/* sunsab.c: ASYNC Driver for the SIEMENS SAB82532 DUSCC. * * Copyright (C) 1997 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 2002, 2006 David S. Miller (davem@davemloft.net) * * Rewrote buffer handling to use CIRC(Circular Buffer) macros. * Maxim Krasnyanskiy <maxk@qualcomm.com> * * Fixed to use tty_get_baud_rate, and to allow for arbitrary baud * rates to be programmed into the UART. Also eliminated a lot of * duplicated code in the console setup. * Theodore Ts'o <tytso@mit.edu>, 2001-Oct-12 * * Ported to new 2.5.x UART layer. * David S. Miller <davem@davemloft.net> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/major.h> #include <linux/string.h> #include <linux/ptrace.h> #include <linux/ioport.h> #include <linux/circ_buf.h> #include <linux/serial.h> #include <linux/sysrq.h> #include <linux/console.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/of_device.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/prom.h> #if defined(CONFIG_SERIAL_SUNSAB_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) #define SUPPORT_SYSRQ #endif #include <linux/serial_core.h> #include "suncore.h" #include "sunsab.h" struct uart_sunsab_port { struct uart_port port; /* Generic UART port */ union sab82532_async_regs __iomem *regs; /* Chip registers */ unsigned long irqflags; /* IRQ state flags */ int dsr; /* Current DSR state */ unsigned int cec_timeout; /* Chip poll timeout... */ unsigned int tec_timeout; /* likewise */ unsigned char interrupt_mask0;/* ISR0 masking */ unsigned char interrupt_mask1;/* ISR1 masking */ unsigned char pvr_dtr_bit; /* Which PVR bit is DTR */ unsigned char pvr_dsr_bit; /* Which PVR bit is DSR */ unsigned int gis_shift; int type; /* SAB82532 version */ /* Setting configuration bits while the transmitter is active * can cause garbage characters to get emitted by the chip. * Therefore, we cache such writes here and do the real register * write the next time the transmitter becomes idle. */ unsigned int cached_ebrg; unsigned char cached_mode; unsigned char cached_pvr; unsigned char cached_dafo; }; /* * This assumes you have a 29.4912 MHz clock for your UART. */ #define SAB_BASE_BAUD ( 29491200 / 16 ) static char *sab82532_version[16] = { "V1.0", "V2.0", "V3.2", "V(0x03)", "V(0x04)", "V(0x05)", "V(0x06)", "V(0x07)", "V(0x08)", "V(0x09)", "V(0x0a)", "V(0x0b)", "V(0x0c)", "V(0x0d)", "V(0x0e)", "V(0x0f)" }; #define SAB82532_MAX_TEC_TIMEOUT 200000 /* 1 character time (at 50 baud) */ #define SAB82532_MAX_CEC_TIMEOUT 50000 /* 2.5 TX CLKs (at 50 baud) */ #define SAB82532_RECV_FIFO_SIZE 32 /* Standard async fifo sizes */ #define SAB82532_XMIT_FIFO_SIZE 32 static __inline__ void sunsab_tec_wait(struct uart_sunsab_port *up) { int timeout = up->tec_timeout; while ((readb(&up->regs->r.star) & SAB82532_STAR_TEC) && --timeout) udelay(1); } static __inline__ void sunsab_cec_wait(struct uart_sunsab_port *up) { int timeout = up->cec_timeout; while ((readb(&up->regs->r.star) & SAB82532_STAR_CEC) && --timeout) udelay(1); } static struct tty_struct * receive_chars(struct uart_sunsab_port *up, union sab82532_irq_status *stat) { struct tty_struct *tty = NULL; unsigned char buf[32]; int saw_console_brk = 0; int free_fifo = 0; int count = 0; int i; if (up->port.state != NULL) /* Unopened serial console */ tty = up->port.state->port.tty; /* Read number of BYTES (Character + Status) available. */ if (stat->sreg.isr0 & SAB82532_ISR0_RPF) { count = SAB82532_RECV_FIFO_SIZE; free_fifo++; } if (stat->sreg.isr0 & SAB82532_ISR0_TCD) { count = readb(&up->regs->r.rbcl) & (SAB82532_RECV_FIFO_SIZE - 1); free_fifo++; } /* Issue a FIFO read command in case we where idle. */ if (stat->sreg.isr0 & SAB82532_ISR0_TIME) { sunsab_cec_wait(up); writeb(SAB82532_CMDR_RFRD, &up->regs->w.cmdr); return tty; } if (stat->sreg.isr0 & SAB82532_ISR0_RFO) free_fifo++; /* Read the FIFO. */ for (i = 0; i < count; i++) buf[i] = readb(&up->regs->r.rfifo[i]); /* Issue Receive Message Complete command. */ if (free_fifo) { sunsab_cec_wait(up); writeb(SAB82532_CMDR_RMC, &up->regs->w.cmdr); } /* Count may be zero for BRK, so we check for it here */ if ((stat->sreg.isr1 & SAB82532_ISR1_BRK) && (up->port.line == up->port.cons->index)) saw_console_brk = 1; for (i = 0; i < count; i++) { unsigned char ch = buf[i], flag; if (tty == NULL) { uart_handle_sysrq_char(&up->port, ch); continue; } flag = TTY_NORMAL; up->port.icount.rx++; if (unlikely(stat->sreg.isr0 & (SAB82532_ISR0_PERR | SAB82532_ISR0_FERR | SAB82532_ISR0_RFO)) || unlikely(stat->sreg.isr1 & SAB82532_ISR1_BRK)) { /* * For statistics only */ if (stat->sreg.isr1 & SAB82532_ISR1_BRK) { stat->sreg.isr0 &= ~(SAB82532_ISR0_PERR | SAB82532_ISR0_FERR); up->port.icount.brk++; /* * We do the SysRQ and SAK checking * here because otherwise the break * may get masked by ignore_status_mask * or read_status_mask. */ if (uart_handle_break(&up->port)) continue; } else if (stat->sreg.isr0 & SAB82532_ISR0_PERR) up->port.icount.parity++; else if (stat->sreg.isr0 & SAB82532_ISR0_FERR) up->port.icount.frame++; if (stat->sreg.isr0 & SAB82532_ISR0_RFO) up->port.icount.overrun++; /* * Mask off conditions which should be ingored. */ stat->sreg.isr0 &= (up->port.read_status_mask & 0xff); stat->sreg.isr1 &= ((up->port.read_status_mask >> 8) & 0xff); if (stat->sreg.isr1 & SAB82532_ISR1_BRK) { flag = TTY_BREAK; } else if (stat->sreg.isr0 & SAB82532_ISR0_PERR) flag = TTY_PARITY; else if (stat->sreg.isr0 & SAB82532_ISR0_FERR) flag = TTY_FRAME; } if (uart_handle_sysrq_char(&up->port, ch)) continue; if ((stat->sreg.isr0 & (up->port.ignore_status_mask & 0xff)) == 0 && (stat->sreg.isr1 & ((up->port.ignore_status_mask >> 8) & 0xff)) == 0) tty_insert_flip_char(tty, ch, flag); if (stat->sreg.isr0 & SAB82532_ISR0_RFO) tty_insert_flip_char(tty, 0, TTY_OVERRUN); } if (saw_console_brk) sun_do_break(); return tty; } static void sunsab_stop_tx(struct uart_port *); static void sunsab_tx_idle(struct uart_sunsab_port *); static void transmit_chars(struct uart_sunsab_port *up, union sab82532_irq_status *stat) { struct circ_buf *xmit = &up->port.state->xmit; int i; if (stat->sreg.isr1 & SAB82532_ISR1_ALLS) { up->interrupt_mask1 |= SAB82532_IMR1_ALLS; writeb(up->interrupt_mask1, &up->regs->w.imr1); set_bit(SAB82532_ALLS, &up->irqflags); } #if 0 /* bde@nwlink.com says this check causes problems */ if (!(stat->sreg.isr1 & SAB82532_ISR1_XPR)) return; #endif if (!(readb(&up->regs->r.star) & SAB82532_STAR_XFW)) return; set_bit(SAB82532_XPR, &up->irqflags); sunsab_tx_idle(up); if (uart_circ_empty(xmit) || uart_tx_stopped(&up->port)) { up->interrupt_mask1 |= SAB82532_IMR1_XPR; writeb(up->interrupt_mask1, &up->regs->w.imr1); return; } up->interrupt_mask1 &= ~(SAB82532_IMR1_ALLS|SAB82532_IMR1_XPR); writeb(up->interrupt_mask1, &up->regs->w.imr1); clear_bit(SAB82532_ALLS, &up->irqflags); /* Stuff 32 bytes into Transmit FIFO. */ clear_bit(SAB82532_XPR, &up->irqflags); for (i = 0; i < up->port.fifosize; i++) { writeb(xmit->buf[xmit->tail], &up->regs->w.xfifo[i]); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); up->port.icount.tx++; if (uart_circ_empty(xmit)) break; } /* Issue a Transmit Frame command. */ sunsab_cec_wait(up); writeb(SAB82532_CMDR_XF, &up->regs->w.cmdr); if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(&up->port); if (uart_circ_empty(xmit)) sunsab_stop_tx(&up->port); } static void check_status(struct uart_sunsab_port *up, union sab82532_irq_status *stat) { if (stat->sreg.isr0 & SAB82532_ISR0_CDSC) uart_handle_dcd_change(&up->port, !(readb(&up->regs->r.vstr) & SAB82532_VSTR_CD)); if (stat->sreg.isr1 & SAB82532_ISR1_CSC) uart_handle_cts_change(&up->port, (readb(&up->regs->r.star) & SAB82532_STAR_CTS)); if ((readb(&up->regs->r.pvr) & up->pvr_dsr_bit) ^ up->dsr) { up->dsr = (readb(&up->regs->r.pvr) & up->pvr_dsr_bit) ? 0 : 1; up->port.icount.dsr++; } wake_up_interruptible(&up->port.state->port.delta_msr_wait); } static irqreturn_t sunsab_interrupt(int irq, void *dev_id) { struct uart_sunsab_port *up = dev_id; struct tty_struct *tty; union sab82532_irq_status status; unsigned long flags; unsigned char gis; spin_lock_irqsave(&up->port.lock, flags); status.stat = 0; gis = readb(&up->regs->r.gis) >> up->gis_shift; if (gis & 1) status.sreg.isr0 = readb(&up->regs->r.isr0); if (gis & 2) status.sreg.isr1 = readb(&up->regs->r.isr1); tty = NULL; if (status.stat) { if ((status.sreg.isr0 & (SAB82532_ISR0_TCD | SAB82532_ISR0_TIME | SAB82532_ISR0_RFO | SAB82532_ISR0_RPF)) || (status.sreg.isr1 & SAB82532_ISR1_BRK)) tty = receive_chars(up, &status); if ((status.sreg.isr0 & SAB82532_ISR0_CDSC) || (status.sreg.isr1 & SAB82532_ISR1_CSC)) check_status(up, &status); if (status.sreg.isr1 & (SAB82532_ISR1_ALLS | SAB82532_ISR1_XPR)) transmit_chars(up, &status); } spin_unlock_irqrestore(&up->port.lock, flags); if (tty) tty_flip_buffer_push(tty); return IRQ_HANDLED; } /* port->lock is not held. */ static unsigned int sunsab_tx_empty(struct uart_port *port) { struct uart_sunsab_port *up = (struct uart_sunsab_port *) port; int ret; /* Do not need a lock for a state test like this. */ if (test_bit(SAB82532_ALLS, &up->irqflags)) ret = TIOCSER_TEMT; else ret = 0; return ret; } /* port->lock held by caller. */ static void sunsab_set_mctrl(struct uart_port *port, unsigned int mctrl) { struct uart_sunsab_port *up = (struct uart_sunsab_port *) port; if (mctrl & TIOCM_RTS) { up->cached_mode &= ~SAB82532_MODE_FRTS; up->cached_mode |= SAB82532_MODE_RTS; } else { up->cached_mode |= (SAB82532_MODE_FRTS | SAB82532_MODE_RTS); } if (mctrl & TIOCM_DTR) { up->cached_pvr &= ~(up->pvr_dtr_bit); } else { up->cached_pvr |= up->pvr_dtr_bit; } set_bit(SAB82532_REGS_PENDING, &up->irqflags); if (test_bit(SAB82532_XPR, &up->irqflags)) sunsab_tx_idle(up); } /* port->lock is held by caller and interrupts are disabled. */ static unsigned int sunsab_get_mctrl(struct uart_port *port) { struct uart_sunsab_port *up = (struct uart_sunsab_port *) port; unsigned char val; unsigned int result; result = 0; val = readb(&up->regs->r.pvr); result |= (val & up->pvr_dsr_bit) ? 0 : TIOCM_DSR; val = readb(&up->regs->r.vstr); result |= (val & SAB82532_VSTR_CD) ? 0 : TIOCM_CAR; val = readb(&up->regs->r.star); result |= (val & SAB82532_STAR_CTS) ? TIOCM_CTS : 0; return result; } /* port->lock held by caller. */ static void sunsab_stop_tx(struct uart_port *port) { struct uart_sunsab_port *up = (struct uart_sunsab_port *) port; up->interrupt_mask1 |= SAB82532_IMR1_XPR; writeb(up->interrupt_mask1, &up->regs->w.imr1); } /* port->lock held by caller. */ static void sunsab_tx_idle(struct uart_sunsab_port *up) { if (test_bit(SAB82532_REGS_PENDING, &up->irqflags)) { u8 tmp; clear_bit(SAB82532_REGS_PENDING, &up->irqflags); writeb(up->cached_mode, &up->regs->rw.mode); writeb(up->cached_pvr, &up->regs->rw.pvr); writeb(up->cached_dafo, &up->regs->w.dafo); writeb(up->cached_ebrg & 0xff, &up->regs->w.bgr); tmp = readb(&up->regs->rw.ccr2); tmp &= ~0xc0; tmp |= (up->cached_ebrg >> 2) & 0xc0; writeb(tmp, &up->regs->rw.ccr2); } } /* port->lock held by caller. */ static void sunsab_start_tx(struct uart_port *port) { struct uart_sunsab_port *up = (struct uart_sunsab_port *) port; struct circ_buf *xmit = &up->port.state->xmit; int i; up->interrupt_mask1 &= ~(SAB82532_IMR1_ALLS|SAB82532_IMR1_XPR); writeb(up->interrupt_mask1, &up->regs->w.imr1); if (!test_bit(SAB82532_XPR, &up->irqflags)) return; clear_bit(SAB82532_ALLS, &up->irqflags); clear_bit(SAB82532_XPR, &up->irqflags); for (i = 0; i < up->port.fifosize; i++) { writeb(xmit->buf[xmit->tail], &up->regs->w.xfifo[i]); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); up->port.icount.tx++; if (uart_circ_empty(xmit)) break; } /* Issue a Transmit Frame command. */ sunsab_cec_wait(up); writeb(SAB82532_CMDR_XF, &up->regs->w.cmdr); } /* port->lock is not held. */ static void sunsab_send_xchar(struct uart_port *port, char ch) { struct uart_sunsab_port *up = (struct uart_sunsab_port *) port; unsigned long flags; spin_lock_irqsave(&up->port.lock, flags); sunsab_tec_wait(up); writeb(ch, &up->regs->w.tic); spin_unlock_irqrestore(&up->port.lock, flags); } /* port->lock held by caller. */ static void sunsab_stop_rx(struct uart_port *port) { struct uart_sunsab_port *up = (struct uart_sunsab_port *) port; up->interrupt_mask0 |= SAB82532_ISR0_TCD; writeb(up->interrupt_mask1, &up->regs->w.imr0); } /* port->lock held by caller. */ static void sunsab_enable_ms(struct uart_port *port) { /* For now we always receive these interrupts. */ } /* port->lock is not held. */ static void sunsab_break_ctl(struct uart_port *port, int break_state) { struct uart_sunsab_port *up = (struct uart_sunsab_port *) port; unsigned long flags; unsigned char val; spin_lock_irqsave(&up->port.lock, flags); val = up->cached_dafo; if (break_state) val |= SAB82532_DAFO_XBRK; else val &= ~SAB82532_DAFO_XBRK; up->cached_dafo = val; set_bit(SAB82532_REGS_PENDING, &up->irqflags); if (test_bit(SAB82532_XPR, &up->irqflags)) sunsab_tx_idle(up); spin_unlock_irqrestore(&up->port.lock, flags); } /* port->lock is not held. */ static int sunsab_startup(struct uart_port *port) { struct uart_sunsab_port *up = (struct uart_sunsab_port *) port; unsigned long flags; unsigned char tmp; int err = request_irq(up->port.irq, sunsab_interrupt, IRQF_SHARED, "sab", up); if (err) return err; spin_lock_irqsave(&up->port.lock, flags); /* * Wait for any commands or immediate characters */ sunsab_cec_wait(up); sunsab_tec_wait(up); /* * Clear the FIFO buffers. */ writeb(SAB82532_CMDR_RRES, &up->regs->w.cmdr); sunsab_cec_wait(up); writeb(SAB82532_CMDR_XRES, &up->regs->w.cmdr); /* * Clear the interrupt registers. */ (void) readb(&up->regs->r.isr0); (void) readb(&up->regs->r.isr1); /* * Now, initialize the UART */ writeb(0, &up->regs->w.ccr0); /* power-down */ writeb(SAB82532_CCR0_MCE | SAB82532_CCR0_SC_NRZ | SAB82532_CCR0_SM_ASYNC, &up->regs->w.ccr0); writeb(SAB82532_CCR1_ODS | SAB82532_CCR1_BCR | 7, &up->regs->w.ccr1); writeb(SAB82532_CCR2_BDF | SAB82532_CCR2_SSEL | SAB82532_CCR2_TOE, &up->regs->w.ccr2); writeb(0, &up->regs->w.ccr3); writeb(SAB82532_CCR4_MCK4 | SAB82532_CCR4_EBRG, &up->regs->w.ccr4); up->cached_mode = (SAB82532_MODE_RTS | SAB82532_MODE_FCTS | SAB82532_MODE_RAC); writeb(up->cached_mode, &up->regs->w.mode); writeb(SAB82532_RFC_DPS|SAB82532_RFC_RFTH_32, &up->regs->w.rfc); tmp = readb(&up->regs->rw.ccr0); tmp |= SAB82532_CCR0_PU; /* power-up */ writeb(tmp, &up->regs->rw.ccr0); /* * Finally, enable interrupts */ up->interrupt_mask0 = (SAB82532_IMR0_PERR | SAB82532_IMR0_FERR | SAB82532_IMR0_PLLA); writeb(up->interrupt_mask0, &up->regs->w.imr0); up->interrupt_mask1 = (SAB82532_IMR1_BRKT | SAB82532_IMR1_ALLS | SAB82532_IMR1_XOFF | SAB82532_IMR1_TIN | SAB82532_IMR1_CSC | SAB82532_IMR1_XON | SAB82532_IMR1_XPR); writeb(up->interrupt_mask1, &up->regs->w.imr1); set_bit(SAB82532_ALLS, &up->irqflags); set_bit(SAB82532_XPR, &up->irqflags); spin_unlock_irqrestore(&up->port.lock, flags); return 0; } /* port->lock is not held. */ static void sunsab_shutdown(struct uart_port *port) { struct uart_sunsab_port *up = (struct uart_sunsab_port *) port; unsigned long flags; spin_lock_irqsave(&up->port.lock, flags); /* Disable Interrupts */ up->interrupt_mask0 = 0xff; writeb(up->interrupt_mask0, &up->regs->w.imr0); up->interrupt_mask1 = 0xff; writeb(up->interrupt_mask1, &up->regs->w.imr1); /* Disable break condition */ up->cached_dafo = readb(&up->regs->rw.dafo); up->cached_dafo &= ~SAB82532_DAFO_XBRK; writeb(up->cached_dafo, &up->regs->rw.dafo); /* Disable Receiver */ up->cached_mode &= ~SAB82532_MODE_RAC; writeb(up->cached_mode, &up->regs->rw.mode); /* * XXX FIXME * * If the chip is powered down here the system hangs/crashes during * reboot or shutdown. This needs to be investigated further, * similar behaviour occurs in 2.4 when the driver is configured * as a module only. One hint may be that data is sometimes * transmitted at 9600 baud during shutdown (regardless of the * speed the chip was configured for when the port was open). */ #if 0 /* Power Down */ tmp = readb(&up->regs->rw.ccr0); tmp &= ~SAB82532_CCR0_PU; writeb(tmp, &up->regs->rw.ccr0); #endif spin_unlock_irqrestore(&up->port.lock, flags); free_irq(up->port.irq, up); } /* * This is used to figure out the divisor speeds. * * The formula is: Baud = SAB_BASE_BAUD / ((N + 1) * (1 << M)), * * with 0 <= N < 64 and 0 <= M < 16 */ static void calc_ebrg(int baud, int *n_ret, int *m_ret) { int n, m; if (baud == 0) { *n_ret = 0; *m_ret = 0; return; } /* * We scale numbers by 10 so that we get better accuracy * without having to use floating point. Here we increment m * until n is within the valid range. */ n = (SAB_BASE_BAUD * 10) / baud; m = 0; while (n >= 640) { n = n / 2; m++; } n = (n+5) / 10; /* * We try very hard to avoid speeds with M == 0 since they may * not work correctly for XTAL frequences above 10 MHz. */ if ((m == 0) && ((n & 1) == 0)) { n = n / 2; m++; } *n_ret = n - 1; *m_ret = m; } /* Internal routine, port->lock is held and local interrupts are disabled. */ static void sunsab_convert_to_sab(struct uart_sunsab_port *up, unsigned int cflag, unsigned int iflag, unsigned int baud, unsigned int quot) { unsigned char dafo; int bits, n, m; /* Byte size and parity */ switch (cflag & CSIZE) { case CS5: dafo = SAB82532_DAFO_CHL5; bits = 7; break; case CS6: dafo = SAB82532_DAFO_CHL6; bits = 8; break; case CS7: dafo = SAB82532_DAFO_CHL7; bits = 9; break; case CS8: dafo = SAB82532_DAFO_CHL8; bits = 10; break; /* Never happens, but GCC is too dumb to figure it out */ default: dafo = SAB82532_DAFO_CHL5; bits = 7; break; } if (cflag & CSTOPB) { dafo |= SAB82532_DAFO_STOP; bits++; } if (cflag & PARENB) { dafo |= SAB82532_DAFO_PARE; bits++; } if (cflag & PARODD) { dafo |= SAB82532_DAFO_PAR_ODD; } else { dafo |= SAB82532_DAFO_PAR_EVEN; } up->cached_dafo = dafo; calc_ebrg(baud, &n, &m); up->cached_ebrg = n | (m << 6); up->tec_timeout = (10 * 1000000) / baud; up->cec_timeout = up->tec_timeout >> 2; /* CTS flow control flags */ /* We encode read_status_mask and ignore_status_mask like so: * * --------------------- * | ... | ISR1 | ISR0 | * --------------------- * .. 15 8 7 0 */ up->port.read_status_mask = (SAB82532_ISR0_TCD | SAB82532_ISR0_TIME | SAB82532_ISR0_RFO | SAB82532_ISR0_RPF | SAB82532_ISR0_CDSC); up->port.read_status_mask |= (SAB82532_ISR1_CSC | SAB82532_ISR1_ALLS | SAB82532_ISR1_XPR) << 8; if (iflag & INPCK) up->port.read_status_mask |= (SAB82532_ISR0_PERR | SAB82532_ISR0_FERR); if (iflag & (BRKINT | PARMRK)) up->port.read_status_mask |= (SAB82532_ISR1_BRK << 8); /* * Characteres to ignore */ up->port.ignore_status_mask = 0; if (iflag & IGNPAR) up->port.ignore_status_mask |= (SAB82532_ISR0_PERR | SAB82532_ISR0_FERR); if (iflag & IGNBRK) { up->port.ignore_status_mask |= (SAB82532_ISR1_BRK << 8); /* * If we're ignoring parity and break indicators, * ignore overruns too (for real raw support). */ if (iflag & IGNPAR) up->port.ignore_status_mask |= SAB82532_ISR0_RFO; } /* * ignore all characters if CREAD is not set */ if ((cflag & CREAD) == 0) up->port.ignore_status_mask |= (SAB82532_ISR0_RPF | SAB82532_ISR0_TCD); uart_update_timeout(&up->port, cflag, (up->port.uartclk / (16 * quot))); /* Now schedule a register update when the chip's * transmitter is idle. */ up->cached_mode |= SAB82532_MODE_RAC; set_bit(SAB82532_REGS_PENDING, &up->irqflags); if (test_bit(SAB82532_XPR, &up->irqflags)) sunsab_tx_idle(up); } /* port->lock is not held. */ static void sunsab_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { struct uart_sunsab_port *up = (struct uart_sunsab_port *) port; unsigned long flags; unsigned int baud = uart_get_baud_rate(port, termios, old, 0, 4000000); unsigned int quot = uart_get_divisor(port, baud); spin_lock_irqsave(&up->port.lock, flags); sunsab_convert_to_sab(up, termios->c_cflag, termios->c_iflag, baud, quot); spin_unlock_irqrestore(&up->port.lock, flags); } static const char *sunsab_type(struct uart_port *port) { struct uart_sunsab_port *up = (void *)port; static char buf[36]; sprintf(buf, "SAB82532 %s", sab82532_version[up->type]); return buf; } static void sunsab_release_port(struct uart_port *port) { } static int sunsab_request_port(struct uart_port *port) { return 0; } static void sunsab_config_port(struct uart_port *port, int flags) { } static int sunsab_verify_port(struct uart_port *port, struct serial_struct *ser) { return -EINVAL; } static struct uart_ops sunsab_pops = { .tx_empty = sunsab_tx_empty, .set_mctrl = sunsab_set_mctrl, .get_mctrl = sunsab_get_mctrl, .stop_tx = sunsab_stop_tx, .start_tx = sunsab_start_tx, .send_xchar = sunsab_send_xchar, .stop_rx = sunsab_stop_rx, .enable_ms = sunsab_enable_ms, .break_ctl = sunsab_break_ctl, .startup = sunsab_startup, .shutdown = sunsab_shutdown, .set_termios = sunsab_set_termios, .type = sunsab_type, .release_port = sunsab_release_port, .request_port = sunsab_request_port, .config_port = sunsab_config_port, .verify_port = sunsab_verify_port, }; static struct uart_driver sunsab_reg = { .owner = THIS_MODULE, .driver_name = "sunsab", .dev_name = "ttyS", .major = TTY_MAJOR, }; static struct uart_sunsab_port *sunsab_ports; #ifdef CONFIG_SERIAL_SUNSAB_CONSOLE static void sunsab_console_putchar(struct uart_port *port, int c) { struct uart_sunsab_port *up = (struct uart_sunsab_port *)port; sunsab_tec_wait(up); writeb(c, &up->regs->w.tic); } static void sunsab_console_write(struct console *con, const char *s, unsigned n) { struct uart_sunsab_port *up = &sunsab_ports[con->index]; unsigned long flags; int locked = 1; local_irq_save(flags); if (up->port.sysrq) { locked = 0; } else if (oops_in_progress) { locked = spin_trylock(&up->port.lock); } else spin_lock(&up->port.lock); uart_console_write(&up->port, s, n, sunsab_console_putchar); sunsab_tec_wait(up); if (locked) spin_unlock(&up->port.lock); local_irq_restore(flags); } static int sunsab_console_setup(struct console *con, char *options) { struct uart_sunsab_port *up = &sunsab_ports[con->index]; unsigned long flags; unsigned int baud, quot; /* * The console framework calls us for each and every port * registered. Defer the console setup until the requested * port has been properly discovered. A bit of a hack, * though... */ if (up->port.type != PORT_SUNSAB) return -1; printk("Console: ttyS%d (SAB82532)\n", (sunsab_reg.minor - 64) + con->index); sunserial_console_termios(con, to_of_device(up->port.dev)->node); switch (con->cflag & CBAUD) { case B150: baud = 150; break; case B300: baud = 300; break; case B600: baud = 600; break; case B1200: baud = 1200; break; case B2400: baud = 2400; break; case B4800: baud = 4800; break; default: case B9600: baud = 9600; break; case B19200: baud = 19200; break; case B38400: baud = 38400; break; case B57600: baud = 57600; break; case B115200: baud = 115200; break; case B230400: baud = 230400; break; case B460800: baud = 460800; break; }; /* * Temporary fix. */ spin_lock_init(&up->port.lock); /* * Initialize the hardware */ sunsab_startup(&up->port); spin_lock_irqsave(&up->port.lock, flags); /* * Finally, enable interrupts */ up->interrupt_mask0 = SAB82532_IMR0_PERR | SAB82532_IMR0_FERR | SAB82532_IMR0_PLLA | SAB82532_IMR0_CDSC; writeb(up->interrupt_mask0, &up->regs->w.imr0); up->interrupt_mask1 = SAB82532_IMR1_BRKT | SAB82532_IMR1_ALLS | SAB82532_IMR1_XOFF | SAB82532_IMR1_TIN | SAB82532_IMR1_CSC | SAB82532_IMR1_XON | SAB82532_IMR1_XPR; writeb(up->interrupt_mask1, &up->regs->w.imr1); quot = uart_get_divisor(&up->port, baud); sunsab_convert_to_sab(up, con->cflag, 0, baud, quot); sunsab_set_mctrl(&up->port, TIOCM_DTR | TIOCM_RTS); spin_unlock_irqrestore(&up->port.lock, flags); return 0; } static struct console sunsab_console = { .name = "ttyS", .write = sunsab_console_write, .device = uart_console_device, .setup = sunsab_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &sunsab_reg, }; static inline struct console *SUNSAB_CONSOLE(void) { return &sunsab_console; } #else #define SUNSAB_CONSOLE() (NULL) #define sunsab_console_init() do { } while (0) #endif static int __devinit sunsab_init_one(struct uart_sunsab_port *up, struct of_device *op, unsigned long offset, int line) { up->port.line = line; up->port.dev = &op->dev; up->port.mapbase = op->resource[0].start + offset; up->port.membase = of_ioremap(&op->resource[0], offset, sizeof(union sab82532_async_regs), "sab"); if (!up->port.membase) return -ENOMEM; up->regs = (union sab82532_async_regs __iomem *) up->port.membase; up->port.irq = op->irqs[0]; up->port.fifosize = SAB82532_XMIT_FIFO_SIZE; up->port.iotype = UPIO_MEM; writeb(SAB82532_IPC_IC_ACT_LOW, &up->regs->w.ipc); up->port.ops = &sunsab_pops; up->port.type = PORT_SUNSAB; up->port.uartclk = SAB_BASE_BAUD; up->type = readb(&up->regs->r.vstr) & 0x0f; writeb(~((1 << 1) | (1 << 2) | (1 << 4)), &up->regs->w.pcr); writeb(0xff, &up->regs->w.pim); if ((up->port.line & 0x1) == 0) { up->pvr_dsr_bit = (1 << 0); up->pvr_dtr_bit = (1 << 1); up->gis_shift = 2; } else { up->pvr_dsr_bit = (1 << 3); up->pvr_dtr_bit = (1 << 2); up->gis_shift = 0; } up->cached_pvr = (1 << 1) | (1 << 2) | (1 << 4); writeb(up->cached_pvr, &up->regs->w.pvr); up->cached_mode = readb(&up->regs->rw.mode); up->cached_mode |= SAB82532_MODE_FRTS; writeb(up->cached_mode, &up->regs->rw.mode); up->cached_mode |= SAB82532_MODE_RTS; writeb(up->cached_mode, &up->regs->rw.mode); up->tec_timeout = SAB82532_MAX_TEC_TIMEOUT; up->cec_timeout = SAB82532_MAX_CEC_TIMEOUT; return 0; } static int __devinit sab_probe(struct of_device *op, const struct of_device_id *match) { static int inst; struct uart_sunsab_port *up; int err; up = &sunsab_ports[inst * 2]; err = sunsab_init_one(&up[0], op, 0, (inst * 2) + 0); if (err) goto out; err = sunsab_init_one(&up[1], op, sizeof(union sab82532_async_regs), (inst * 2) + 1); if (err) goto out1; sunserial_console_match(SUNSAB_CONSOLE(), op->node, &sunsab_reg, up[0].port.line, false); sunserial_console_match(SUNSAB_CONSOLE(), op->node, &sunsab_reg, up[1].port.line, false); err = uart_add_one_port(&sunsab_reg, &up[0].port); if (err) goto out2; err = uart_add_one_port(&sunsab_reg, &up[1].port); if (err) goto out3; dev_set_drvdata(&op->dev, &up[0]); inst++; return 0; out3: uart_remove_one_port(&sunsab_reg, &up[0].port); out2: of_iounmap(&op->resource[0], up[1].port.membase, sizeof(union sab82532_async_regs)); out1: of_iounmap(&op->resource[0], up[0].port.membase, sizeof(union sab82532_async_regs)); out: return err; } static int __devexit sab_remove(struct of_device *op) { struct uart_sunsab_port *up = dev_get_drvdata(&op->dev); uart_remove_one_port(&sunsab_reg, &up[1].port); uart_remove_one_port(&sunsab_reg, &up[0].port); of_iounmap(&op->resource[0], up[1].port.membase, sizeof(union sab82532_async_regs)); of_iounmap(&op->resource[0], up[0].port.membase, sizeof(union sab82532_async_regs)); dev_set_drvdata(&op->dev, NULL); return 0; } static const struct of_device_id sab_match[] = { { .name = "se", }, { .name = "serial", .compatible = "sab82532", }, {}, }; MODULE_DEVICE_TABLE(of, sab_match); static struct of_platform_driver sab_driver = { .name = "sab", .match_table = sab_match, .probe = sab_probe, .remove = __devexit_p(sab_remove), }; static int __init sunsab_init(void) { struct device_node *dp; int err; int num_channels = 0; for_each_node_by_name(dp, "se") num_channels += 2; for_each_node_by_name(dp, "serial") { if (of_device_is_compatible(dp, "sab82532")) num_channels += 2; } if (num_channels) { sunsab_ports = kzalloc(sizeof(struct uart_sunsab_port) * num_channels, GFP_KERNEL); if (!sunsab_ports) return -ENOMEM; err = sunserial_register_minors(&sunsab_reg, num_channels); if (err) { kfree(sunsab_ports); sunsab_ports = NULL; return err; } } return of_register_driver(&sab_driver, &of_bus_type); } static void __exit sunsab_exit(void) { of_unregister_driver(&sab_driver); if (sunsab_reg.nr) { sunserial_unregister_minors(&sunsab_reg, sunsab_reg.nr); } kfree(sunsab_ports); sunsab_ports = NULL; } module_init(sunsab_init); module_exit(sunsab_exit); MODULE_AUTHOR("Eddie C. Dost and David S. Miller"); MODULE_DESCRIPTION("Sun SAB82532 serial port driver"); MODULE_LICENSE("GPL");