpm_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t, bool is_dma_mapped) { struct device *dev = mspi->dev; struct fsl_spi_reg *reg_base = mspi->reg_base; if (is_dma_mapped) { mspi->map_tx_dma = 0; mspi->map_rx_dma = 0; } else { mspi->map_tx_dma = 1; mspi->map_rx_dma = 1; } if (!t->tx_buf) { mspi->tx_dma = mspi->dma_dummy_tx; mspi->map_tx_dma = 0; } if (!t->rx_buf) { mspi->rx_dma = mspi->dma_dummy_rx; mspi->map_rx_dma = 0; } if (mspi->map_tx_dma) { void *nonconst_tx = (void *)mspi->tx; /* shut up gcc */ mspi->tx_dma = dma_map_single(dev, nonconst_tx, t->len, DMA_TO_DEVICE); if (dma_mapping_error(dev, mspi->tx_dma)) { dev_err(dev, "unable to map tx dma\n"); return -ENOMEM; } } else if (t->tx_buf) { mspi->tx_dma = t->tx_dma; } if (mspi->map_rx_dma) { mspi->rx_dma = dma_map_single(dev, mspi->rx, t->len, DMA_FROM_DEVICE); if (dma_mapping_error(dev, mspi->rx_dma)) { dev_err(dev, "unable to map rx dma\n"); goto err_rx_dma; } } else if (t->rx_buf) { mspi->rx_dma = t->rx_dma; } /* enable rx ints */ mpc8xxx_spi_write_reg(®_base->mask, SPIE_RXB); mspi->xfer_in_progress = t; mspi->count = t->len; /* start CPM transfers */ fsl_spi_cpm_bufs_start(mspi); return 0; err_rx_dma: if (mspi->map_tx_dma) dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE); return -ENOMEM; } static void fsl_spi_cpm_bufs_complete(struct mpc8xxx_spi *mspi) { struct device *dev = mspi->dev; struct spi_transfer *t = mspi->xfer_in_progress; if (mspi->map_tx_dma) dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE); if (mspi->map_rx_dma) dma_unmap_single(dev, mspi->rx_dma, t->len, DMA_FROM_DEVICE); mspi->xfer_in_progress = NULL; } static int fsl_spi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t, unsigned int len) { u32 word; struct fsl_spi_reg *reg_base = mspi->reg_base; mspi->count = len; /* enable rx ints */ mpc8xxx_spi_write_reg(®_base->mask, SPIM_NE); /* transmit word */ word = mspi->get_tx(mspi); mpc8xxx_spi_write_reg(®_base->transmit, word); return 0; } static int fsl_spi_bufs(struct spi_device *spi, struct spi_transfer *t, bool is_dma_mapped) { struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master); struct fsl_spi_reg *reg_base; unsigned int len = t->len; u8 bits_per_word; int ret; reg_base = mpc8xxx_spi->reg_base; bits_per_word = spi->bits_per_word; if (t->bits_per_word) bits_per_word = t->bits_per_word; if (bits_per_word > 8) { /* invalid length? */ if (len & 1) return -EINVAL; len /= 2; } if (bits_per_word > 16) { /* invalid length? */ if (len & 1) return -EINVAL; len /= 2; } mpc8xxx_spi->tx = t->tx_buf; mpc8xxx_spi->rx = t->rx_buf; INIT_COMPLETION(mpc8xxx_spi->done); if (mpc8xxx_spi->flags & SPI_CPM_MODE) ret = fsl_spi_cpm_bufs(mpc8xxx_spi, t, is_dma_mapped); else ret = fsl_spi_cpu_bufs(mpc8xxx_spi, t, len); if (ret) return ret; wait_for_completion(&mpc8xxx_spi->done); /* disable rx ints */ mpc8xxx_spi_write_reg(®_base->mask, 0); if (mpc8xxx_spi->flags & SPI_CPM_MODE) fsl_spi_cpm_bufs_complete(mpc8xxx_spi); return mpc8xxx_spi->count; } static void fsl_spi_do_one_msg(struct spi_message *m) { struct spi_device *spi = m->spi; struct spi_transfer *t; unsigned int cs_change; const int nsecs = 50; int status; cs_change = 1; status = 0; list_for_each_entry(t, &m->transfers, transfer_list) { if (t->bits_per_word || t->speed_hz) { /* Don't allow changes if CS is active */ status = -EINVAL; if (cs_change) status = fsl_spi_setup_transfer(spi, t); if (status < 0) break; } if (cs_change) { fsl_spi_chipselect(spi, BITBANG_CS_ACTIVE); ndelay(nsecs); } cs_change = t->cs_change; if (t->len) status = fsl_spi_bufs(spi, t, m->is_dma_mapped); if (status) { status = -EMSGSIZE; break; } m->actual_length += t->len; if (t->delay_usecs) udelay(t->delay_usecs); if (cs_change) { ndelay(nsecs); fsl_spi_chipselect(spi, BITBANG_CS_INACTIVE); ndelay(nsecs); } } m->status = status; m->complete(m->context); if (status || !cs_change) { ndelay(nsecs); fsl_spi_chipselect(spi, BITBANG_CS_INACTIVE); } fsl_spi_setup_transfer(spi, NULL); } static int fsl_spi_setup(struct spi_device *spi) { struct mpc8xxx_spi *mpc8xxx_spi; struct fsl_spi_reg *reg_base; int retval; u32 hw_mode; struct spi_mpc8xxx_cs *cs = spi->controller_state; if (!spi->max_speed_hz) return -EINVAL; if (!cs) { cs = kzalloc(sizeof *cs, GFP_KERNEL); if (!cs) return -ENOMEM; spi->controller_state = cs; } mpc8xxx_spi = spi_master_get_devdata(spi->master); reg_base = mpc8xxx_spi->reg_base; hw_mode = cs->hw_mode; /* Save original settings */ cs->hw_mode = mpc8xxx_spi_read_reg(®_base->mode); /* mask out bits we are going to set */ cs->hw_mode &= ~(SPMODE_CP_BEGIN_EDGECLK | SPMODE_CI_INACTIVEHIGH | SPMODE_REV | SPMODE_LOOP); if (spi->mode & SPI_CPHA) cs->hw_mode |= SPMODE_CP_BEGIN_EDGECLK; if (spi->mode & SPI_CPOL) cs->hw_mode |= SPMODE_CI_INACTIVEHIGH; if (!(spi->mode & SPI_LSB_FIRST)) cs->hw_mode |= SPMODE_REV; if (spi->mode & SPI_LOOP) cs->hw_mode |= SPMODE_LOOP; retval = fsl_spi_setup_transfer(spi, NULL); if (retval < 0) { cs->hw_mode = hw_mode; /* Restore settings */ return retval; } return 0; } static void fsl_spi_cpm_irq(struct mpc8xxx_spi *mspi, u32 events) { u16 len; struct fsl_spi_reg *reg_base = mspi->reg_base; dev_dbg(mspi->dev, "%s: bd datlen %d, count %d\n", __func__, in_be16(&mspi->rx_bd->cbd_datlen), mspi->count); len = in_be16(&mspi->rx_bd->cbd_datlen); if (len > mspi->count) { WARN_ON(1); len = mspi->count; } /* Clear the events */ mpc8xxx_spi_write_reg(®_base->event, events); mspi->count -= len; if (mspi->count) fsl_spi_cpm_bufs_start(mspi); else complete(&mspi->done); } static void fsl_spi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events) { struct fsl_spi_reg *reg_base = mspi->reg_base; /* We need handle RX first */ if (events & SPIE_NE) { u32 rx_data = mpc8xxx_spi_read_reg(®_base->receive); if (mspi->rx) mspi->get_rx(rx_data, mspi); } if ((events & SPIE_NF) == 0) /* spin until TX is done */ while (((events = mpc8xxx_spi_read_reg(®_base->event)) & SPIE_NF) == 0) cpu_relax(); /* Clear the events */ mpc8xxx_spi_write_reg(®_base->event, events); mspi->count -= 1; if (mspi->count) { u32 word = mspi->get_tx(mspi); mpc8xxx_spi_write_reg(®_base->transmit, word); } else { complete(&mspi->done); } } static irqreturn_t fsl_spi_irq(s32 irq, void *context_data) { struct mpc8xxx_spi *mspi = context_data; irqreturn_t ret = IRQ_NONE; u32 events; struct fsl_spi_reg *reg_base = mspi->reg_base; /* Get interrupt events(tx/rx) */ events = mpc8xxx_spi_read_reg(®_base->event); if (events) ret = IRQ_HANDLED; dev_dbg(mspi->dev, "%s: events %x\n", __func__, events); if (mspi->flags & SPI_CPM_MODE) fsl_spi_cpm_irq(mspi, events); else fsl_spi_cpu_irq(mspi, events); return ret; } static void *fsl_spi_alloc_dummy_rx(void) { mutex_lock(&fsl_dummy_rx_lock); if (!fsl_dummy_rx) fsl_dummy_rx = kmalloc(SPI_MRBLR, GFP_KERNEL); if (fsl_dummy_rx) fsl_dummy_rx_refcnt++; mutex_unlock(&fsl_dummy_rx_lock); return fsl_dummy_rx; } static void fsl_spi_free_dummy_rx(void) { mutex_lock(&fsl_dummy_rx_lock); switch (fsl_dummy_rx_refcnt) { case 0: WARN_ON(1); break; case 1: kfree(fsl_dummy_rx); fsl_dummy_rx = NULL; /* fall through */ default: fsl_dummy_rx_refcnt--; break; } mutex_unlock(&fsl_dummy_rx_lock); } static unsigned long fsl_spi_cpm_get_pram(struct mpc8xxx_spi *mspi) { struct device *dev = mspi->dev; struct device_node *np = dev->of_node; const u32 *iprop; int size; void __iomem *spi_base; unsigned long pram_ofs = -ENOMEM; /* Can't use of_address_to_resource(), QE muram isn't at 0. */ iprop = of_get_property(np, "reg", &size); /* QE with a fixed pram location? */ if (mspi->flags & SPI_QE && iprop && size == sizeof(*iprop) * 4) return cpm_muram_alloc_fixed(iprop[2], SPI_PRAM_SIZE); /* QE but with a dynamic pram location? */ if (mspi->flags & SPI_QE) { pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64); qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, mspi->subblock, QE_CR_PROTOCOL_UNSPECIFIED, pram_ofs); return pram_ofs; } spi_base = of_iomap(np, 1); if (spi_base == NULL) return -EINVAL; if (mspi->flags & SPI_CPM2) { pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64); out_be16(spi_base, pram_ofs); } else { struct spi_pram __iomem *pram = spi_base; u16 rpbase = in_be16(&pram->rpbase); /* Microcode relocation patch applied? */ if (rpbase) pram_ofs = rpbase; else { pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64); out_be16(spi_base, pram_ofs); } } iounmap(spi_base); return pram_ofs; } static int fsl_spi_cpm_init(struct mpc8xxx_spi *mspi) { struct device *dev = mspi->dev; struct device_node *np = dev->of_node; const u32 *iprop; int size; unsigned long pram_ofs; unsigned long bds_ofs; if (!(mspi->flags & SPI_CPM_MODE)) return 0; if (!fsl_spi_alloc_dummy_rx()) return -ENOMEM; if (mspi->flags & SPI_QE) { iprop = of_get_property(np, "cell-index", &size); if (iprop && size == sizeof(*iprop)) mspi->subblock = *iprop; switch (mspi->subblock) { default: dev_warn(dev, "cell-index unspecified, assuming SPI1"); /* fall through */ case 0: mspi->subblock = QE_CR_SUBBLOCK_SPI1; break; case 1: mspi->subblock = QE_CR_SUBBLOCK_SPI2; break; } } pram_ofs = fsl_spi_cpm_get_pram(mspi); if (IS_ERR_VALUE(pram_ofs)) { dev_err(dev, "can't allocate spi parameter ram\n"); goto err_pram; } bds_ofs = cpm_muram_alloc(sizeof(*mspi->tx_bd) + sizeof(*mspi->rx_bd), 8); if (IS_ERR_VALUE(bds_ofs)) { dev_err(dev, "can't allocate bds\n"); goto err_bds; } mspi->dma_dummy_tx = dma_map_single(dev, empty_zero_page, PAGE_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dev, mspi->dma_dummy_tx)) { dev_err(dev, "unable to map dummy tx buffer\n"); goto err_dummy_tx; } mspi->dma_dummy_rx = dma_map_single(dev, fsl_dummy_rx, SPI_MRBLR, DMA_FROM_DEVICE); if (dma_mapping_error(dev, mspi->dma_dummy_rx)) { dev_err(dev, "unable to map dummy rx buffer\n"); goto err_dummy_rx; } mspi->pram = cpm_muram_addr(pram_ofs); mspi->tx_bd = cpm_muram_addr(bds_ofs); mspi->rx_bd = cpm_muram_addr(bds_ofs + sizeof(*mspi->tx_bd)); /* Initialize parameter ram. */ out_be16(&mspi->pram->tbase, cpm_muram_offset(mspi->tx_bd)); out_be16(&mspi->pram->rbase, cpm_muram_offset(mspi->rx_bd)); out_8(&mspi->pram->tfcr, CPMFCR_EB | CPMFCR_GBL); out_8(&mspi->pram->rfcr, CPMFCR_EB | CPMFCR_GBL); out_be16(&mspi->pram->mrblr, SPI_MRBLR); out_be32(&mspi->pram->rstate, 0); out_be32(&mspi->pram->rdp, 0); out_be16(&mspi->pram->rbptr, 0); out_be16(&mspi->pram->rbc, 0); out_be32(&mspi->pram->rxtmp, 0); out_be32(&mspi->pram->tstate, 0); out_be32(&mspi->pram->tdp, 0); out_be16(&mspi->pram->tbptr, 0); out_be16(&mspi->pram->tbc, 0); out_be32(&mspi->pram->txtmp, 0); return 0; err_dummy_rx: dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE); err_dummy_tx: cpm_muram_free(bds_ofs); err_bds: cpm_muram_free(pram_ofs); err_pram: fsl_spi_free_dummy_rx(); return -ENOMEM; } static void fsl_spi_cpm_free(struct mpc8xxx_spi *mspi) { struct device *dev = mspi->dev; dma_unmap_single(dev, mspi->dma_dummy_rx, SPI_MRBLR, DMA_FROM_DEVICE); dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE); cpm_muram_free(cpm_muram_offset(mspi->tx_bd)); cpm_muram_free(cpm_muram_offset(mspi->pram)); fsl_spi_free_dummy_rx(); } static void fsl_spi_remove(struct mpc8xxx_spi *mspi) { iounmap(mspi->reg_base); fsl_spi_cpm_free(mspi); } static struct spi_master * __devinit fsl_spi_probe(struct device *dev, struct resource *mem, unsigned int irq) { struct fsl_spi_platform_data *pdata = dev->platform_data; struct spi_master *master; struct mpc8xxx_spi *mpc8xxx_spi; struct fsl_spi_reg *reg_base; u32 regval; int ret = 0; master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi)); if (master == NULL) { ret = -ENOMEM; goto err; } dev_set_drvdata(dev, master); ret = mpc8xxx_spi_probe(dev, mem, irq); if (ret) goto err_probe; master->setup = fsl_spi_setup; mpc8xxx_spi = spi_master_get_devdata(master); mpc8xxx_spi->spi_do_one_msg = fsl_spi_do_one_msg; mpc8xxx_spi->spi_remove = fsl_spi_remove; ret = fsl_spi_cpm_init(mpc8xxx_spi); if (ret) goto err_cpm_init; if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) { mpc8xxx_spi->rx_shift = 16; mpc8xxx_spi->tx_shift = 24; } mpc8xxx_spi->reg_base = ioremap(mem->start, resource_size(mem)); if (mpc8xxx_spi->reg_base == NULL) { ret = -ENOMEM; goto err_ioremap; } /* Register for SPI Interrupt */ ret = request_irq(mpc8xxx_spi->irq, fsl_spi_irq, 0, "fsl_spi", mpc8xxx_spi); if (ret != 0) goto free_irq; reg_base = mpc8xxx_spi->reg_base; /* SPI controller initializations */ mpc8xxx_spi_write_reg(®_base->mode, 0); mpc8xxx_spi_write_reg(®_base->mask, 0); mpc8xxx_spi_write_reg(®_base->command, 0); mpc8xxx_spi_write_reg(®_base->event, 0xffffffff); /* Enable SPI interface */ regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE; if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) regval |= SPMODE_OP; mpc8xxx_spi_write_reg(®_base->mode, regval); ret = spi_register_master(master); if (ret < 0) goto unreg_master; dev_info(dev, "at 0x%p (irq = %d), %s mode\n", reg_base, mpc8xxx_spi->irq, mpc8xxx_spi_strmode(mpc8xxx_spi->flags)); return master; unreg_master: free_irq(mpc8xxx_spi->irq, mpc8xxx_spi); free_irq: iounmap(mpc8xxx_spi->reg_base); err_ioremap: fsl_spi_cpm_free(mpc8xxx_spi); err_cpm_init: err_probe: spi_master_put(master); err: return ERR_PTR(ret); } static void fsl_spi_cs_control(struct spi_device *spi, bool on) { struct device *dev = spi->dev.parent; struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(dev->platform_data); u16 cs = spi->chip_select; int gpio = pinfo->gpios[cs]; bool alow = pinfo->alow_flags[cs]; gpio_set_value(gpio, on ^ alow); } static int of_fsl_spi_get_chipselects(struct device *dev) { struct device_node *np = dev->of_node; struct fsl_spi_platform_data *pdata = dev->platform_data; struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata); unsigned int ngpios; int i = 0; int ret; ngpios = of_gpio_count(np); if (!ngpios) { /* * SPI w/o chip-select line. One SPI device is still permitted * though. */ pdata->max_chipselect = 1; return 0; } pinfo->gpios = kmalloc(ngpios * sizeof(*pinfo->gpios), GFP_KERNEL); if (!pinfo->gpios) return -ENOMEM; memset(pinfo->gpios, -1, ngpios * sizeof(*pinfo->gpios)); pinfo->alow_flags = kzalloc(ngpios * sizeof(*pinfo->alow_flags), GFP_KERNEL); if (!pinfo->alow_flags) { ret = -ENOMEM; goto err_alloc_flags; } for (; i < ngpios; i++) { int gpio; enum of_gpio_flags flags; gpio = of_get_gpio_flags(np, i, &flags); if (!gpio_is_valid(gpio)) { dev_err(dev, "invalid gpio #%d: %d\n", i, gpio); ret = gpio; goto err_loop; } ret = gpio_request(gpio, dev_name(dev)); if (ret) { dev_err(dev, "can't request gpio #%d: %d\n", i, ret); goto err_loop; } pinfo->gpios[i] = gpio; pinfo->alow_flags[i] = flags & OF_GPIO_ACTIVE_LOW; ret = gpio_direction_output(pinfo->gpios[i], pinfo->alow_flags[i]); if (ret) { dev_err(dev, "can't set output direction for gpio " "#%d: %d\n", i, ret); goto err_loop; } } pdata->max_chipselect = ngpios; pdata->cs_control = fsl_spi_cs_control; return 0; err_loop: while (i >= 0) { if (gpio_is_valid(pinfo->gpios[i])) gpio_free(pinfo->gpios[i]); i--; } kfree(pinfo->alow_flags); pinfo->alow_flags = NULL; err_alloc_flags: kfree(pinfo->gpios); pinfo->gpios = NULL; return ret; } static int of_fsl_spi_free_chipselects(struct device *dev) { struct fsl_spi_platform_data *pdata = dev->platform_data; struct mpc8xxx_spi_probe_info *pinfo = to_of_pinfo(pdata); int i; if (!pinfo->gpios) return 0; for (i = 0; i < pdata->max_chipselect; i++) { if (gpio_is_valid(pinfo->gpios[i])) gpio_free(pinfo->gpios[i]); } kfree(pinfo->gpios); kfree(pinfo->alow_flags); return 0; } static int __devinit of_fsl_spi_probe(struct platform_device *ofdev) { struct device *dev = &ofdev->dev; struct device_node *np = ofdev->dev.of_node; struct spi_master *master; struct resource mem; struct resource irq; int ret = -ENOMEM; ret = of_mpc8xxx_spi_probe(ofdev); if (ret) return ret; ret = of_fsl_spi_get_chipselects(dev); if (ret) goto err; ret = of_address_to_resource(np, 0, &mem); if (ret) goto err; ret = of_irq_to_resource(np, 0, &irq); if (!ret) { ret = -EINVAL; goto err; } master = fsl_spi_probe(dev, &mem, irq.start); if (IS_ERR(master)) { ret = PTR_ERR(master); goto err; } return 0; err: of_fsl_spi_free_chipselects(dev); return ret; } static int __devexit of_fsl_spi_remove(struct platform_device *ofdev) { int ret; ret = mpc8xxx_spi_remove(&ofdev->dev); if (ret) return ret; of_fsl_spi_free_chipselects(&ofdev->dev); return 0; } static const struct of_device_id of_fsl_spi_match[] = { { .compatible = "fsl,spi" }, {} }; MODULE_DEVICE_TABLE(of, of_fsl_spi_match); static struct platform_driver of_fsl_spi_driver = { .driver = { .name = "fsl_spi", .owner = THIS_MODULE, .of_match_table = of_fsl_spi_match, }, .probe = of_fsl_spi_probe, .remove = __devexit_p(of_fsl_spi_remove), }; #ifdef CONFIG_MPC832x_RDB /* * XXX XXX XXX * This is "legacy" platform driver, was used by the MPC8323E-RDB boards * only. The driver should go away soon, since newer MPC8323E-RDB's device * tree can work with OpenFirmware driver. But for now we support old trees * as well. */ static int __devinit plat_mpc8xxx_spi_probe(struct platform_device *pdev) { struct resource *mem; int irq; struct spi_master *master; if (!pdev->dev.platform_data) return -EINVAL; mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) return -EINVAL; irq = platform_get_irq(pdev, 0); if (irq <= 0) return -EINVAL; master = fsl_spi_probe(&pdev->dev, mem, irq); if (IS_ERR(master)) return PTR_ERR(master); return 0; } static int __devexit plat_mpc8xxx_spi_remove(struct platform_device *pdev) { return mpc8xxx_spi_remove(&pdev->dev); } MODULE_ALIAS("platform:mpc8xxx_spi"); static struct platform_driver mpc8xxx_spi_driver = { .probe = plat_mpc8xxx_spi_probe, .remove = __devexit_p(plat_mpc8xxx_spi_remove), .driver = { .name = "mpc8xxx_spi", .owner = THIS_MODULE, }, }; static bool legacy_driver_failed; static void __init legacy_driver_register(void) { legacy_driver_failed = platform_driver_register(&mpc8xxx_spi_driver); } static void __exit legacy_driver_unregister(void) { if (legacy_driver_failed) return; platform_driver_unregister(&mpc8xxx_spi_driver); } #else static void __init legacy_driver_register(void) {} static void __exit legacy_driver_unregister(void) {} #endif /* CONFIG_MPC832x_RDB */ static int __init fsl_spi_init(void) { legacy_driver_register(); return platform_driver_register(&of_fsl_spi_driver); } module_init(fsl_spi_init); static void __exit fsl_spi_exit(void) { platform_driver_unregister(&of_fsl_spi_driver); legacy_driver_unregister(); } module_exit(fsl_spi_exit); MODULE_AUTHOR("Kumar Gala"); MODULE_DESCRIPTION("Simple Freescale SPI Driver"); MODULE_LICENSE("GPL");