/* * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/init.h> #include <linux/module.h> #include <linux/device.h> #include <linux/ioport.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/spi/spi.h> #include <linux/workqueue.h> #include <linux/errno.h> #include <linux/delay.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/hardware.h> #include <asm/delay.h> #include <asm/dma.h> #include <asm/arch/hardware.h> #include <asm/arch/pxa-regs.h> #include <asm/arch/pxa2xx_spi.h> MODULE_AUTHOR("Stephen Street"); MODULE_DESCRIPTION("PXA2xx SSP SPI Contoller"); MODULE_LICENSE("GPL"); #define MAX_BUSES 3 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR) #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK) #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0) #define DEFINE_SSP_REG(reg, off) \ static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \ static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); } DEFINE_SSP_REG(SSCR0, 0x00) DEFINE_SSP_REG(SSCR1, 0x04) DEFINE_SSP_REG(SSSR, 0x08) DEFINE_SSP_REG(SSITR, 0x0c) DEFINE_SSP_REG(SSDR, 0x10) DEFINE_SSP_REG(SSTO, 0x28) DEFINE_SSP_REG(SSPSP, 0x2c) #define START_STATE ((void*)0) #define RUNNING_STATE ((void*)1) #define DONE_STATE ((void*)2) #define ERROR_STATE ((void*)-1) #define QUEUE_RUNNING 0 #define QUEUE_STOPPED 1 struct driver_data { /* Driver model hookup */ struct platform_device *pdev; /* SPI framework hookup */ enum pxa_ssp_type ssp_type; struct spi_master *master; /* PXA hookup */ struct pxa2xx_spi_master *master_info; /* DMA setup stuff */ int rx_channel; int tx_channel; u32 *null_dma_buf; /* SSP register addresses */ void *ioaddr; u32 ssdr_physical; /* SSP masks*/ u32 dma_cr1; u32 int_cr1; u32 clear_sr; u32 mask_sr; /* Driver message queue */ struct workqueue_struct *workqueue; struct work_struct pump_messages; spinlock_t lock; struct list_head queue; int busy; int run; /* Message Transfer pump */ struct tasklet_struct pump_transfers; /* Current message transfer state info */ struct spi_message* cur_msg; struct spi_transfer* cur_transfer; struct chip_data *cur_chip; size_t len; void *tx; void *tx_end; void *rx; void *rx_end; int dma_mapped; dma_addr_t rx_dma; dma_addr_t tx_dma; size_t rx_map_len; size_t tx_map_len; u8 n_bytes; u32 dma_width; int cs_change; void (*write)(struct driver_data *drv_data); void (*read)(struct driver_data *drv_data); irqreturn_t (*transfer_handler)(struct driver_data *drv_data); void (*cs_control)(u32 command); }; struct chip_data { u32 cr0; u32 cr1; u32 to; u32 psp; u32 timeout; u8 n_bytes; u32 dma_width; u32 dma_burst_size; u32 threshold; u32 dma_threshold; u8 enable_dma; u8 bits_per_word; u32 speed_hz; void (*write)(struct driver_data *drv_data); void (*read)(struct driver_data *drv_data); void (*cs_control)(u32 command); }; static void pump_messages(void *data); static int flush(struct driver_data *drv_data) { unsigned long limit = loops_per_jiffy << 1; void *reg = drv_data->ioaddr; do { while (read_SSSR(reg) & SSSR_RNE) { read_SSDR(reg); } } while ((read_SSSR(reg) & SSSR_BSY) && limit--); write_SSSR(SSSR_ROR, reg); return limit; } static void restore_state(struct driver_data *drv_data) { void *reg = drv_data->ioaddr; /* Clear status and disable clock */ write_SSSR(drv_data->clear_sr, reg); write_SSCR0(drv_data->cur_chip->cr0 & ~SSCR0_SSE, reg); /* Load the registers */ write_SSCR1(drv_data->cur_chip->cr1, reg); write_SSCR0(drv_data->cur_chip->cr0, reg); if (drv_data->ssp_type != PXA25x_SSP) { write_SSTO(0, reg); write_SSPSP(drv_data->cur_chip->psp, reg); } } static void null_cs_control(u32 command) { } static void null_writer(struct driver_data *drv_data) { void *reg = drv_data->ioaddr; u8 n_bytes = drv_data->n_bytes; while ((read_SSSR(reg) & SSSR_TNF) && (drv_data->tx < drv_data->tx_end)) { write_SSDR(0, reg); drv_data->tx += n_bytes; } } static void null_reader(struct driver_data *drv_data) { void *reg = drv_data->ioaddr; u8 n_bytes = drv_data->n_bytes; while ((read_SSSR(reg) & SSSR_RNE) && (drv_data->rx < drv_data->rx_end)) { read_SSDR(reg); drv_data->rx += n_bytes; } } static void u8_writer(struct driver_data *drv_data) { void *reg = drv_data->ioaddr; while ((read_SSSR(reg) & SSSR_TNF) && (drv_data->tx < drv_data->tx_end)) { write_SSDR(*(u8 *)(drv_data->tx), reg); ++drv_data->tx; } } static void u8_reader(struct driver_data *drv_data) { void *reg = drv_data->ioaddr; while ((read_SSSR(reg) & SSSR_RNE) && (drv_data->rx < drv_data->rx_end)) { *(u8 *)(drv_data->rx) = read_SSDR(reg); ++drv_data->rx; } } static void u16_writer(struct driver_data *drv_data) { void *reg = drv_data->ioaddr; while ((read_SSSR(reg) & SSSR_TNF) && (drv_data->tx < drv_data->tx_end)) { write_SSDR(*(u16 *)(drv_data->tx), reg); drv_data->tx += 2; } } static void u16_reader(struct driver_data *drv_data) { void *reg = drv_data->ioaddr; while ((read_SSSR(reg) & SSSR_RNE) && (drv_data->rx < drv_data->rx_end)) { *(u16 *)(drv_data->rx) = read_SSDR(reg); drv_data->rx += 2; } } static void u32_writer(struct driver_data *drv_data) { void *reg = drv_data->ioaddr; while ((read_SSSR(reg) & SSSR_TNF) && (drv_data->tx < drv_data->tx_end)) { write_SSDR(*(u32 *)(drv_data->tx), reg); drv_data->tx += 4; } } static void u32_reader(struct driver_data *drv_data) { void *reg = drv_data->ioaddr; while ((read_SSSR(reg) & SSSR_RNE) && (drv_data->rx < drv_data->rx_end)) { *(u32 *)(drv_data->rx) = read_SSDR(reg); drv_data->rx += 4; } } static void *next_transfer(struct driver_data *drv_data) { struct spi_message *msg = drv_data->cur_msg; struct spi_transfer *trans = drv_data->cur_transfer; /* Move to next transfer */ if (trans->transfer_list.next != &msg->transfers) { drv_data->cur_transfer = list_entry(trans->transfer_list.next, struct spi_transfer, transfer_list); return RUNNING_STATE; } else return DONE_STATE; } static int map_dma_buffers(struct driver_data *drv_data) { struct spi_message *msg = drv_data->cur_msg; struct device *dev = &msg->spi->dev; if (!drv_data->cur_chip->enable_dma) return 0; if (msg->is_dma_mapped) return drv_data->rx_dma && drv_data->tx_dma; if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx)) return 0; /* Modify setup if rx buffer is null */ if (drv_data->rx == NULL) { *drv_data->null_dma_buf = 0; drv_data->rx = drv_data->null_dma_buf; drv_data->rx_map_len = 4; } else drv_data->rx_map_len = drv_data->len; /* Modify setup if tx buffer is null */ if (drv_data->tx == NULL) { *drv_data->null_dma_buf = 0; drv_data->tx = drv_data->null_dma_buf; drv_data->tx_map_len = 4; } else drv_data->tx_map_len = drv_data->len; /* Stream map the rx buffer */ drv_data->rx_dma = dma_map_single(dev, drv_data->rx, drv_data->rx_map_len, DMA_FROM_DEVICE); if (dma_mapping_error(drv_data->rx_dma)) return 0; /* Stream map the tx buffer */ drv_data->tx_dma = dma_map_single(dev, drv_data->tx, drv_data->tx_map_len, DMA_TO_DEVICE); if (dma_mapping_error(drv_data->tx_dma)) { dma_unmap_single(dev, drv_data->rx_dma, drv_data->rx_map_len, DMA_FROM_DEVICE); return 0; } return 1; } static void unmap_dma_buffers(struct driver_data *drv_data) { struct device *dev; if (!drv_data->dma_mapped) return; if (!drv_data->cur_msg->is_dma_mapped) { dev = &drv_data->cur_msg->spi->dev; dma_unmap_single(dev, drv_data->rx_dma, drv_data->rx_map_len, DMA_FROM_DEVICE); dma_unmap_single(dev, drv_data->tx_dma, drv_data->tx_map_len, DMA_TO_DEVICE); } drv_data->dma_mapped = 0; } /* caller already set message->status; dma and pio irqs are blocked */ static void giveback(struct driver_data *drv_data) { struct spi_transfer* last_transfer; unsigned long flags; struct spi_message *msg; spin_lock_irqsave(&drv_data->lock, flags); msg = drv_data->cur_msg; drv_data->cur_msg = NULL; drv_data->cur_transfer = NULL; drv_data->cur_chip = NULL; queue_work(drv_data->workqueue, &drv_data->pump_messages); spin_unlock_irqrestore(&drv_data->lock, flags); last_transfer = list_entry(msg->transfers.prev, struct spi_transfer, transfer_list); if (!last_transfer->cs_change) drv_data->cs_control(PXA2XX_CS_DEASSERT); msg->state = NULL; if (msg->complete) msg->complete(msg->context); } static int wait_ssp_rx_stall(void *ioaddr) { unsigned long limit = loops_per_jiffy << 1; while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--) cpu_relax(); return limit; } static int wait_dma_channel_stop(int channel) { unsigned long limit = loops_per_jiffy << 1; while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--) cpu_relax(); return limit; } static void dma_handler(int channel, void *data) { struct driver_data *drv_data = data; struct spi_message *msg = drv_data->cur_msg; void *reg = drv_data->ioaddr; u32 irq_status = DCSR(channel) & DMA_INT_MASK; u32 trailing_sssr = 0; if (irq_status & DCSR_BUSERR) { /* Disable interrupts, clear status and reset DMA */ write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); if (drv_data->ssp_type != PXA25x_SSP) write_SSTO(0, reg); write_SSSR(drv_data->clear_sr, reg); DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; if (flush(drv_data) == 0) dev_err(&drv_data->pdev->dev, "dma_handler: flush fail\n"); unmap_dma_buffers(drv_data); if (channel == drv_data->tx_channel) dev_err(&drv_data->pdev->dev, "dma_handler: bad bus address on " "tx channel %d, source %x target = %x\n", channel, DSADR(channel), DTADR(channel)); else dev_err(&drv_data->pdev->dev, "dma_handler: bad bus address on " "rx channel %d, source %x target = %x\n", channel, DSADR(channel), DTADR(channel)); msg->state = ERROR_STATE; tasklet_schedule(&drv_data->pump_transfers); } /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */ if ((drv_data->ssp_type == PXA25x_SSP) && (channel == drv_data->tx_channel) && (irq_status & DCSR_ENDINTR)) { /* Wait for rx to stall */ if (wait_ssp_rx_stall(drv_data->ioaddr) == 0) dev_err(&drv_data->pdev->dev, "dma_handler: ssp rx stall failed\n"); /* Clear and disable interrupts on SSP and DMA channels*/ write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); write_SSSR(drv_data->clear_sr, reg); DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; if (wait_dma_channel_stop(drv_data->rx_channel) == 0) dev_err(&drv_data->pdev->dev, "dma_handler: dma rx channel stop failed\n"); unmap_dma_buffers(drv_data); /* Read trailing bytes */ /* Calculate number of trailing bytes, read them */ trailing_sssr = read_SSSR(reg); if ((trailing_sssr & 0xf008) != 0xf000) { drv_data->rx = drv_data->rx_end - (((trailing_sssr >> 12) & 0x0f) + 1); drv_data->read(drv_data); } msg->actual_length += drv_data->len; /* Release chip select if requested, transfer delays are * handled in pump_transfers */ if (drv_data->cs_change) drv_data->cs_control(PXA2XX_CS_DEASSERT); /* Move to next transfer */ msg->state = next_transfer(drv_data); /* Schedule transfer tasklet */ tasklet_schedule(&drv_data->pump_transfers); } } static irqreturn_t dma_transfer(struct driver_data *drv_data) { u32 irq_status; u32 trailing_sssr = 0; struct spi_message *msg = drv_data->cur_msg; void *reg = drv_data->ioaddr; irq_status = read_SSSR(reg) & drv_data->mask_sr; if (irq_status & SSSR_ROR) { /* Clear and disable interrupts on SSP and DMA channels*/ write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); if (drv_data->ssp_type != PXA25x_SSP) write_SSTO(0, reg); write_SSSR(drv_data->clear_sr, reg); DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; unmap_dma_buffers(drv_data); if (flush(drv_data) == 0) dev_err(&drv_data->pdev->dev, "dma_transfer: flush fail\n"); dev_warn(&drv_data->pdev->dev, "dma_transfer: fifo overun\n"); drv_data->cur_msg->state = ERROR_STATE; tasklet_schedule(&drv_data->pump_transfers); return IRQ_HANDLED; } /* Check for false positive timeout */ if ((irq_status & SSSR_TINT) && DCSR(drv_data->tx_channel) & DCSR_RUN) { write_SSSR(SSSR_TINT, reg); return IRQ_HANDLED; } if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) { /* Clear and disable interrupts on SSP and DMA channels*/ write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg); if (drv_data->ssp_type != PXA25x_SSP) write_SSTO(0, reg); write_SSSR(drv_data->clear_sr, reg); DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; if (wait_dma_channel_stop(drv_data->rx_channel) == 0) dev_err(&drv_data->pdev->dev, "dma_transfer: dma rx channel stop failed\n"); if (wait_ssp_rx_stall(drv_data->ioaddr) == 0) dev_err(&drv_data->pdev->dev, "dma_transfer: ssp rx stall failed\n"); unmap_dma_buffers(drv_data); /* Calculate number of trailing bytes, read them */ trailing_sssr = read_SSSR(reg); if ((trailing_sssr & 0xf008) != 0xf000) { drv_data->rx = drv_data->rx_end - (((trailing_sssr >> 12) & 0x0f) + 1); drv_data->read(drv_data); } msg->actual_length += drv_data->len; /* Release chip select if requested, transfer delays are * handled in pump_transfers */ if (drv_data->cs_change) drv_data->cs_control(PXA2XX_CS_DEASSERT); /* Move to next transfer */ msg->state = next_transfer(drv_data); /* Schedule transfer tasklet */ tasklet_schedule(&drv_data->pump_transfers); return IRQ_HANDLED; } /* Opps problem detected */ return IRQ_NONE; } static irqreturn_t interrupt_transfer(struct driver_data *drv_data) { struct spi_message *msg = drv_data->cur_msg; void *reg = drv_data->ioaddr; unsigned long limit = loops_per_jiffy << 1; u32 irq_status; u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ? drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS; while ((irq_status = read_SSSR(reg) & irq_mask)) { if (irq_status & SSSR_ROR) { /* Clear and disable interrupts */ write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg); if (drv_data->ssp_type != PXA25x_SSP) write_SSTO(0, reg); write_SSSR(drv_data->clear_sr, reg); if (flush(drv_data) == 0) dev_err(&drv_data->pdev->dev, "interrupt_transfer: flush fail\n"); /* Stop the SSP */ dev_warn(&drv_data->pdev->dev, "interrupt_transfer: fifo overun\n"); msg->state = ERROR_STATE; tasklet_schedule(&drv_data->pump_transfers); return IRQ_HANDLED; } /* Look for false positive timeout */ if ((irq_status & SSSR_TINT) && (drv_data->rx < drv_data->rx_end)) write_SSSR(SSSR_TINT, reg); /* Pump data */ drv_data->read(drv_data); drv_data->write(drv_data); if (drv_data->tx == drv_data->tx_end) { /* Disable tx interrupt */ write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg); irq_mask = drv_data->mask_sr & ~SSSR_TFS; /* PXA25x_SSP has no timeout, read trailing bytes */ if (drv_data->ssp_type == PXA25x_SSP) { while ((read_SSSR(reg) & SSSR_BSY) && limit--) drv_data->read(drv_data); if (limit == 0) dev_err(&drv_data->pdev->dev, "interrupt_transfer: " "trailing byte read failed\n"); } } if ((irq_status & SSSR_TINT) || (drv_data->rx == drv_data->rx_end)) { /* Clear timeout */ write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg); if (drv_data->ssp_type != PXA25x_SSP) write_SSTO(0, reg); write_SSSR(drv_data->clear_sr, reg); /* Update total byte transfered */ msg->actual_length += drv_data->len; /* Release chip select if requested, transfer delays are * handled in pump_transfers */ if (drv_data->cs_change) drv_data->cs_control(PXA2XX_CS_DEASSERT); /* Move to next transfer */ msg->state = next_transfer(drv_data); /* Schedule transfer tasklet */ tasklet_schedule(&drv_data->pump_transfers); } } /* We did something */ return IRQ_HANDLED; } static irqreturn_t ssp_int(int irq, void *dev_id) { struct driver_data *drv_data = dev_id; void *reg = drv_data->ioaddr; if (!drv_data->cur_msg) { write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg); write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg); if (drv_data->ssp_type != PXA25x_SSP) write_SSTO(0, reg); write_SSSR(drv_data->clear_sr, reg); dev_err(&drv_data->pdev->dev, "bad message state " "in interrupt handler"); /* Never fail */ return IRQ_HANDLED; } return drv_data->transfer_handler(drv_data); } static void pump_transfers(unsigned long data) { struct driver_data *drv_data = (struct driver_data *)data; struct spi_message *message = NULL; struct spi_transfer *transfer = NULL; struct spi_transfer *previous = NULL; struct chip_data *chip = NULL; void *reg = drv_data->ioaddr; u32 clk_div = 0; u8 bits = 0; u32 speed = 0; u32 cr0; /* Get current state information */ message = drv_data->cur_msg; transfer = drv_data->cur_transfer; chip = drv_data->cur_chip; /* Handle for abort */ if (message->state == ERROR_STATE) { message->status = -EIO; giveback(drv_data); return; } /* Handle end of message */ if (message->state == DONE_STATE) { message->status = 0; giveback(drv_data); return; } /* Delay if requested at end of transfer*/ if (message->state == RUNNING_STATE) { previous = list_entry(transfer->transfer_list.prev, struct spi_transfer, transfer_list); if (previous->delay_usecs) udelay(previous->delay_usecs); } /* Setup the transfer state based on the type of transfer */ if (flush(drv_data) == 0) { dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n"); message->status = -EIO; giveback(drv_data); return; } drv_data->n_bytes = chip->n_bytes; drv_data->dma_width = chip->dma_width; drv_data->cs_control = chip->cs_control; drv_data->tx = (void *)transfer->tx_buf; drv_data->tx_end = drv_data->tx + transfer->len; drv_data->rx = transfer->rx_buf; drv_data->rx_end = drv_data->rx + transfer->len; drv_data->rx_dma = transfer->rx_dma; drv_data->tx_dma = transfer->tx_dma; drv_data->len = transfer->len; drv_data->write = drv_data->tx ? chip->write : null_writer; drv_data->read = drv_data->rx ? chip->read : null_reader; drv_data->cs_change = transfer->cs_change; /* Change speed and bit per word on a per transfer */ if (transfer->speed_hz || transfer->bits_per_word) { /* Disable clock */ write_SSCR0(chip->cr0 & ~SSCR0_SSE, reg); cr0 = chip->cr0; bits = chip->bits_per_word; speed = chip->speed_hz; if (transfer->speed_hz) speed = transfer->speed_hz; if (transfer->bits_per_word) bits = transfer->bits_per_word; if (reg == SSP1_VIRT) clk_div = SSP1_SerClkDiv(speed); else if (reg == SSP2_VIRT) clk_div = SSP2_SerClkDiv(speed); else if (reg == SSP3_VIRT) clk_div = SSP3_SerClkDiv(speed); if (bits <= 8) { drv_data->n_bytes = 1; drv_data->dma_width = DCMD_WIDTH1; drv_data->read = drv_data->read != null_reader ? u8_reader : null_reader; drv_data->write = drv_data->write != null_writer ? u8_writer : null_writer; } else if (bits <= 16) { drv_data->n_bytes = 2; drv_data->dma_width = DCMD_WIDTH2; drv_data->read = drv_data->read != null_reader ? u16_reader : null_reader; drv_data->write = drv_data->write != null_writer ? u16_writer : null_writer; } else if (bits <= 32) { drv_data->n_bytes = 4; drv_data->dma_width = DCMD_WIDTH4; drv_data->read = drv_data->read != null_reader ? u32_reader : null_reader; drv_data->write = drv_data->write != null_writer ? u32_writer : null_writer; } cr0 = clk_div | SSCR0_Motorola | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) | SSCR0_SSE | (bits > 16 ? SSCR0_EDSS : 0); /* Start it back up */ write_SSCR0(cr0, reg); } message->state = RUNNING_STATE; /* Try to map dma buffer and do a dma transfer if successful */ if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) { /* Ensure we have the correct interrupt handler */ drv_data->transfer_handler = dma_transfer; /* Setup rx DMA Channel */ DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL; DSADR(drv_data->rx_channel) = drv_data->ssdr_physical; DTADR(drv_data->rx_channel) = drv_data->rx_dma; if (drv_data->rx == drv_data->null_dma_buf) /* No target address increment */ DCMD(drv_data->rx_channel) = DCMD_FLOWSRC | drv_data->dma_width | chip->dma_burst_size | drv_data->len; else DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR | DCMD_FLOWSRC | drv_data->dma_width | chip->dma_burst_size | drv_data->len; /* Setup tx DMA Channel */ DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL; DSADR(drv_data->tx_channel) = drv_data->tx_dma; DTADR(drv_data->tx_channel) = drv_data->ssdr_physical; if (drv_data->tx == drv_data->null_dma_buf) /* No source address increment */ DCMD(drv_data->tx_channel) = DCMD_FLOWTRG | drv_data->dma_width | chip->dma_burst_size | drv_data->len; else DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR | DCMD_FLOWTRG | drv_data->dma_width | chip->dma_burst_size | drv_data->len; /* Enable dma end irqs on SSP to detect end of transfer */ if (drv_data->ssp_type == PXA25x_SSP) DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN; /* Fix me, need to handle cs polarity */ drv_data->cs_control(PXA2XX_CS_ASSERT); /* Go baby, go */ write_SSSR(drv_data->clear_sr, reg); DCSR(drv_data->rx_channel) |= DCSR_RUN; DCSR(drv_data->tx_channel) |= DCSR_RUN; if (drv_data->ssp_type != PXA25x_SSP) write_SSTO(chip->timeout, reg); write_SSCR1(chip->cr1 | chip->dma_threshold | drv_data->dma_cr1, reg); } else { /* Ensure we have the correct interrupt handler */ drv_data->transfer_handler = interrupt_transfer; /* Fix me, need to handle cs polarity */ drv_data->cs_control(PXA2XX_CS_ASSERT); /* Go baby, go */ write_SSSR(drv_data->clear_sr, reg); if (drv_data->ssp_type != PXA25x_SSP) write_SSTO(chip->timeout, reg); write_SSCR1(chip->cr1 | chip->threshold | drv_data->int_cr1, reg); } } static void pump_messages(void *data) { struct driver_data *drv_data = data; unsigned long flags; /* Lock queue and check for queue work */ spin_lock_irqsave(&drv_data->lock, flags); if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) { drv_data->busy = 0; spin_unlock_irqrestore(&drv_data->lock, flags); return; } /* Make sure we are not already running a message */ if (drv_data->cur_msg) { spin_unlock_irqrestore(&drv_data->lock, flags); return; } /* Extract head of queue */ drv_data->cur_msg = list_entry(drv_data->queue.next, struct spi_message, queue); list_del_init(&drv_data->cur_msg->queue); /* Initial message state*/ drv_data->cur_msg->state = START_STATE; drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next, struct spi_transfer, transfer_list); /* Setup the SSP using the per chip configuration */ drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi); restore_state(drv_data); /* Mark as busy and launch transfers */ tasklet_schedule(&drv_data->pump_transfers); drv_data->busy = 1; spin_unlock_irqrestore(&drv_data->lock, flags); } static int transfer(struct spi_device *spi, struct spi_message *msg) { struct driver_data *drv_data = spi_master_get_devdata(spi->master); unsigned long flags; spin_lock_irqsave(&drv_data->lock, flags); if (drv_data->run == QUEUE_STOPPED) { spin_unlock_irqrestore(&drv_data->lock, flags); return -ESHUTDOWN; } msg->actual_length = 0; msg->status = -EINPROGRESS; msg->state = START_STATE; list_add_tail(&msg->queue, &drv_data->queue); if (drv_data->run == QUEUE_RUNNING && !drv_data->busy) queue_work(drv_data->workqueue, &drv_data->pump_messages); spin_unlock_irqrestore(&drv_data->lock, flags); return 0; } static int setup(struct spi_device *spi) { struct pxa2xx_spi_chip *chip_info = NULL; struct chip_data *chip; struct driver_data *drv_data = spi_master_get_devdata(spi->master); unsigned int clk_div; if (!spi->bits_per_word) spi->bits_per_word = 8; if (drv_data->ssp_type != PXA25x_SSP && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) return -EINVAL; else if (spi->bits_per_word < 4 || spi->bits_per_word > 16) return -EINVAL; /* Only alloc (or use chip_info) on first setup */ chip = spi_get_ctldata(spi); if (chip == NULL) { chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); if (!chip) return -ENOMEM; chip->cs_control = null_cs_control; chip->enable_dma = 0; chip->timeout = SSP_TIMEOUT(1000); chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1); chip->dma_burst_size = drv_data->master_info->enable_dma ? DCMD_BURST8 : 0; chip_info = spi->controller_data; } /* chip_info isn't always needed */ if (chip_info) { if (chip_info->cs_control) chip->cs_control = chip_info->cs_control; chip->timeout = SSP_TIMEOUT(chip_info->timeout_microsecs); chip->threshold = SSCR1_RxTresh(chip_info->rx_threshold) | SSCR1_TxTresh(chip_info->tx_threshold); chip->enable_dma = chip_info->dma_burst_size != 0 && drv_data->master_info->enable_dma; chip->dma_threshold = 0; if (chip->enable_dma) { if (chip_info->dma_burst_size <= 8) { chip->dma_threshold = SSCR1_RxTresh(8) | SSCR1_TxTresh(8); chip->dma_burst_size = DCMD_BURST8; } else if (chip_info->dma_burst_size <= 16) { chip->dma_threshold = SSCR1_RxTresh(16) | SSCR1_TxTresh(16); chip->dma_burst_size = DCMD_BURST16; } else { chip->dma_threshold = SSCR1_RxTresh(32) | SSCR1_TxTresh(32); chip->dma_burst_size = DCMD_BURST32; } } if (chip_info->enable_loopback) chip->cr1 = SSCR1_LBM; } if (drv_data->ioaddr == SSP1_VIRT) clk_div = SSP1_SerClkDiv(spi->max_speed_hz); else if (drv_data->ioaddr == SSP2_VIRT) clk_div = SSP2_SerClkDiv(spi->max_speed_hz); else if (drv_data->ioaddr == SSP3_VIRT) clk_div = SSP3_SerClkDiv(spi->max_speed_hz); else return -ENODEV; chip->speed_hz = spi->max_speed_hz; chip->cr0 = clk_div | SSCR0_Motorola | SSCR0_DataSize(spi->bits_per_word > 16 ? spi->bits_per_word - 16 : spi->bits_per_word) | SSCR0_SSE | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0); chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) << 4) | (((spi->mode & SPI_CPOL) != 0) << 3); /* NOTE: PXA25x_SSP _could_ use external clocking ... */ if (drv_data->ssp_type != PXA25x_SSP) dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n", spi->bits_per_word, (CLOCK_SPEED_HZ) / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)), spi->mode & 0x3); else dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n", spi->bits_per_word, (CLOCK_SPEED_HZ/2) / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)), spi->mode & 0x3); if (spi->bits_per_word <= 8) { chip->n_bytes = 1; chip->dma_width = DCMD_WIDTH1; chip->read = u8_reader; chip->write = u8_writer; } else if (spi->bits_per_word <= 16) { chip->n_bytes = 2; chip->dma_width = DCMD_WIDTH2; chip->read = u16_reader; chip->write = u16_writer; } else if (spi->bits_per_word <= 32) { chip->cr0 |= SSCR0_EDSS; chip->n_bytes = 4; chip->dma_width = DCMD_WIDTH4; chip->read = u32_reader; chip->write = u32_writer; } else { dev_err(&spi->dev, "invalid wordsize\n"); kfree(chip); return -ENODEV; } chip->bits_per_word = spi->bits_per_word; spi_set_ctldata(spi, chip); return 0; } static void cleanup(const struct spi_device *spi) { struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi); kfree(chip); } static int init_queue(struct driver_data *drv_data) { INIT_LIST_HEAD(&drv_data->queue); spin_lock_init(&drv_data->lock); drv_data->run = QUEUE_STOPPED; drv_data->busy = 0; tasklet_init(&drv_data->pump_transfers, pump_transfers, (unsigned long)drv_data); INIT_WORK(&drv_data->pump_messages, pump_messages, drv_data); drv_data->workqueue = create_singlethread_workqueue( drv_data->master->cdev.dev->bus_id); if (drv_data->workqueue == NULL) return -EBUSY; return 0; } static int start_queue(struct driver_data *drv_data) { unsigned long flags; spin_lock_irqsave(&drv_data->lock, flags); if (drv_data->run == QUEUE_RUNNING || drv_data->busy) { spin_unlock_irqrestore(&drv_data->lock, flags); return -EBUSY; } drv_data->run = QUEUE_RUNNING; drv_data->cur_msg = NULL; drv_data->cur_transfer = NULL; drv_data->cur_chip = NULL; spin_unlock_irqrestore(&drv_data->lock, flags); queue_work(drv_data->workqueue, &drv_data->pump_messages); return 0; } static int stop_queue(struct driver_data *drv_data) { unsigned long flags; unsigned limit = 500; int status = 0; spin_lock_irqsave(&drv_data->lock, flags); /* This is a bit lame, but is optimized for the common execution path. * A wait_queue on the drv_data->busy could be used, but then the common * execution path (pump_messages) would be required to call wake_up or * friends on every SPI message. Do this instead */ drv_data->run = QUEUE_STOPPED; while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) { spin_unlock_irqrestore(&drv_data->lock, flags); msleep(10); spin_lock_irqsave(&drv_data->lock, flags); } if (!list_empty(&drv_data->queue) || drv_data->busy) status = -EBUSY; spin_unlock_irqrestore(&drv_data->lock, flags); return status; } static int destroy_queue(struct driver_data *drv_data) { int status; status = stop_queue(drv_data); if (status != 0) return status; destroy_workqueue(drv_data->workqueue); return 0; } static int pxa2xx_spi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct pxa2xx_spi_master *platform_info; struct spi_master *master; struct driver_data *drv_data = 0; struct resource *memory_resource; int irq; int status = 0; platform_info = dev->platform_data; if (platform_info->ssp_type == SSP_UNDEFINED) { dev_err(&pdev->dev, "undefined SSP\n"); return -ENODEV; } /* Allocate master with space for drv_data and null dma buffer */ master = spi_alloc_master(dev, sizeof(struct driver_data) + 16); if (!master) { dev_err(&pdev->dev, "can not alloc spi_master\n"); return -ENOMEM; } drv_data = spi_master_get_devdata(master); drv_data->master = master; drv_data->master_info = platform_info; drv_data->pdev = pdev; master->bus_num = pdev->id; master->num_chipselect = platform_info->num_chipselect; master->cleanup = cleanup; master->setup = setup; master->transfer = transfer; drv_data->ssp_type = platform_info->ssp_type; drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data + sizeof(struct driver_data)), 8); /* Setup register addresses */ memory_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!memory_resource) { dev_err(&pdev->dev, "memory resources not defined\n"); status = -ENODEV; goto out_error_master_alloc; } drv_data->ioaddr = (void *)io_p2v((unsigned long)(memory_resource->start)); drv_data->ssdr_physical = memory_resource->start + 0x00000010; if (platform_info->ssp_type == PXA25x_SSP) { drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; drv_data->dma_cr1 = 0; drv_data->clear_sr = SSSR_ROR; drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; } else { drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE; drv_data->clear_sr = SSSR_ROR | SSSR_TINT; drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR; } /* Attach to IRQ */ irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "irq resource not defined\n"); status = -ENODEV; goto out_error_master_alloc; } status = request_irq(irq, ssp_int, 0, dev->bus_id, drv_data); if (status < 0) { dev_err(&pdev->dev, "can not get IRQ\n"); goto out_error_master_alloc; } /* Setup DMA if requested */ drv_data->tx_channel = -1; drv_data->rx_channel = -1; if (platform_info->enable_dma) { /* Get two DMA channels (rx and tx) */ drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx", DMA_PRIO_HIGH, dma_handler, drv_data); if (drv_data->rx_channel < 0) { dev_err(dev, "problem (%d) requesting rx channel\n", drv_data->rx_channel); status = -ENODEV; goto out_error_irq_alloc; } drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx", DMA_PRIO_MEDIUM, dma_handler, drv_data); if (drv_data->tx_channel < 0) { dev_err(dev, "problem (%d) requesting tx channel\n", drv_data->tx_channel); status = -ENODEV; goto out_error_dma_alloc; } if (drv_data->ioaddr == SSP1_VIRT) { DRCMRRXSSDR = DRCMR_MAPVLD | drv_data->rx_channel; DRCMRTXSSDR = DRCMR_MAPVLD | drv_data->tx_channel; } else if (drv_data->ioaddr == SSP2_VIRT) { DRCMRRXSS2DR = DRCMR_MAPVLD | drv_data->rx_channel; DRCMRTXSS2DR = DRCMR_MAPVLD | drv_data->tx_channel; } else if (drv_data->ioaddr == SSP3_VIRT) { DRCMRRXSS3DR = DRCMR_MAPVLD | drv_data->rx_channel; DRCMRTXSS3DR = DRCMR_MAPVLD | drv_data->tx_channel; } else { dev_err(dev, "bad SSP type\n"); goto out_error_dma_alloc; } } /* Enable SOC clock */ pxa_set_cken(platform_info->clock_enable, 1); /* Load default SSP configuration */ write_SSCR0(0, drv_data->ioaddr); write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr); write_SSCR0(SSCR0_SerClkDiv(2) | SSCR0_Motorola | SSCR0_DataSize(8), drv_data->ioaddr); if (drv_data->ssp_type != PXA25x_SSP) write_SSTO(0, drv_data->ioaddr); write_SSPSP(0, drv_data->ioaddr); /* Initial and start queue */ status = init_queue(drv_data); if (status != 0) { dev_err(&pdev->dev, "problem initializing queue\n"); goto out_error_clock_enabled; } status = start_queue(drv_data); if (status != 0) { dev_err(&pdev->dev, "problem starting queue\n"); goto out_error_clock_enabled; } /* Register with the SPI framework */ platform_set_drvdata(pdev, drv_data); status = spi_register_master(master); if (status != 0) { dev_err(&pdev->dev, "problem registering spi master\n"); goto out_error_queue_alloc; } return status; out_error_queue_alloc: destroy_queue(drv_data); out_error_clock_enabled: pxa_set_cken(platform_info->clock_enable, 0); out_error_dma_alloc: if (drv_data->tx_channel != -1) pxa_free_dma(drv_data->tx_channel); if (drv_data->rx_channel != -1) pxa_free_dma(drv_data->rx_channel); out_error_irq_alloc: free_irq(irq, drv_data); out_error_master_alloc: spi_master_put(master); return status; } static int pxa2xx_spi_remove(struct platform_device *pdev) { struct driver_data *drv_data = platform_get_drvdata(pdev); int irq; int status = 0; if (!drv_data) return 0; /* Remove the queue */ status = destroy_queue(drv_data); if (status != 0) return status; /* Disable the SSP at the peripheral and SOC level */ write_SSCR0(0, drv_data->ioaddr); pxa_set_cken(drv_data->master_info->clock_enable, 0); /* Release DMA */ if (drv_data->master_info->enable_dma) { if (drv_data->ioaddr == SSP1_VIRT) { DRCMRRXSSDR = 0; DRCMRTXSSDR = 0; } else if (drv_data->ioaddr == SSP2_VIRT) { DRCMRRXSS2DR = 0; DRCMRTXSS2DR = 0; } else if (drv_data->ioaddr == SSP3_VIRT) { DRCMRRXSS3DR = 0; DRCMRTXSS3DR = 0; } pxa_free_dma(drv_data->tx_channel); pxa_free_dma(drv_data->rx_channel); } /* Release IRQ */ irq = platform_get_irq(pdev, 0); if (irq >= 0) free_irq(irq, drv_data); /* Disconnect from the SPI framework */ spi_unregister_master(drv_data->master); /* Prevent double remove */ platform_set_drvdata(pdev, NULL); return 0; } static void pxa2xx_spi_shutdown(struct platform_device *pdev) { int status = 0; if ((status = pxa2xx_spi_remove(pdev)) != 0) dev_err(&pdev->dev, "shutdown failed with %d\n", status); } #ifdef CONFIG_PM static int suspend_devices(struct device *dev, void *pm_message) { pm_message_t *state = pm_message; if (dev->power.power_state.event != state->event) { dev_warn(dev, "pm state does not match request\n"); return -1; } return 0; } static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state) { struct driver_data *drv_data = platform_get_drvdata(pdev); int status = 0; /* Check all childern for current power state */ if (device_for_each_child(&pdev->dev, &state, suspend_devices) != 0) { dev_warn(&pdev->dev, "suspend aborted\n"); return -1; } status = stop_queue(drv_data); if (status != 0) return status; write_SSCR0(0, drv_data->ioaddr); pxa_set_cken(drv_data->master_info->clock_enable, 0); return 0; } static int pxa2xx_spi_resume(struct platform_device *pdev) { struct driver_data *drv_data = platform_get_drvdata(pdev); int status = 0; /* Enable the SSP clock */ pxa_set_cken(drv_data->master_info->clock_enable, 1); /* Start the queue running */ status = start_queue(drv_data); if (status != 0) { dev_err(&pdev->dev, "problem starting queue (%d)\n", status); return status; } return 0; } #else #define pxa2xx_spi_suspend NULL #define pxa2xx_spi_resume NULL #endif /* CONFIG_PM */ static struct platform_driver driver = { .driver = { .name = "pxa2xx-spi", .bus = &platform_bus_type, .owner = THIS_MODULE, }, .probe = pxa2xx_spi_probe, .remove = __devexit_p(pxa2xx_spi_remove), .shutdown = pxa2xx_spi_shutdown, .suspend = pxa2xx_spi_suspend, .resume = pxa2xx_spi_resume, }; static int __init pxa2xx_spi_init(void) { platform_driver_register(&driver); return 0; } module_init(pxa2xx_spi_init); static void __exit pxa2xx_spi_exit(void) { platform_driver_unregister(&driver); } module_exit(pxa2xx_spi_exit);