/* * Shared interrupt handling code for IPR and INTC2 types of IRQs. * * Copyright (C) 2007, 2008 Magnus Damm * Copyright (C) 2009, 2010 Paul Mundt * * Based on intc2.c and ipr.c * * Copyright (C) 1999 Niibe Yutaka & Takeshi Yaegashi * Copyright (C) 2000 Kazumoto Kojima * Copyright (C) 2001 David J. Mckay (david.mckay@st.com) * Copyright (C) 2003 Takashi Kusuda <kusuda-takashi@hitachi-ul.co.jp> * Copyright (C) 2005, 2006 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/init.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/sh_intc.h> #include <linux/sysdev.h> #include <linux/list.h> #include <linux/topology.h> #include <linux/bitmap.h> #include <linux/cpumask.h> #include <asm/sizes.h> #define _INTC_MK(fn, mode, addr_e, addr_d, width, shift) \ ((shift) | ((width) << 5) | ((fn) << 9) | ((mode) << 13) | \ ((addr_e) << 16) | ((addr_d << 24))) #define _INTC_SHIFT(h) (h & 0x1f) #define _INTC_WIDTH(h) ((h >> 5) & 0xf) #define _INTC_FN(h) ((h >> 9) & 0xf) #define _INTC_MODE(h) ((h >> 13) & 0x7) #define _INTC_ADDR_E(h) ((h >> 16) & 0xff) #define _INTC_ADDR_D(h) ((h >> 24) & 0xff) struct intc_handle_int { unsigned int irq; unsigned long handle; }; struct intc_window { phys_addr_t phys; void __iomem *virt; unsigned long size; }; struct intc_desc_int { struct list_head list; struct sys_device sysdev; pm_message_t state; unsigned long *reg; #ifdef CONFIG_SMP unsigned long *smp; #endif unsigned int nr_reg; struct intc_handle_int *prio; unsigned int nr_prio; struct intc_handle_int *sense; unsigned int nr_sense; struct intc_window *window; unsigned int nr_windows; struct irq_chip chip; }; static LIST_HEAD(intc_list); /* * The intc_irq_map provides a global map of bound IRQ vectors for a * given platform. Allocation of IRQs are either static through the CPU * vector map, or dynamic in the case of board mux vectors or MSI. * * As this is a central point for all IRQ controllers on the system, * each of the available sources are mapped out here. This combined with * sparseirq makes it quite trivial to keep the vector map tightly packed * when dynamically creating IRQs, as well as tying in to otherwise * unused irq_desc positions in the sparse array. */ static DECLARE_BITMAP(intc_irq_map, NR_IRQS); static DEFINE_SPINLOCK(vector_lock); #ifdef CONFIG_SMP #define IS_SMP(x) x.smp #define INTC_REG(d, x, c) (d->reg[(x)] + ((d->smp[(x)] & 0xff) * c)) #define SMP_NR(d, x) ((d->smp[(x)] >> 8) ? (d->smp[(x)] >> 8) : 1) #else #define IS_SMP(x) 0 #define INTC_REG(d, x, c) (d->reg[(x)]) #define SMP_NR(d, x) 1 #endif static unsigned int intc_prio_level[NR_IRQS]; /* for now */ static unsigned int default_prio_level = 2; /* 2 - 16 */ static unsigned long ack_handle[NR_IRQS]; #ifdef CONFIG_INTC_BALANCING static unsigned long dist_handle[NR_IRQS]; #endif static inline struct intc_desc_int *get_intc_desc(unsigned int irq) { struct irq_chip *chip = get_irq_chip(irq); return container_of(chip, struct intc_desc_int, chip); } static unsigned long intc_phys_to_virt(struct intc_desc_int *d, unsigned long address) { struct intc_window *window; int k; /* scan through physical windows and convert address */ for (k = 0; k < d->nr_windows; k++) { window = d->window + k; if (address < window->phys) continue; if (address >= (window->phys + window->size)) continue; address -= window->phys; address += (unsigned long)window->virt; return address; } /* no windows defined, register must be 1:1 mapped virt:phys */ return address; } static unsigned int intc_get_reg(struct intc_desc_int *d, unsigned long address) { unsigned int k; address = intc_phys_to_virt(d, address); for (k = 0; k < d->nr_reg; k++) { if (d->reg[k] == address) return k; } BUG(); return 0; } static inline unsigned int set_field(unsigned int value, unsigned int field_value, unsigned int handle) { unsigned int width = _INTC_WIDTH(handle); unsigned int shift = _INTC_SHIFT(handle); value &= ~(((1 << width) - 1) << shift); value |= field_value << shift; return value; } static void write_8(unsigned long addr, unsigned long h, unsigned long data) { __raw_writeb(set_field(0, data, h), addr); (void)__raw_readb(addr); /* Defeat write posting */ } static void write_16(unsigned long addr, unsigned long h, unsigned long data) { __raw_writew(set_field(0, data, h), addr); (void)__raw_readw(addr); /* Defeat write posting */ } static void write_32(unsigned long addr, unsigned long h, unsigned long data) { __raw_writel(set_field(0, data, h), addr); (void)__raw_readl(addr); /* Defeat write posting */ } static void modify_8(unsigned long addr, unsigned long h, unsigned long data) { unsigned long flags; local_irq_save(flags); __raw_writeb(set_field(__raw_readb(addr), data, h), addr); (void)__raw_readb(addr); /* Defeat write posting */ local_irq_restore(flags); } static void modify_16(unsigned long addr, unsigned long h, unsigned long data) { unsigned long flags; local_irq_save(flags); __raw_writew(set_field(__raw_readw(addr), data, h), addr); (void)__raw_readw(addr); /* Defeat write posting */ local_irq_restore(flags); } static void modify_32(unsigned long addr, unsigned long h, unsigned long data) { unsigned long flags; local_irq_save(flags); __raw_writel(set_field(__raw_readl(addr), data, h), addr); (void)__raw_readl(addr); /* Defeat write posting */ local_irq_restore(flags); } enum { REG_FN_ERR = 0, REG_FN_WRITE_BASE = 1, REG_FN_MODIFY_BASE = 5 }; static void (*intc_reg_fns[])(unsigned long addr, unsigned long h, unsigned long data) = { [REG_FN_WRITE_BASE + 0] = write_8, [REG_FN_WRITE_BASE + 1] = write_16, [REG_FN_WRITE_BASE + 3] = write_32, [REG_FN_MODIFY_BASE + 0] = modify_8, [REG_FN_MODIFY_BASE + 1] = modify_16, [REG_FN_MODIFY_BASE + 3] = modify_32, }; enum { MODE_ENABLE_REG = 0, /* Bit(s) set -> interrupt enabled */ MODE_MASK_REG, /* Bit(s) set -> interrupt disabled */ MODE_DUAL_REG, /* Two registers, set bit to enable / disable */ MODE_PRIO_REG, /* Priority value written to enable interrupt */ MODE_PCLR_REG, /* Above plus all bits set to disable interrupt */ }; static void intc_mode_field(unsigned long addr, unsigned long handle, void (*fn)(unsigned long, unsigned long, unsigned long), unsigned int irq) { fn(addr, handle, ((1 << _INTC_WIDTH(handle)) - 1)); } static void intc_mode_zero(unsigned long addr, unsigned long handle, void (*fn)(unsigned long, unsigned long, unsigned long), unsigned int irq) { fn(addr, handle, 0); } static void intc_mode_prio(unsigned long addr, unsigned long handle, void (*fn)(unsigned long, unsigned long, unsigned long), unsigned int irq) { fn(addr, handle, intc_prio_level[irq]); } static void (*intc_enable_fns[])(unsigned long addr, unsigned long handle, void (*fn)(unsigned long, unsigned long, unsigned long), unsigned int irq) = { [MODE_ENABLE_REG] = intc_mode_field, [MODE_MASK_REG] = intc_mode_zero, [MODE_DUAL_REG] = intc_mode_field, [MODE_PRIO_REG] = intc_mode_prio, [MODE_PCLR_REG] = intc_mode_prio, }; static void (*intc_disable_fns[])(unsigned long addr, unsigned long handle, void (*fn)(unsigned long, unsigned long, unsigned long), unsigned int irq) = { [MODE_ENABLE_REG] = intc_mode_zero, [MODE_MASK_REG] = intc_mode_field, [MODE_DUAL_REG] = intc_mode_field, [MODE_PRIO_REG] = intc_mode_zero, [MODE_PCLR_REG] = intc_mode_field, }; #ifdef CONFIG_INTC_BALANCING static inline void intc_balancing_enable(unsigned int irq) { struct intc_desc_int *d = get_intc_desc(irq); unsigned long handle = dist_handle[irq]; unsigned long addr; if (irq_balancing_disabled(irq) || !handle) return; addr = INTC_REG(d, _INTC_ADDR_D(handle), 0); intc_reg_fns[_INTC_FN(handle)](addr, handle, 1); } static inline void intc_balancing_disable(unsigned int irq) { struct intc_desc_int *d = get_intc_desc(irq); unsigned long handle = dist_handle[irq]; unsigned long addr; if (irq_balancing_disabled(irq) || !handle) return; addr = INTC_REG(d, _INTC_ADDR_D(handle), 0); intc_reg_fns[_INTC_FN(handle)](addr, handle, 0); } static unsigned int intc_dist_data(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id) { struct intc_mask_reg *mr = desc->hw.mask_regs; unsigned int i, j, fn, mode; unsigned long reg_e, reg_d; for (i = 0; mr && enum_id && i < desc->hw.nr_mask_regs; i++) { mr = desc->hw.mask_regs + i; /* * Skip this entry if there's no auto-distribution * register associated with it. */ if (!mr->dist_reg) continue; for (j = 0; j < ARRAY_SIZE(mr->enum_ids); j++) { if (mr->enum_ids[j] != enum_id) continue; fn = REG_FN_MODIFY_BASE; mode = MODE_ENABLE_REG; reg_e = mr->dist_reg; reg_d = mr->dist_reg; fn += (mr->reg_width >> 3) - 1; return _INTC_MK(fn, mode, intc_get_reg(d, reg_e), intc_get_reg(d, reg_d), 1, (mr->reg_width - 1) - j); } } /* * It's possible we've gotten here with no distribution options * available for the IRQ in question, so we just skip over those. */ return 0; } #else static inline void intc_balancing_enable(unsigned int irq) { } static inline void intc_balancing_disable(unsigned int irq) { } #endif static inline void _intc_enable(unsigned int irq, unsigned long handle) { struct intc_desc_int *d = get_intc_desc(irq); unsigned long addr; unsigned int cpu; for (cpu = 0; cpu < SMP_NR(d, _INTC_ADDR_E(handle)); cpu++) { #ifdef CONFIG_SMP if (!cpumask_test_cpu(cpu, irq_to_desc(irq)->affinity)) continue; #endif addr = INTC_REG(d, _INTC_ADDR_E(handle), cpu); intc_enable_fns[_INTC_MODE(handle)](addr, handle, intc_reg_fns\ [_INTC_FN(handle)], irq); } intc_balancing_enable(irq); } static void intc_enable(unsigned int irq) { _intc_enable(irq, (unsigned long)get_irq_chip_data(irq)); } static void intc_disable(unsigned int irq) { struct intc_desc_int *d = get_intc_desc(irq); unsigned long handle = (unsigned long)get_irq_chip_data(irq); unsigned long addr; unsigned int cpu; intc_balancing_disable(irq); for (cpu = 0; cpu < SMP_NR(d, _INTC_ADDR_D(handle)); cpu++) { #ifdef CONFIG_SMP if (!cpumask_test_cpu(cpu, irq_to_desc(irq)->affinity)) continue; #endif addr = INTC_REG(d, _INTC_ADDR_D(handle), cpu); intc_disable_fns[_INTC_MODE(handle)](addr, handle,intc_reg_fns\ [_INTC_FN(handle)], irq); } } static void (*intc_enable_noprio_fns[])(unsigned long addr, unsigned long handle, void (*fn)(unsigned long, unsigned long, unsigned long), unsigned int irq) = { [MODE_ENABLE_REG] = intc_mode_field, [MODE_MASK_REG] = intc_mode_zero, [MODE_DUAL_REG] = intc_mode_field, [MODE_PRIO_REG] = intc_mode_field, [MODE_PCLR_REG] = intc_mode_field, }; static void intc_enable_disable(struct intc_desc_int *d, unsigned long handle, int do_enable) { unsigned long addr; unsigned int cpu; void (*fn)(unsigned long, unsigned long, void (*)(unsigned long, unsigned long, unsigned long), unsigned int); if (do_enable) { for (cpu = 0; cpu < SMP_NR(d, _INTC_ADDR_E(handle)); cpu++) { addr = INTC_REG(d, _INTC_ADDR_E(handle), cpu); fn = intc_enable_noprio_fns[_INTC_MODE(handle)]; fn(addr, handle, intc_reg_fns[_INTC_FN(handle)], 0); } } else { for (cpu = 0; cpu < SMP_NR(d, _INTC_ADDR_D(handle)); cpu++) { addr = INTC_REG(d, _INTC_ADDR_D(handle), cpu); fn = intc_disable_fns[_INTC_MODE(handle)]; fn(addr, handle, intc_reg_fns[_INTC_FN(handle)], 0); } } } static int intc_set_wake(unsigned int irq, unsigned int on) { return 0; /* allow wakeup, but setup hardware in intc_suspend() */ } #ifdef CONFIG_SMP /* * This is held with the irq desc lock held, so we don't require any * additional locking here at the intc desc level. The affinity mask is * later tested in the enable/disable paths. */ static int intc_set_affinity(unsigned int irq, const struct cpumask *cpumask) { if (!cpumask_intersects(cpumask, cpu_online_mask)) return -1; cpumask_copy(irq_to_desc(irq)->affinity, cpumask); return 0; } #endif static void intc_mask_ack(unsigned int irq) { struct intc_desc_int *d = get_intc_desc(irq); unsigned long handle = ack_handle[irq]; unsigned long addr; intc_disable(irq); /* read register and write zero only to the associated bit */ if (handle) { addr = INTC_REG(d, _INTC_ADDR_D(handle), 0); switch (_INTC_FN(handle)) { case REG_FN_MODIFY_BASE + 0: /* 8bit */ __raw_readb(addr); __raw_writeb(0xff ^ set_field(0, 1, handle), addr); break; case REG_FN_MODIFY_BASE + 1: /* 16bit */ __raw_readw(addr); __raw_writew(0xffff ^ set_field(0, 1, handle), addr); break; case REG_FN_MODIFY_BASE + 3: /* 32bit */ __raw_readl(addr); __raw_writel(0xffffffff ^ set_field(0, 1, handle), addr); break; default: BUG(); break; } } } static struct intc_handle_int *intc_find_irq(struct intc_handle_int *hp, unsigned int nr_hp, unsigned int irq) { int i; /* * this doesn't scale well, but... * * this function should only be used for cerain uncommon * operations such as intc_set_priority() and intc_set_sense() * and in those rare cases performance doesn't matter that much. * keeping the memory footprint low is more important. * * one rather simple way to speed this up and still keep the * memory footprint down is to make sure the array is sorted * and then perform a bisect to lookup the irq. */ for (i = 0; i < nr_hp; i++) { if ((hp + i)->irq != irq) continue; return hp + i; } return NULL; } int intc_set_priority(unsigned int irq, unsigned int prio) { struct intc_desc_int *d = get_intc_desc(irq); struct intc_handle_int *ihp; if (!intc_prio_level[irq] || prio <= 1) return -EINVAL; ihp = intc_find_irq(d->prio, d->nr_prio, irq); if (ihp) { if (prio >= (1 << _INTC_WIDTH(ihp->handle))) return -EINVAL; intc_prio_level[irq] = prio; /* * only set secondary masking method directly * primary masking method is using intc_prio_level[irq] * priority level will be set during next enable() */ if (_INTC_FN(ihp->handle) != REG_FN_ERR) _intc_enable(irq, ihp->handle); } return 0; } #define VALID(x) (x | 0x80) static unsigned char intc_irq_sense_table[IRQ_TYPE_SENSE_MASK + 1] = { [IRQ_TYPE_EDGE_FALLING] = VALID(0), [IRQ_TYPE_EDGE_RISING] = VALID(1), [IRQ_TYPE_LEVEL_LOW] = VALID(2), /* SH7706, SH7707 and SH7709 do not support high level triggered */ #if !defined(CONFIG_CPU_SUBTYPE_SH7706) && \ !defined(CONFIG_CPU_SUBTYPE_SH7707) && \ !defined(CONFIG_CPU_SUBTYPE_SH7709) [IRQ_TYPE_LEVEL_HIGH] = VALID(3), #endif }; static int intc_set_sense(unsigned int irq, unsigned int type) { struct intc_desc_int *d = get_intc_desc(irq); unsigned char value = intc_irq_sense_table[type & IRQ_TYPE_SENSE_MASK]; struct intc_handle_int *ihp; unsigned long addr; if (!value) return -EINVAL; ihp = intc_find_irq(d->sense, d->nr_sense, irq); if (ihp) { addr = INTC_REG(d, _INTC_ADDR_E(ihp->handle), 0); intc_reg_fns[_INTC_FN(ihp->handle)](addr, ihp->handle, value); } return 0; } static intc_enum __init intc_grp_id(struct intc_desc *desc, intc_enum enum_id) { struct intc_group *g = desc->hw.groups; unsigned int i, j; for (i = 0; g && enum_id && i < desc->hw.nr_groups; i++) { g = desc->hw.groups + i; for (j = 0; g->enum_ids[j]; j++) { if (g->enum_ids[j] != enum_id) continue; return g->enum_id; } } return 0; } static unsigned int __init _intc_mask_data(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id, unsigned int *reg_idx, unsigned int *fld_idx) { struct intc_mask_reg *mr = desc->hw.mask_regs; unsigned int fn, mode; unsigned long reg_e, reg_d; while (mr && enum_id && *reg_idx < desc->hw.nr_mask_regs) { mr = desc->hw.mask_regs + *reg_idx; for (; *fld_idx < ARRAY_SIZE(mr->enum_ids); (*fld_idx)++) { if (mr->enum_ids[*fld_idx] != enum_id) continue; if (mr->set_reg && mr->clr_reg) { fn = REG_FN_WRITE_BASE; mode = MODE_DUAL_REG; reg_e = mr->clr_reg; reg_d = mr->set_reg; } else { fn = REG_FN_MODIFY_BASE; if (mr->set_reg) { mode = MODE_ENABLE_REG; reg_e = mr->set_reg; reg_d = mr->set_reg; } else { mode = MODE_MASK_REG; reg_e = mr->clr_reg; reg_d = mr->clr_reg; } } fn += (mr->reg_width >> 3) - 1; return _INTC_MK(fn, mode, intc_get_reg(d, reg_e), intc_get_reg(d, reg_d), 1, (mr->reg_width - 1) - *fld_idx); } *fld_idx = 0; (*reg_idx)++; } return 0; } static unsigned int __init intc_mask_data(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id, int do_grps) { unsigned int i = 0; unsigned int j = 0; unsigned int ret; ret = _intc_mask_data(desc, d, enum_id, &i, &j); if (ret) return ret; if (do_grps) return intc_mask_data(desc, d, intc_grp_id(desc, enum_id), 0); return 0; } static unsigned int __init _intc_prio_data(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id, unsigned int *reg_idx, unsigned int *fld_idx) { struct intc_prio_reg *pr = desc->hw.prio_regs; unsigned int fn, n, mode, bit; unsigned long reg_e, reg_d; while (pr && enum_id && *reg_idx < desc->hw.nr_prio_regs) { pr = desc->hw.prio_regs + *reg_idx; for (; *fld_idx < ARRAY_SIZE(pr->enum_ids); (*fld_idx)++) { if (pr->enum_ids[*fld_idx] != enum_id) continue; if (pr->set_reg && pr->clr_reg) { fn = REG_FN_WRITE_BASE; mode = MODE_PCLR_REG; reg_e = pr->set_reg; reg_d = pr->clr_reg; } else { fn = REG_FN_MODIFY_BASE; mode = MODE_PRIO_REG; if (!pr->set_reg) BUG(); reg_e = pr->set_reg; reg_d = pr->set_reg; } fn += (pr->reg_width >> 3) - 1; n = *fld_idx + 1; BUG_ON(n * pr->field_width > pr->reg_width); bit = pr->reg_width - (n * pr->field_width); return _INTC_MK(fn, mode, intc_get_reg(d, reg_e), intc_get_reg(d, reg_d), pr->field_width, bit); } *fld_idx = 0; (*reg_idx)++; } return 0; } static unsigned int __init intc_prio_data(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id, int do_grps) { unsigned int i = 0; unsigned int j = 0; unsigned int ret; ret = _intc_prio_data(desc, d, enum_id, &i, &j); if (ret) return ret; if (do_grps) return intc_prio_data(desc, d, intc_grp_id(desc, enum_id), 0); return 0; } static void __init intc_enable_disable_enum(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id, int enable) { unsigned int i, j, data; /* go through and enable/disable all mask bits */ i = j = 0; do { data = _intc_mask_data(desc, d, enum_id, &i, &j); if (data) intc_enable_disable(d, data, enable); j++; } while (data); /* go through and enable/disable all priority fields */ i = j = 0; do { data = _intc_prio_data(desc, d, enum_id, &i, &j); if (data) intc_enable_disable(d, data, enable); j++; } while (data); } static unsigned int __init intc_ack_data(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id) { struct intc_mask_reg *mr = desc->hw.ack_regs; unsigned int i, j, fn, mode; unsigned long reg_e, reg_d; for (i = 0; mr && enum_id && i < desc->hw.nr_ack_regs; i++) { mr = desc->hw.ack_regs + i; for (j = 0; j < ARRAY_SIZE(mr->enum_ids); j++) { if (mr->enum_ids[j] != enum_id) continue; fn = REG_FN_MODIFY_BASE; mode = MODE_ENABLE_REG; reg_e = mr->set_reg; reg_d = mr->set_reg; fn += (mr->reg_width >> 3) - 1; return _INTC_MK(fn, mode, intc_get_reg(d, reg_e), intc_get_reg(d, reg_d), 1, (mr->reg_width - 1) - j); } } return 0; } static unsigned int __init intc_sense_data(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id) { struct intc_sense_reg *sr = desc->hw.sense_regs; unsigned int i, j, fn, bit; for (i = 0; sr && enum_id && i < desc->hw.nr_sense_regs; i++) { sr = desc->hw.sense_regs + i; for (j = 0; j < ARRAY_SIZE(sr->enum_ids); j++) { if (sr->enum_ids[j] != enum_id) continue; fn = REG_FN_MODIFY_BASE; fn += (sr->reg_width >> 3) - 1; BUG_ON((j + 1) * sr->field_width > sr->reg_width); bit = sr->reg_width - ((j + 1) * sr->field_width); return _INTC_MK(fn, 0, intc_get_reg(d, sr->reg), 0, sr->field_width, bit); } } return 0; } static void __init intc_register_irq(struct intc_desc *desc, struct intc_desc_int *d, intc_enum enum_id, unsigned int irq) { struct intc_handle_int *hp; unsigned int data[2], primary; /* * Register the IRQ position with the global IRQ map */ set_bit(irq, intc_irq_map); /* * Prefer single interrupt source bitmap over other combinations: * * 1. bitmap, single interrupt source * 2. priority, single interrupt source * 3. bitmap, multiple interrupt sources (groups) * 4. priority, multiple interrupt sources (groups) */ data[0] = intc_mask_data(desc, d, enum_id, 0); data[1] = intc_prio_data(desc, d, enum_id, 0); primary = 0; if (!data[0] && data[1]) primary = 1; if (!data[0] && !data[1]) pr_warning("intc: missing unique irq mask for " "irq %d (vect 0x%04x)\n", irq, irq2evt(irq)); data[0] = data[0] ? data[0] : intc_mask_data(desc, d, enum_id, 1); data[1] = data[1] ? data[1] : intc_prio_data(desc, d, enum_id, 1); if (!data[primary]) primary ^= 1; BUG_ON(!data[primary]); /* must have primary masking method */ disable_irq_nosync(irq); set_irq_chip_and_handler_name(irq, &d->chip, handle_level_irq, "level"); set_irq_chip_data(irq, (void *)data[primary]); /* * set priority level * - this needs to be at least 2 for 5-bit priorities on 7780 */ intc_prio_level[irq] = default_prio_level; /* enable secondary masking method if present */ if (data[!primary]) _intc_enable(irq, data[!primary]); /* add irq to d->prio list if priority is available */ if (data[1]) { hp = d->prio + d->nr_prio; hp->irq = irq; hp->handle = data[1]; if (primary) { /* * only secondary priority should access registers, so * set _INTC_FN(h) = REG_FN_ERR for intc_set_priority() */ hp->handle &= ~_INTC_MK(0x0f, 0, 0, 0, 0, 0); hp->handle |= _INTC_MK(REG_FN_ERR, 0, 0, 0, 0, 0); } d->nr_prio++; } /* add irq to d->sense list if sense is available */ data[0] = intc_sense_data(desc, d, enum_id); if (data[0]) { (d->sense + d->nr_sense)->irq = irq; (d->sense + d->nr_sense)->handle = data[0]; d->nr_sense++; } /* irq should be disabled by default */ d->chip.mask(irq); if (desc->hw.ack_regs) ack_handle[irq] = intc_ack_data(desc, d, enum_id); #ifdef CONFIG_INTC_BALANCING if (desc->hw.mask_regs) dist_handle[irq] = intc_dist_data(desc, d, enum_id); #endif #ifdef CONFIG_ARM set_irq_flags(irq, IRQF_VALID); /* Enable IRQ on ARM systems */ #endif } static unsigned int __init save_reg(struct intc_desc_int *d, unsigned int cnt, unsigned long value, unsigned int smp) { if (value) { value = intc_phys_to_virt(d, value); d->reg[cnt] = value; #ifdef CONFIG_SMP d->smp[cnt] = smp; #endif return 1; } return 0; } static void intc_redirect_irq(unsigned int irq, struct irq_desc *desc) { generic_handle_irq((unsigned int)get_irq_data(irq)); } int __init register_intc_controller(struct intc_desc *desc) { unsigned int i, k, smp; struct intc_hw_desc *hw = &desc->hw; struct intc_desc_int *d; struct resource *res; pr_info("intc: Registered controller '%s' with %u IRQs\n", desc->name, hw->nr_vectors); d = kzalloc(sizeof(*d), GFP_NOWAIT); if (!d) goto err0; INIT_LIST_HEAD(&d->list); list_add(&d->list, &intc_list); if (desc->num_resources) { d->nr_windows = desc->num_resources; d->window = kzalloc(d->nr_windows * sizeof(*d->window), GFP_NOWAIT); if (!d->window) goto err1; for (k = 0; k < d->nr_windows; k++) { res = desc->resource + k; WARN_ON(resource_type(res) != IORESOURCE_MEM); d->window[k].phys = res->start; d->window[k].size = resource_size(res); d->window[k].virt = ioremap_nocache(res->start, resource_size(res)); if (!d->window[k].virt) goto err2; } } d->nr_reg = hw->mask_regs ? hw->nr_mask_regs * 2 : 0; #ifdef CONFIG_INTC_BALANCING if (d->nr_reg) d->nr_reg += hw->nr_mask_regs; #endif d->nr_reg += hw->prio_regs ? hw->nr_prio_regs * 2 : 0; d->nr_reg += hw->sense_regs ? hw->nr_sense_regs : 0; d->nr_reg += hw->ack_regs ? hw->nr_ack_regs : 0; d->reg = kzalloc(d->nr_reg * sizeof(*d->reg), GFP_NOWAIT); if (!d->reg) goto err2; #ifdef CONFIG_SMP d->smp = kzalloc(d->nr_reg * sizeof(*d->smp), GFP_NOWAIT); if (!d->smp) goto err3; #endif k = 0; if (hw->mask_regs) { for (i = 0; i < hw->nr_mask_regs; i++) { smp = IS_SMP(hw->mask_regs[i]); k += save_reg(d, k, hw->mask_regs[i].set_reg, smp); k += save_reg(d, k, hw->mask_regs[i].clr_reg, smp); #ifdef CONFIG_INTC_BALANCING k += save_reg(d, k, hw->mask_regs[i].dist_reg, 0); #endif } } if (hw->prio_regs) { d->prio = kzalloc(hw->nr_vectors * sizeof(*d->prio), GFP_NOWAIT); if (!d->prio) goto err4; for (i = 0; i < hw->nr_prio_regs; i++) { smp = IS_SMP(hw->prio_regs[i]); k += save_reg(d, k, hw->prio_regs[i].set_reg, smp); k += save_reg(d, k, hw->prio_regs[i].clr_reg, smp); } } if (hw->sense_regs) { d->sense = kzalloc(hw->nr_vectors * sizeof(*d->sense), GFP_NOWAIT); if (!d->sense) goto err5; for (i = 0; i < hw->nr_sense_regs; i++) k += save_reg(d, k, hw->sense_regs[i].reg, 0); } d->chip.name = desc->name; d->chip.mask = intc_disable; d->chip.unmask = intc_enable; d->chip.mask_ack = intc_disable; d->chip.enable = intc_enable; d->chip.disable = intc_disable; d->chip.shutdown = intc_disable; d->chip.set_type = intc_set_sense; d->chip.set_wake = intc_set_wake; #ifdef CONFIG_SMP d->chip.set_affinity = intc_set_affinity; #endif if (hw->ack_regs) { for (i = 0; i < hw->nr_ack_regs; i++) k += save_reg(d, k, hw->ack_regs[i].set_reg, 0); d->chip.mask_ack = intc_mask_ack; } /* disable bits matching force_disable before registering irqs */ if (desc->force_disable) intc_enable_disable_enum(desc, d, desc->force_disable, 0); /* disable bits matching force_enable before registering irqs */ if (desc->force_enable) intc_enable_disable_enum(desc, d, desc->force_enable, 0); BUG_ON(k > 256); /* _INTC_ADDR_E() and _INTC_ADDR_D() are 8 bits */ /* register the vectors one by one */ for (i = 0; i < hw->nr_vectors; i++) { struct intc_vect *vect = hw->vectors + i; unsigned int irq = evt2irq(vect->vect); struct irq_desc *irq_desc; if (!vect->enum_id) continue; irq_desc = irq_to_desc_alloc_node(irq, numa_node_id()); if (unlikely(!irq_desc)) { pr_err("can't get irq_desc for %d\n", irq); continue; } intc_register_irq(desc, d, vect->enum_id, irq); for (k = i + 1; k < hw->nr_vectors; k++) { struct intc_vect *vect2 = hw->vectors + k; unsigned int irq2 = evt2irq(vect2->vect); if (vect->enum_id != vect2->enum_id) continue; /* * In the case of multi-evt handling and sparse * IRQ support, each vector still needs to have * its own backing irq_desc. */ irq_desc = irq_to_desc_alloc_node(irq2, numa_node_id()); if (unlikely(!irq_desc)) { pr_err("can't get irq_desc for %d\n", irq2); continue; } vect2->enum_id = 0; /* redirect this interrupts to the first one */ set_irq_chip(irq2, &dummy_irq_chip); set_irq_chained_handler(irq2, intc_redirect_irq); set_irq_data(irq2, (void *)irq); } } /* enable bits matching force_enable after registering irqs */ if (desc->force_enable) intc_enable_disable_enum(desc, d, desc->force_enable, 1); return 0; err5: kfree(d->prio); err4: #ifdef CONFIG_SMP kfree(d->smp); err3: #endif kfree(d->reg); err2: for (k = 0; k < d->nr_windows; k++) if (d->window[k].virt) iounmap(d->window[k].virt); kfree(d->window); err1: kfree(d); err0: pr_err("unable to allocate INTC memory\n"); return -ENOMEM; } #ifdef CONFIG_INTC_USERIMASK static void __iomem *uimask; int register_intc_userimask(unsigned long addr) { if (unlikely(uimask)) return -EBUSY; uimask = ioremap_nocache(addr, SZ_4K); if (unlikely(!uimask)) return -ENOMEM; pr_info("intc: userimask support registered for levels 0 -> %d\n", default_prio_level - 1); return 0; } static ssize_t show_intc_userimask(struct sysdev_class *cls, struct sysdev_class_attribute *attr, char *buf) { return sprintf(buf, "%d\n", (__raw_readl(uimask) >> 4) & 0xf); } static ssize_t store_intc_userimask(struct sysdev_class *cls, struct sysdev_class_attribute *attr, const char *buf, size_t count) { unsigned long level; level = simple_strtoul(buf, NULL, 10); /* * Minimal acceptable IRQ levels are in the 2 - 16 range, but * these are chomped so as to not interfere with normal IRQs. * * Level 1 is a special case on some CPUs in that it's not * directly settable, but given that USERIMASK cuts off below a * certain level, we don't care about this limitation here. * Level 0 on the other hand equates to user masking disabled. * * We use default_prio_level as a cut off so that only special * case opt-in IRQs can be mangled. */ if (level >= default_prio_level) return -EINVAL; __raw_writel(0xa5 << 24 | level << 4, uimask); return count; } static SYSDEV_CLASS_ATTR(userimask, S_IRUSR | S_IWUSR, show_intc_userimask, store_intc_userimask); #endif static ssize_t show_intc_name(struct sys_device *dev, struct sysdev_attribute *attr, char *buf) { struct intc_desc_int *d; d = container_of(dev, struct intc_desc_int, sysdev); return sprintf(buf, "%s\n", d->chip.name); } static SYSDEV_ATTR(name, S_IRUGO, show_intc_name, NULL); static int intc_suspend(struct sys_device *dev, pm_message_t state) { struct intc_desc_int *d; struct irq_desc *desc; int irq; /* get intc controller associated with this sysdev */ d = container_of(dev, struct intc_desc_int, sysdev); switch (state.event) { case PM_EVENT_ON: if (d->state.event != PM_EVENT_FREEZE) break; for_each_irq_desc(irq, desc) { if (desc->handle_irq == intc_redirect_irq) continue; if (desc->chip != &d->chip) continue; if (desc->status & IRQ_DISABLED) intc_disable(irq); else intc_enable(irq); } break; case PM_EVENT_FREEZE: /* nothing has to be done */ break; case PM_EVENT_SUSPEND: /* enable wakeup irqs belonging to this intc controller */ for_each_irq_desc(irq, desc) { if ((desc->status & IRQ_WAKEUP) && (desc->chip == &d->chip)) intc_enable(irq); } break; } d->state = state; return 0; } static int intc_resume(struct sys_device *dev) { return intc_suspend(dev, PMSG_ON); } static struct sysdev_class intc_sysdev_class = { .name = "intc", .suspend = intc_suspend, .resume = intc_resume, }; /* register this intc as sysdev to allow suspend/resume */ static int __init register_intc_sysdevs(void) { struct intc_desc_int *d; int error; int id = 0; error = sysdev_class_register(&intc_sysdev_class); #ifdef CONFIG_INTC_USERIMASK if (!error && uimask) error = sysdev_class_create_file(&intc_sysdev_class, &attr_userimask); #endif if (!error) { list_for_each_entry(d, &intc_list, list) { d->sysdev.id = id; d->sysdev.cls = &intc_sysdev_class; error = sysdev_register(&d->sysdev); if (error == 0) error = sysdev_create_file(&d->sysdev, &attr_name); if (error) break; id++; } } if (error) pr_err("intc: sysdev registration error\n"); return error; } device_initcall(register_intc_sysdevs); /* * Dynamic IRQ allocation and deallocation */ unsigned int create_irq_nr(unsigned int irq_want, int node) { unsigned int irq = 0, new; unsigned long flags; struct irq_desc *desc; spin_lock_irqsave(&vector_lock, flags); /* * First try the wanted IRQ */ if (test_and_set_bit(irq_want, intc_irq_map) == 0) { new = irq_want; } else { /* .. then fall back to scanning. */ new = find_first_zero_bit(intc_irq_map, nr_irqs); if (unlikely(new == nr_irqs)) goto out_unlock; __set_bit(new, intc_irq_map); } desc = irq_to_desc_alloc_node(new, node); if (unlikely(!desc)) { pr_err("can't get irq_desc for %d\n", new); goto out_unlock; } desc = move_irq_desc(desc, node); irq = new; out_unlock: spin_unlock_irqrestore(&vector_lock, flags); if (irq > 0) { dynamic_irq_init(irq); #ifdef CONFIG_ARM set_irq_flags(irq, IRQF_VALID); /* Enable IRQ on ARM systems */ #endif } return irq; } int create_irq(void) { int nid = cpu_to_node(smp_processor_id()); int irq; irq = create_irq_nr(NR_IRQS_LEGACY, nid); if (irq == 0) irq = -1; return irq; } void destroy_irq(unsigned int irq) { unsigned long flags; dynamic_irq_cleanup(irq); spin_lock_irqsave(&vector_lock, flags); __clear_bit(irq, intc_irq_map); spin_unlock_irqrestore(&vector_lock, flags); } int reserve_irq_vector(unsigned int irq) { unsigned long flags; int ret = 0; spin_lock_irqsave(&vector_lock, flags); if (test_and_set_bit(irq, intc_irq_map)) ret = -EBUSY; spin_unlock_irqrestore(&vector_lock, flags); return ret; } void reserve_irq_legacy(void) { unsigned long flags; int i, j; spin_lock_irqsave(&vector_lock, flags); j = find_first_bit(intc_irq_map, nr_irqs); for (i = 0; i < j; i++) __set_bit(i, intc_irq_map); spin_unlock_irqrestore(&vector_lock, flags); }