/* * QLOGIC LINUX SOFTWARE * * QLogic ISP2x00 device driver for Linux 2.6.x * Copyright (C) 2003-2005 QLogic Corporation * (www.qlogic.com) * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * */ #include "qla_def.h" #include #include #include #include #include "qla_devtbl.h" /* XXX(hch): this is ugly, but we don't want to pull in exioctl.h */ #ifndef EXT_IS_LUN_BIT_SET #define EXT_IS_LUN_BIT_SET(P,L) \ (((P)->mask[L/8] & (0x80 >> (L%8)))?1:0) #define EXT_SET_LUN_BIT(P,L) \ ((P)->mask[L/8] |= (0x80 >> (L%8))) #endif /* * QLogic ISP2x00 Hardware Support Function Prototypes. */ static int qla2x00_isp_firmware(scsi_qla_host_t *); static void qla2x00_resize_request_q(scsi_qla_host_t *); static int qla2x00_setup_chip(scsi_qla_host_t *); static void qla2x00_init_response_q_entries(scsi_qla_host_t *); static int qla2x00_init_rings(scsi_qla_host_t *); static int qla2x00_fw_ready(scsi_qla_host_t *); static int qla2x00_configure_hba(scsi_qla_host_t *); static int qla2x00_configure_loop(scsi_qla_host_t *); static int qla2x00_configure_local_loop(scsi_qla_host_t *); static void qla2x00_update_fcport(scsi_qla_host_t *, fc_port_t *); static int qla2x00_configure_fabric(scsi_qla_host_t *); static int qla2x00_find_all_fabric_devs(scsi_qla_host_t *, struct list_head *); static int qla2x00_device_resync(scsi_qla_host_t *); static int qla2x00_fabric_dev_login(scsi_qla_host_t *, fc_port_t *, uint16_t *); static int qla2x00_restart_isp(scsi_qla_host_t *); /****************************************************************************/ /* QLogic ISP2x00 Hardware Support Functions. */ /****************************************************************************/ /* * qla2x00_initialize_adapter * Initialize board. * * Input: * ha = adapter block pointer. * * Returns: * 0 = success */ int qla2x00_initialize_adapter(scsi_qla_host_t *ha) { int rval; uint8_t restart_risc = 0; uint8_t retry; uint32_t wait_time; /* Clear adapter flags. */ ha->flags.online = 0; ha->flags.reset_active = 0; atomic_set(&ha->loop_down_timer, LOOP_DOWN_TIME); atomic_set(&ha->loop_state, LOOP_DOWN); ha->device_flags = 0; ha->dpc_flags = 0; ha->flags.management_server_logged_in = 0; ha->marker_needed = 0; ha->mbx_flags = 0; ha->isp_abort_cnt = 0; ha->beacon_blink_led = 0; qla_printk(KERN_INFO, ha, "Configuring PCI space...\n"); rval = ha->isp_ops.pci_config(ha); if (rval) { DEBUG2(printk("scsi(%ld): Unable to configure PCI space=n", ha->host_no)); return (rval); } ha->isp_ops.reset_chip(ha); qla_printk(KERN_INFO, ha, "Configure NVRAM parameters...\n"); ha->isp_ops.nvram_config(ha); qla_printk(KERN_INFO, ha, "Verifying loaded RISC code...\n"); retry = 10; /* * Try to configure the loop. */ do { restart_risc = 0; /* If firmware needs to be loaded */ if (qla2x00_isp_firmware(ha) != QLA_SUCCESS) { if ((rval = ha->isp_ops.chip_diag(ha)) == QLA_SUCCESS) { rval = qla2x00_setup_chip(ha); } } if (rval == QLA_SUCCESS && (rval = qla2x00_init_rings(ha)) == QLA_SUCCESS) { check_fw_ready_again: /* * Wait for a successful LIP up to a maximum * of (in seconds): RISC login timeout value, * RISC retry count value, and port down retry * value OR a minimum of 4 seconds OR If no * cable, only 5 seconds. */ rval = qla2x00_fw_ready(ha); if (rval == QLA_SUCCESS) { clear_bit(RESET_MARKER_NEEDED, &ha->dpc_flags); /* Issue a marker after FW becomes ready. */ qla2x00_marker(ha, 0, 0, MK_SYNC_ALL); /* * Wait at most MAX_TARGET RSCNs for a stable * link. */ wait_time = 256; do { clear_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags); rval = qla2x00_configure_loop(ha); if (test_and_clear_bit(ISP_ABORT_NEEDED, &ha->dpc_flags)) { restart_risc = 1; break; } /* * If loop state change while we were * discoverying devices then wait for * LIP to complete */ if (atomic_read(&ha->loop_state) == LOOP_DOWN && retry--) { goto check_fw_ready_again; } wait_time--; } while (!atomic_read(&ha->loop_down_timer) && retry && wait_time && (test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags))); if (wait_time == 0) rval = QLA_FUNCTION_FAILED; } else if (ha->device_flags & DFLG_NO_CABLE) /* If no cable, then all is good. */ rval = QLA_SUCCESS; } } while (restart_risc && retry--); if (rval == QLA_SUCCESS) { clear_bit(RESET_MARKER_NEEDED, &ha->dpc_flags); qla2x00_marker(ha, 0, 0, MK_SYNC_ALL); ha->marker_needed = 0; ha->flags.online = 1; } else { DEBUG2_3(printk("%s(): **** FAILED ****\n", __func__)); } return (rval); } /** * qla2100_pci_config() - Setup ISP21xx PCI configuration registers. * @ha: HA context * * Returns 0 on success. */ int qla2100_pci_config(scsi_qla_host_t *ha) { uint16_t w, mwi; unsigned long flags; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; pci_set_master(ha->pdev); mwi = 0; if (pci_set_mwi(ha->pdev)) mwi = PCI_COMMAND_INVALIDATE; pci_read_config_word(ha->pdev, PCI_REVISION_ID, &ha->revision); pci_read_config_word(ha->pdev, PCI_COMMAND, &w); w |= mwi | (PCI_COMMAND_PARITY | PCI_COMMAND_SERR); pci_write_config_word(ha->pdev, PCI_COMMAND, w); /* Reset expansion ROM address decode enable */ pci_read_config_word(ha->pdev, PCI_ROM_ADDRESS, &w); w &= ~PCI_ROM_ADDRESS_ENABLE; pci_write_config_word(ha->pdev, PCI_ROM_ADDRESS, w); /* Get PCI bus information. */ spin_lock_irqsave(&ha->hardware_lock, flags); ha->pci_attr = RD_REG_WORD(®->ctrl_status); spin_unlock_irqrestore(&ha->hardware_lock, flags); return QLA_SUCCESS; } /** * qla2300_pci_config() - Setup ISP23xx PCI configuration registers. * @ha: HA context * * Returns 0 on success. */ int qla2300_pci_config(scsi_qla_host_t *ha) { uint16_t w, mwi; unsigned long flags = 0; uint32_t cnt; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; pci_set_master(ha->pdev); mwi = 0; if (pci_set_mwi(ha->pdev)) mwi = PCI_COMMAND_INVALIDATE; pci_read_config_word(ha->pdev, PCI_REVISION_ID, &ha->revision); pci_read_config_word(ha->pdev, PCI_COMMAND, &w); w |= mwi | (PCI_COMMAND_PARITY | PCI_COMMAND_SERR); if (IS_QLA2322(ha) || IS_QLA6322(ha)) w &= ~PCI_COMMAND_INTX_DISABLE; /* * If this is a 2300 card and not 2312, reset the * COMMAND_INVALIDATE due to a bug in the 2300. Unfortunately, * the 2310 also reports itself as a 2300 so we need to get the * fb revision level -- a 6 indicates it really is a 2300 and * not a 2310. */ if (IS_QLA2300(ha)) { spin_lock_irqsave(&ha->hardware_lock, flags); /* Pause RISC. */ WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); for (cnt = 0; cnt < 30000; cnt++) { if ((RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) != 0) break; udelay(10); } /* Select FPM registers. */ WRT_REG_WORD(®->ctrl_status, 0x20); RD_REG_WORD(®->ctrl_status); /* Get the fb rev level */ ha->fb_rev = RD_FB_CMD_REG(ha, reg); if (ha->fb_rev == FPM_2300) w &= ~PCI_COMMAND_INVALIDATE; /* Deselect FPM registers. */ WRT_REG_WORD(®->ctrl_status, 0x0); RD_REG_WORD(®->ctrl_status); /* Release RISC module. */ WRT_REG_WORD(®->hccr, HCCR_RELEASE_RISC); for (cnt = 0; cnt < 30000; cnt++) { if ((RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) == 0) break; udelay(10); } spin_unlock_irqrestore(&ha->hardware_lock, flags); } pci_write_config_word(ha->pdev, PCI_COMMAND, w); pci_write_config_byte(ha->pdev, PCI_LATENCY_TIMER, 0x80); /* Reset expansion ROM address decode enable */ pci_read_config_word(ha->pdev, PCI_ROM_ADDRESS, &w); w &= ~PCI_ROM_ADDRESS_ENABLE; pci_write_config_word(ha->pdev, PCI_ROM_ADDRESS, w); /* Get PCI bus information. */ spin_lock_irqsave(&ha->hardware_lock, flags); ha->pci_attr = RD_REG_WORD(®->ctrl_status); spin_unlock_irqrestore(&ha->hardware_lock, flags); return QLA_SUCCESS; } /** * qla24xx_pci_config() - Setup ISP24xx PCI configuration registers. * @ha: HA context * * Returns 0 on success. */ int qla24xx_pci_config(scsi_qla_host_t *ha) { uint16_t w, mwi; unsigned long flags = 0; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; int pcix_cmd_reg, pcie_dctl_reg; pci_set_master(ha->pdev); mwi = 0; if (pci_set_mwi(ha->pdev)) mwi = PCI_COMMAND_INVALIDATE; pci_read_config_word(ha->pdev, PCI_REVISION_ID, &ha->revision); pci_read_config_word(ha->pdev, PCI_COMMAND, &w); w |= mwi | (PCI_COMMAND_PARITY | PCI_COMMAND_SERR); w &= ~PCI_COMMAND_INTX_DISABLE; pci_write_config_word(ha->pdev, PCI_COMMAND, w); pci_write_config_byte(ha->pdev, PCI_LATENCY_TIMER, 0x80); /* PCI-X -- adjust Maximum Memory Read Byte Count (2048). */ pcix_cmd_reg = pci_find_capability(ha->pdev, PCI_CAP_ID_PCIX); if (pcix_cmd_reg) { uint16_t pcix_cmd; pcix_cmd_reg += PCI_X_CMD; pci_read_config_word(ha->pdev, pcix_cmd_reg, &pcix_cmd); pcix_cmd &= ~PCI_X_CMD_MAX_READ; pcix_cmd |= 0x0008; pci_write_config_word(ha->pdev, pcix_cmd_reg, pcix_cmd); } /* PCIe -- adjust Maximum Read Request Size (2048). */ pcie_dctl_reg = pci_find_capability(ha->pdev, PCI_CAP_ID_EXP); if (pcie_dctl_reg) { uint16_t pcie_dctl; pcie_dctl_reg += PCI_EXP_DEVCTL; pci_read_config_word(ha->pdev, pcie_dctl_reg, &pcie_dctl); pcie_dctl &= ~PCI_EXP_DEVCTL_READRQ; pcie_dctl |= 0x4000; pci_write_config_word(ha->pdev, pcie_dctl_reg, pcie_dctl); } /* Reset expansion ROM address decode enable */ pci_read_config_word(ha->pdev, PCI_ROM_ADDRESS, &w); w &= ~PCI_ROM_ADDRESS_ENABLE; pci_write_config_word(ha->pdev, PCI_ROM_ADDRESS, w); /* Get PCI bus information. */ spin_lock_irqsave(&ha->hardware_lock, flags); ha->pci_attr = RD_REG_DWORD(®->ctrl_status); spin_unlock_irqrestore(&ha->hardware_lock, flags); return QLA_SUCCESS; } /** * qla2x00_isp_firmware() - Choose firmware image. * @ha: HA context * * Returns 0 on success. */ static int qla2x00_isp_firmware(scsi_qla_host_t *ha) { int rval; /* Assume loading risc code */ rval = QLA_FUNCTION_FAILED; if (ha->flags.disable_risc_code_load) { DEBUG2(printk("scsi(%ld): RISC CODE NOT loaded\n", ha->host_no)); qla_printk(KERN_INFO, ha, "RISC CODE NOT loaded\n"); /* Verify checksum of loaded RISC code. */ rval = qla2x00_verify_checksum(ha, IS_QLA24XX(ha) || IS_QLA25XX(ha) ? RISC_SADDRESS : *ha->brd_info->fw_info[0].fwstart); } if (rval) { DEBUG2_3(printk("scsi(%ld): **** Load RISC code ****\n", ha->host_no)); } return (rval); } /** * qla2x00_reset_chip() - Reset ISP chip. * @ha: HA context * * Returns 0 on success. */ void qla2x00_reset_chip(scsi_qla_host_t *ha) { unsigned long flags = 0; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; uint32_t cnt; unsigned long mbx_flags = 0; uint16_t cmd; ha->isp_ops.disable_intrs(ha); spin_lock_irqsave(&ha->hardware_lock, flags); /* Turn off master enable */ cmd = 0; pci_read_config_word(ha->pdev, PCI_COMMAND, &cmd); cmd &= ~PCI_COMMAND_MASTER; pci_write_config_word(ha->pdev, PCI_COMMAND, cmd); if (!IS_QLA2100(ha)) { /* Pause RISC. */ WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); if (IS_QLA2200(ha) || IS_QLA2300(ha)) { for (cnt = 0; cnt < 30000; cnt++) { if ((RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) != 0) break; udelay(100); } } else { RD_REG_WORD(®->hccr); /* PCI Posting. */ udelay(10); } /* Select FPM registers. */ WRT_REG_WORD(®->ctrl_status, 0x20); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ /* FPM Soft Reset. */ WRT_REG_WORD(®->fpm_diag_config, 0x100); RD_REG_WORD(®->fpm_diag_config); /* PCI Posting. */ /* Toggle Fpm Reset. */ if (!IS_QLA2200(ha)) { WRT_REG_WORD(®->fpm_diag_config, 0x0); RD_REG_WORD(®->fpm_diag_config); /* PCI Posting. */ } /* Select frame buffer registers. */ WRT_REG_WORD(®->ctrl_status, 0x10); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ /* Reset frame buffer FIFOs. */ if (IS_QLA2200(ha)) { WRT_FB_CMD_REG(ha, reg, 0xa000); RD_FB_CMD_REG(ha, reg); /* PCI Posting. */ } else { WRT_FB_CMD_REG(ha, reg, 0x00fc); /* Read back fb_cmd until zero or 3 seconds max */ for (cnt = 0; cnt < 3000; cnt++) { if ((RD_FB_CMD_REG(ha, reg) & 0xff) == 0) break; udelay(100); } } /* Select RISC module registers. */ WRT_REG_WORD(®->ctrl_status, 0); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ /* Reset RISC processor. */ WRT_REG_WORD(®->hccr, HCCR_RESET_RISC); RD_REG_WORD(®->hccr); /* PCI Posting. */ /* Release RISC processor. */ WRT_REG_WORD(®->hccr, HCCR_RELEASE_RISC); RD_REG_WORD(®->hccr); /* PCI Posting. */ } WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); WRT_REG_WORD(®->hccr, HCCR_CLR_HOST_INT); /* Reset ISP chip. */ WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET); /* Wait for RISC to recover from reset. */ if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) { /* * It is necessary to for a delay here since the card doesn't * respond to PCI reads during a reset. On some architectures * this will result in an MCA. */ udelay(20); for (cnt = 30000; cnt; cnt--) { if ((RD_REG_WORD(®->ctrl_status) & CSR_ISP_SOFT_RESET) == 0) break; udelay(100); } } else udelay(10); /* Reset RISC processor. */ WRT_REG_WORD(®->hccr, HCCR_RESET_RISC); WRT_REG_WORD(®->semaphore, 0); /* Release RISC processor. */ WRT_REG_WORD(®->hccr, HCCR_RELEASE_RISC); RD_REG_WORD(®->hccr); /* PCI Posting. */ if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) { for (cnt = 0; cnt < 30000; cnt++) { if (!(test_bit(ABORT_ISP_ACTIVE, &ha->dpc_flags))) spin_lock_irqsave(&ha->mbx_reg_lock, mbx_flags); if (RD_MAILBOX_REG(ha, reg, 0) != MBS_BUSY) { if (!(test_bit(ABORT_ISP_ACTIVE, &ha->dpc_flags))) spin_unlock_irqrestore( &ha->mbx_reg_lock, mbx_flags); break; } if (!(test_bit(ABORT_ISP_ACTIVE, &ha->dpc_flags))) spin_unlock_irqrestore(&ha->mbx_reg_lock, mbx_flags); udelay(100); } } else udelay(100); /* Turn on master enable */ cmd |= PCI_COMMAND_MASTER; pci_write_config_word(ha->pdev, PCI_COMMAND, cmd); /* Disable RISC pause on FPM parity error. */ if (!IS_QLA2100(ha)) { WRT_REG_WORD(®->hccr, HCCR_DISABLE_PARITY_PAUSE); RD_REG_WORD(®->hccr); /* PCI Posting. */ } spin_unlock_irqrestore(&ha->hardware_lock, flags); } /** * qla24xx_reset_chip() - Reset ISP24xx chip. * @ha: HA context * * Returns 0 on success. */ void qla24xx_reset_chip(scsi_qla_host_t *ha) { unsigned long flags = 0; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; uint32_t cnt, d2; ha->isp_ops.disable_intrs(ha); spin_lock_irqsave(&ha->hardware_lock, flags); /* Reset RISC. */ WRT_REG_DWORD(®->ctrl_status, CSRX_DMA_SHUTDOWN|MWB_4096_BYTES); for (cnt = 0; cnt < 30000; cnt++) { if ((RD_REG_DWORD(®->ctrl_status) & CSRX_DMA_ACTIVE) == 0) break; udelay(10); } WRT_REG_DWORD(®->ctrl_status, CSRX_ISP_SOFT_RESET|CSRX_DMA_SHUTDOWN|MWB_4096_BYTES); udelay(20); d2 = RD_REG_DWORD(®->ctrl_status); for (cnt = 6000000 ; cnt && (d2 & CSRX_ISP_SOFT_RESET); cnt--) { udelay(5); d2 = RD_REG_DWORD(®->ctrl_status); barrier(); } WRT_REG_DWORD(®->hccr, HCCRX_SET_RISC_RESET); RD_REG_DWORD(®->hccr); WRT_REG_DWORD(®->hccr, HCCRX_REL_RISC_PAUSE); RD_REG_DWORD(®->hccr); WRT_REG_DWORD(®->hccr, HCCRX_CLR_RISC_RESET); RD_REG_DWORD(®->hccr); d2 = (uint32_t) RD_REG_WORD(®->mailbox0); for (cnt = 6000000 ; cnt && d2; cnt--) { udelay(5); d2 = (uint32_t) RD_REG_WORD(®->mailbox0); barrier(); } spin_unlock_irqrestore(&ha->hardware_lock, flags); } /** * qla2x00_chip_diag() - Test chip for proper operation. * @ha: HA context * * Returns 0 on success. */ int qla2x00_chip_diag(scsi_qla_host_t *ha) { int rval; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; unsigned long flags = 0; uint16_t data; uint32_t cnt; uint16_t mb[5]; /* Assume a failed state */ rval = QLA_FUNCTION_FAILED; DEBUG3(printk("scsi(%ld): Testing device at %lx.\n", ha->host_no, (u_long)®->flash_address)); spin_lock_irqsave(&ha->hardware_lock, flags); /* Reset ISP chip. */ WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET); /* * We need to have a delay here since the card will not respond while * in reset causing an MCA on some architectures. */ udelay(20); data = qla2x00_debounce_register(®->ctrl_status); for (cnt = 6000000 ; cnt && (data & CSR_ISP_SOFT_RESET); cnt--) { udelay(5); data = RD_REG_WORD(®->ctrl_status); barrier(); } if (!cnt) goto chip_diag_failed; DEBUG3(printk("scsi(%ld): Reset register cleared by chip reset\n", ha->host_no)); /* Reset RISC processor. */ WRT_REG_WORD(®->hccr, HCCR_RESET_RISC); WRT_REG_WORD(®->hccr, HCCR_RELEASE_RISC); /* Workaround for QLA2312 PCI parity error */ if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) { data = qla2x00_debounce_register(MAILBOX_REG(ha, reg, 0)); for (cnt = 6000000; cnt && (data == MBS_BUSY); cnt--) { udelay(5); data = RD_MAILBOX_REG(ha, reg, 0); barrier(); } } else udelay(10); if (!cnt) goto chip_diag_failed; /* Check product ID of chip */ DEBUG3(printk("scsi(%ld): Checking product ID of chip\n", ha->host_no)); mb[1] = RD_MAILBOX_REG(ha, reg, 1); mb[2] = RD_MAILBOX_REG(ha, reg, 2); mb[3] = RD_MAILBOX_REG(ha, reg, 3); mb[4] = qla2x00_debounce_register(MAILBOX_REG(ha, reg, 4)); if (mb[1] != PROD_ID_1 || (mb[2] != PROD_ID_2 && mb[2] != PROD_ID_2a) || mb[3] != PROD_ID_3) { qla_printk(KERN_WARNING, ha, "Wrong product ID = 0x%x,0x%x,0x%x\n", mb[1], mb[2], mb[3]); goto chip_diag_failed; } ha->product_id[0] = mb[1]; ha->product_id[1] = mb[2]; ha->product_id[2] = mb[3]; ha->product_id[3] = mb[4]; /* Adjust fw RISC transfer size */ if (ha->request_q_length > 1024) ha->fw_transfer_size = REQUEST_ENTRY_SIZE * 1024; else ha->fw_transfer_size = REQUEST_ENTRY_SIZE * ha->request_q_length; if (IS_QLA2200(ha) && RD_MAILBOX_REG(ha, reg, 7) == QLA2200A_RISC_ROM_VER) { /* Limit firmware transfer size with a 2200A */ DEBUG3(printk("scsi(%ld): Found QLA2200A chip.\n", ha->host_no)); ha->fw_transfer_size = 128; } /* Wrap Incoming Mailboxes Test. */ spin_unlock_irqrestore(&ha->hardware_lock, flags); DEBUG3(printk("scsi(%ld): Checking mailboxes.\n", ha->host_no)); rval = qla2x00_mbx_reg_test(ha); if (rval) { DEBUG(printk("scsi(%ld): Failed mailbox send register test\n", ha->host_no)); qla_printk(KERN_WARNING, ha, "Failed mailbox send register test\n"); } else { /* Flag a successful rval */ rval = QLA_SUCCESS; } spin_lock_irqsave(&ha->hardware_lock, flags); chip_diag_failed: if (rval) DEBUG2_3(printk("scsi(%ld): Chip diagnostics **** FAILED " "****\n", ha->host_no)); spin_unlock_irqrestore(&ha->hardware_lock, flags); return (rval); } /** * qla24xx_chip_diag() - Test ISP24xx for proper operation. * @ha: HA context * * Returns 0 on success. */ int qla24xx_chip_diag(scsi_qla_host_t *ha) { int rval; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; unsigned long flags = 0; uint32_t cnt, d2; spin_lock_irqsave(&ha->hardware_lock, flags); /* Reset RISC. */ WRT_REG_DWORD(®->ctrl_status, CSRX_DMA_SHUTDOWN|MWB_4096_BYTES); for (cnt = 0; cnt < 30000; cnt++) { if ((RD_REG_DWORD(®->ctrl_status) & CSRX_DMA_ACTIVE) == 0) break; udelay(10); } WRT_REG_DWORD(®->ctrl_status, CSRX_ISP_SOFT_RESET|CSRX_DMA_SHUTDOWN|MWB_4096_BYTES); udelay(20); d2 = RD_REG_DWORD(®->ctrl_status); for (cnt = 6000000 ; cnt && (d2 & CSRX_ISP_SOFT_RESET); cnt--) { udelay(5); d2 = RD_REG_DWORD(®->ctrl_status); barrier(); } WRT_REG_DWORD(®->hccr, HCCRX_SET_RISC_RESET); RD_REG_DWORD(®->hccr); WRT_REG_DWORD(®->hccr, HCCRX_REL_RISC_PAUSE); RD_REG_DWORD(®->hccr); WRT_REG_DWORD(®->hccr, HCCRX_CLR_RISC_RESET); RD_REG_DWORD(®->hccr); d2 = (uint32_t) RD_REG_WORD(®->mailbox0); for (cnt = 6000000 ; cnt && d2; cnt--) { udelay(5); d2 = (uint32_t) RD_REG_WORD(®->mailbox0); barrier(); } spin_unlock_irqrestore(&ha->hardware_lock, flags); ha->fw_transfer_size = REQUEST_ENTRY_SIZE * 1024; rval = qla2x00_mbx_reg_test(ha); if (rval) { DEBUG(printk("scsi(%ld): Failed mailbox send register test\n", ha->host_no)); qla_printk(KERN_WARNING, ha, "Failed mailbox send register test\n"); } else { /* Flag a successful rval */ rval = QLA_SUCCESS; } return rval; } static void qla2x00_alloc_fw_dump(scsi_qla_host_t *ha) { ha->fw_dumped = 0; ha->fw_dump24_len = sizeof(struct qla24xx_fw_dump); ha->fw_dump24_len += (ha->fw_memory_size - 0x100000) * sizeof(uint32_t); ha->fw_dump24 = vmalloc(ha->fw_dump24_len); if (ha->fw_dump24) qla_printk(KERN_INFO, ha, "Allocated (%d KB) for firmware " "dump...\n", ha->fw_dump24_len / 1024); else qla_printk(KERN_WARNING, ha, "Unable to allocate (%d KB) for " "firmware dump!!!\n", ha->fw_dump24_len / 1024); } /** * qla2x00_resize_request_q() - Resize request queue given available ISP memory. * @ha: HA context * * Returns 0 on success. */ static void qla2x00_resize_request_q(scsi_qla_host_t *ha) { int rval; uint16_t fw_iocb_cnt = 0; uint16_t request_q_length = REQUEST_ENTRY_CNT_2XXX_EXT_MEM; dma_addr_t request_dma; request_t *request_ring; /* Valid only on recent ISPs. */ if (IS_QLA2100(ha) || IS_QLA2200(ha)) return; if (IS_QLA24XX(ha) || IS_QLA25XX(ha)) qla2x00_alloc_fw_dump(ha); /* Retrieve IOCB counts available to the firmware. */ rval = qla2x00_get_resource_cnts(ha, NULL, NULL, NULL, &fw_iocb_cnt); if (rval) return; /* No point in continuing if current settings are sufficient. */ if (fw_iocb_cnt < 1024) return; if (ha->request_q_length >= request_q_length) return; /* Attempt to claim larger area for request queue. */ request_ring = dma_alloc_coherent(&ha->pdev->dev, (request_q_length + 1) * sizeof(request_t), &request_dma, GFP_KERNEL); if (request_ring == NULL) return; /* Resize successful, report extensions. */ qla_printk(KERN_INFO, ha, "Extended memory detected (%d KB)...\n", (ha->fw_memory_size + 1) / 1024); qla_printk(KERN_INFO, ha, "Resizing request queue depth " "(%d -> %d)...\n", ha->request_q_length, request_q_length); /* Clear old allocations. */ dma_free_coherent(&ha->pdev->dev, (ha->request_q_length + 1) * sizeof(request_t), ha->request_ring, ha->request_dma); /* Begin using larger queue. */ ha->request_q_length = request_q_length; ha->request_ring = request_ring; ha->request_dma = request_dma; } /** * qla2x00_setup_chip() - Load and start RISC firmware. * @ha: HA context * * Returns 0 on success. */ static int qla2x00_setup_chip(scsi_qla_host_t *ha) { int rval; uint32_t srisc_address = 0; /* Load firmware sequences */ rval = ha->isp_ops.load_risc(ha, &srisc_address); if (rval == QLA_SUCCESS) { DEBUG(printk("scsi(%ld): Verifying Checksum of loaded RISC " "code.\n", ha->host_no)); rval = qla2x00_verify_checksum(ha, srisc_address); if (rval == QLA_SUCCESS) { /* Start firmware execution. */ DEBUG(printk("scsi(%ld): Checksum OK, start " "firmware.\n", ha->host_no)); rval = qla2x00_execute_fw(ha, srisc_address); /* Retrieve firmware information. */ if (rval == QLA_SUCCESS && ha->fw_major_version == 0) { qla2x00_get_fw_version(ha, &ha->fw_major_version, &ha->fw_minor_version, &ha->fw_subminor_version, &ha->fw_attributes, &ha->fw_memory_size); qla2x00_resize_request_q(ha); } } else { DEBUG2(printk(KERN_INFO "scsi(%ld): ISP Firmware failed checksum.\n", ha->host_no)); } } if (rval) { DEBUG2_3(printk("scsi(%ld): Setup chip **** FAILED ****.\n", ha->host_no)); } return (rval); } /** * qla2x00_init_response_q_entries() - Initializes response queue entries. * @ha: HA context * * Beginning of request ring has initialization control block already built * by nvram config routine. * * Returns 0 on success. */ static void qla2x00_init_response_q_entries(scsi_qla_host_t *ha) { uint16_t cnt; response_t *pkt; pkt = ha->response_ring_ptr; for (cnt = 0; cnt < ha->response_q_length; cnt++) { pkt->signature = RESPONSE_PROCESSED; pkt++; } } /** * qla2x00_update_fw_options() - Read and process firmware options. * @ha: HA context * * Returns 0 on success. */ void qla2x00_update_fw_options(scsi_qla_host_t *ha) { uint16_t swing, emphasis, tx_sens, rx_sens; memset(ha->fw_options, 0, sizeof(ha->fw_options)); qla2x00_get_fw_options(ha, ha->fw_options); if (IS_QLA2100(ha) || IS_QLA2200(ha)) return; /* Serial Link options. */ DEBUG3(printk("scsi(%ld): Serial link options:\n", ha->host_no)); DEBUG3(qla2x00_dump_buffer((uint8_t *)&ha->fw_seriallink_options, sizeof(ha->fw_seriallink_options))); ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING; if (ha->fw_seriallink_options[3] & BIT_2) { ha->fw_options[1] |= FO1_SET_EMPHASIS_SWING; /* 1G settings */ swing = ha->fw_seriallink_options[2] & (BIT_2 | BIT_1 | BIT_0); emphasis = (ha->fw_seriallink_options[2] & (BIT_4 | BIT_3)) >> 3; tx_sens = ha->fw_seriallink_options[0] & (BIT_3 | BIT_2 | BIT_1 | BIT_0); rx_sens = (ha->fw_seriallink_options[0] & (BIT_7 | BIT_6 | BIT_5 | BIT_4)) >> 4; ha->fw_options[10] = (emphasis << 14) | (swing << 8); if (IS_QLA2300(ha) || IS_QLA2312(ha) || IS_QLA6312(ha)) { if (rx_sens == 0x0) rx_sens = 0x3; ha->fw_options[10] |= (tx_sens << 4) | rx_sens; } else if (IS_QLA2322(ha) || IS_QLA6322(ha)) ha->fw_options[10] |= BIT_5 | ((rx_sens & (BIT_1 | BIT_0)) << 2) | (tx_sens & (BIT_1 | BIT_0)); /* 2G settings */ swing = (ha->fw_seriallink_options[2] & (BIT_7 | BIT_6 | BIT_5)) >> 5; emphasis = ha->fw_seriallink_options[3] & (BIT_1 | BIT_0); tx_sens = ha->fw_seriallink_options[1] & (BIT_3 | BIT_2 | BIT_1 | BIT_0); rx_sens = (ha->fw_seriallink_options[1] & (BIT_7 | BIT_6 | BIT_5 | BIT_4)) >> 4; ha->fw_options[11] = (emphasis << 14) | (swing << 8); if (IS_QLA2300(ha) || IS_QLA2312(ha) || IS_QLA6312(ha)) { if (rx_sens == 0x0) rx_sens = 0x3; ha->fw_options[11] |= (tx_sens << 4) | rx_sens; } else if (IS_QLA2322(ha) || IS_QLA6322(ha)) ha->fw_options[11] |= BIT_5 | ((rx_sens & (BIT_1 | BIT_0)) << 2) | (tx_sens & (BIT_1 | BIT_0)); } /* FCP2 options. */ /* Return command IOCBs without waiting for an ABTS to complete. */ ha->fw_options[3] |= BIT_13; /* LED scheme. */ if (ha->flags.enable_led_scheme) ha->fw_options[2] |= BIT_12; /* Update firmware options. */ qla2x00_set_fw_options(ha, ha->fw_options); } void qla24xx_update_fw_options(scsi_qla_host_t *ha) { int rval; /* Update Serial Link options. */ if ((ha->fw_seriallink_options24[0] & BIT_0) == 0) return; rval = qla2x00_set_serdes_params(ha, ha->fw_seriallink_options24[1], ha->fw_seriallink_options24[2], ha->fw_seriallink_options24[3]); if (rval != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Unable to update Serial Link options (%x).\n", rval); } } void qla2x00_config_rings(struct scsi_qla_host *ha) { struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; /* Setup ring parameters in initialization control block. */ ha->init_cb->request_q_outpointer = __constant_cpu_to_le16(0); ha->init_cb->response_q_inpointer = __constant_cpu_to_le16(0); ha->init_cb->request_q_length = cpu_to_le16(ha->request_q_length); ha->init_cb->response_q_length = cpu_to_le16(ha->response_q_length); ha->init_cb->request_q_address[0] = cpu_to_le32(LSD(ha->request_dma)); ha->init_cb->request_q_address[1] = cpu_to_le32(MSD(ha->request_dma)); ha->init_cb->response_q_address[0] = cpu_to_le32(LSD(ha->response_dma)); ha->init_cb->response_q_address[1] = cpu_to_le32(MSD(ha->response_dma)); WRT_REG_WORD(ISP_REQ_Q_IN(ha, reg), 0); WRT_REG_WORD(ISP_REQ_Q_OUT(ha, reg), 0); WRT_REG_WORD(ISP_RSP_Q_IN(ha, reg), 0); WRT_REG_WORD(ISP_RSP_Q_OUT(ha, reg), 0); RD_REG_WORD(ISP_RSP_Q_OUT(ha, reg)); /* PCI Posting. */ } void qla24xx_config_rings(struct scsi_qla_host *ha) { struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; struct init_cb_24xx *icb; /* Setup ring parameters in initialization control block. */ icb = (struct init_cb_24xx *)ha->init_cb; icb->request_q_outpointer = __constant_cpu_to_le16(0); icb->response_q_inpointer = __constant_cpu_to_le16(0); icb->request_q_length = cpu_to_le16(ha->request_q_length); icb->response_q_length = cpu_to_le16(ha->response_q_length); icb->request_q_address[0] = cpu_to_le32(LSD(ha->request_dma)); icb->request_q_address[1] = cpu_to_le32(MSD(ha->request_dma)); icb->response_q_address[0] = cpu_to_le32(LSD(ha->response_dma)); icb->response_q_address[1] = cpu_to_le32(MSD(ha->response_dma)); WRT_REG_DWORD(®->req_q_in, 0); WRT_REG_DWORD(®->req_q_out, 0); WRT_REG_DWORD(®->rsp_q_in, 0); WRT_REG_DWORD(®->rsp_q_out, 0); RD_REG_DWORD(®->rsp_q_out); } /** * qla2x00_init_rings() - Initializes firmware. * @ha: HA context * * Beginning of request ring has initialization control block already built * by nvram config routine. * * Returns 0 on success. */ static int qla2x00_init_rings(scsi_qla_host_t *ha) { int rval; unsigned long flags = 0; int cnt; spin_lock_irqsave(&ha->hardware_lock, flags); /* Clear outstanding commands array. */ for (cnt = 0; cnt < MAX_OUTSTANDING_COMMANDS; cnt++) ha->outstanding_cmds[cnt] = NULL; ha->current_outstanding_cmd = 0; /* Clear RSCN queue. */ ha->rscn_in_ptr = 0; ha->rscn_out_ptr = 0; /* Initialize firmware. */ ha->request_ring_ptr = ha->request_ring; ha->req_ring_index = 0; ha->req_q_cnt = ha->request_q_length; ha->response_ring_ptr = ha->response_ring; ha->rsp_ring_index = 0; /* Initialize response queue entries */ qla2x00_init_response_q_entries(ha); ha->isp_ops.config_rings(ha); spin_unlock_irqrestore(&ha->hardware_lock, flags); /* Update any ISP specific firmware options before initialization. */ ha->isp_ops.update_fw_options(ha); DEBUG(printk("scsi(%ld): Issue init firmware.\n", ha->host_no)); rval = qla2x00_init_firmware(ha, ha->init_cb_size); if (rval) { DEBUG2_3(printk("scsi(%ld): Init firmware **** FAILED ****.\n", ha->host_no)); } else { DEBUG3(printk("scsi(%ld): Init firmware -- success.\n", ha->host_no)); } return (rval); } /** * qla2x00_fw_ready() - Waits for firmware ready. * @ha: HA context * * Returns 0 on success. */ static int qla2x00_fw_ready(scsi_qla_host_t *ha) { int rval; unsigned long wtime, mtime; uint16_t min_wait; /* Minimum wait time if loop is down */ uint16_t wait_time; /* Wait time if loop is coming ready */ uint16_t fw_state; rval = QLA_SUCCESS; /* 20 seconds for loop down. */ min_wait = 20; /* * Firmware should take at most one RATOV to login, plus 5 seconds for * our own processing. */ if ((wait_time = (ha->retry_count*ha->login_timeout) + 5) < min_wait) { wait_time = min_wait; } /* Min wait time if loop down */ mtime = jiffies + (min_wait * HZ); /* wait time before firmware ready */ wtime = jiffies + (wait_time * HZ); /* Wait for ISP to finish LIP */ if (!ha->flags.init_done) qla_printk(KERN_INFO, ha, "Waiting for LIP to complete...\n"); DEBUG3(printk("scsi(%ld): Waiting for LIP to complete...\n", ha->host_no)); do { rval = qla2x00_get_firmware_state(ha, &fw_state); if (rval == QLA_SUCCESS) { if (fw_state < FSTATE_LOSS_OF_SYNC) { ha->device_flags &= ~DFLG_NO_CABLE; } if (fw_state == FSTATE_READY) { DEBUG(printk("scsi(%ld): F/W Ready - OK \n", ha->host_no)); qla2x00_get_retry_cnt(ha, &ha->retry_count, &ha->login_timeout, &ha->r_a_tov); rval = QLA_SUCCESS; break; } rval = QLA_FUNCTION_FAILED; if (atomic_read(&ha->loop_down_timer) && (fw_state >= FSTATE_LOSS_OF_SYNC || fw_state == FSTATE_WAIT_AL_PA)) { /* Loop down. Timeout on min_wait for states * other than Wait for Login. */ if (time_after_eq(jiffies, mtime)) { qla_printk(KERN_INFO, ha, "Cable is unplugged...\n"); ha->device_flags |= DFLG_NO_CABLE; break; } } } else { /* Mailbox cmd failed. Timeout on min_wait. */ if (time_after_eq(jiffies, mtime)) break; } if (time_after_eq(jiffies, wtime)) break; /* Delay for a while */ msleep(500); DEBUG3(printk("scsi(%ld): fw_state=%x curr time=%lx.\n", ha->host_no, fw_state, jiffies)); } while (1); DEBUG(printk("scsi(%ld): fw_state=%x curr time=%lx.\n", ha->host_no, fw_state, jiffies)); if (rval) { DEBUG2_3(printk("scsi(%ld): Firmware ready **** FAILED ****.\n", ha->host_no)); } return (rval); } /* * qla2x00_configure_hba * Setup adapter context. * * Input: * ha = adapter state pointer. * * Returns: * 0 = success * * Context: * Kernel context. */ static int qla2x00_configure_hba(scsi_qla_host_t *ha) { int rval; uint16_t loop_id; uint16_t topo; uint8_t al_pa; uint8_t area; uint8_t domain; char connect_type[22]; /* Get host addresses. */ rval = qla2x00_get_adapter_id(ha, &loop_id, &al_pa, &area, &domain, &topo); if (rval != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "ERROR -- Unable to get host loop ID.\n"); set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags); return (rval); } if (topo == 4) { qla_printk(KERN_INFO, ha, "Cannot get topology - retrying.\n"); return (QLA_FUNCTION_FAILED); } ha->loop_id = loop_id; /* initialize */ ha->min_external_loopid = SNS_FIRST_LOOP_ID; ha->operating_mode = LOOP; switch (topo) { case 0: DEBUG3(printk("scsi(%ld): HBA in NL topology.\n", ha->host_no)); ha->current_topology = ISP_CFG_NL; strcpy(connect_type, "(Loop)"); break; case 1: DEBUG3(printk("scsi(%ld): HBA in FL topology.\n", ha->host_no)); ha->current_topology = ISP_CFG_FL; strcpy(connect_type, "(FL_Port)"); break; case 2: DEBUG3(printk("scsi(%ld): HBA in N P2P topology.\n", ha->host_no)); ha->operating_mode = P2P; ha->current_topology = ISP_CFG_N; strcpy(connect_type, "(N_Port-to-N_Port)"); break; case 3: DEBUG3(printk("scsi(%ld): HBA in F P2P topology.\n", ha->host_no)); ha->operating_mode = P2P; ha->current_topology = ISP_CFG_F; strcpy(connect_type, "(F_Port)"); break; default: DEBUG3(printk("scsi(%ld): HBA in unknown topology %x. " "Using NL.\n", ha->host_no, topo)); ha->current_topology = ISP_CFG_NL; strcpy(connect_type, "(Loop)"); break; } /* Save Host port and loop ID. */ /* byte order - Big Endian */ ha->d_id.b.domain = domain; ha->d_id.b.area = area; ha->d_id.b.al_pa = al_pa; if (!ha->flags.init_done) qla_printk(KERN_INFO, ha, "Topology - %s, Host Loop address 0x%x\n", connect_type, ha->loop_id); if (rval) { DEBUG2_3(printk("scsi(%ld): FAILED.\n", ha->host_no)); } else { DEBUG3(printk("scsi(%ld): exiting normally.\n", ha->host_no)); } return(rval); } /* * NVRAM configuration for ISP 2xxx * * Input: * ha = adapter block pointer. * * Output: * initialization control block in response_ring * host adapters parameters in host adapter block * * Returns: * 0 = success. */ int qla2x00_nvram_config(scsi_qla_host_t *ha) { int rval; uint8_t chksum = 0; uint16_t cnt; uint8_t *dptr1, *dptr2; init_cb_t *icb = ha->init_cb; nvram_t *nv = (nvram_t *)ha->request_ring; uint8_t *ptr = (uint8_t *)ha->request_ring; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; uint8_t timer_mode; rval = QLA_SUCCESS; /* Determine NVRAM starting address. */ ha->nvram_size = sizeof(nvram_t); ha->nvram_base = 0; if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) if ((RD_REG_WORD(®->ctrl_status) >> 14) == 1) ha->nvram_base = 0x80; /* Get NVRAM data and calculate checksum. */ ha->isp_ops.read_nvram(ha, ptr, ha->nvram_base, ha->nvram_size); for (cnt = 0, chksum = 0; cnt < ha->nvram_size; cnt++) chksum += *ptr++; DEBUG5(printk("scsi(%ld): Contents of NVRAM\n", ha->host_no)); DEBUG5(qla2x00_dump_buffer((uint8_t *)ha->request_ring, ha->nvram_size)); /* Bad NVRAM data, set defaults parameters. */ if (chksum || nv->id[0] != 'I' || nv->id[1] != 'S' || nv->id[2] != 'P' || nv->id[3] != ' ' || nv->nvram_version < 1) { /* Reset NVRAM data. */ qla_printk(KERN_WARNING, ha, "Inconsistent NVRAM detected: " "checksum=0x%x id=%c version=0x%x.\n", chksum, nv->id[0], nv->nvram_version); qla_printk(KERN_WARNING, ha, "Falling back to functioning (yet " "invalid -- WWPN) defaults.\n"); /* * Set default initialization control block. */ memset(nv, 0, ha->nvram_size); nv->parameter_block_version = ICB_VERSION; if (IS_QLA23XX(ha)) { nv->firmware_options[0] = BIT_2 | BIT_1; nv->firmware_options[1] = BIT_7 | BIT_5; nv->add_firmware_options[0] = BIT_5; nv->add_firmware_options[1] = BIT_5 | BIT_4; nv->frame_payload_size = __constant_cpu_to_le16(2048); nv->special_options[1] = BIT_7; } else if (IS_QLA2200(ha)) { nv->firmware_options[0] = BIT_2 | BIT_1; nv->firmware_options[1] = BIT_7 | BIT_5; nv->add_firmware_options[0] = BIT_5; nv->add_firmware_options[1] = BIT_5 | BIT_4; nv->frame_payload_size = __constant_cpu_to_le16(1024); } else if (IS_QLA2100(ha)) { nv->firmware_options[0] = BIT_3 | BIT_1; nv->firmware_options[1] = BIT_5; nv->frame_payload_size = __constant_cpu_to_le16(1024); } nv->max_iocb_allocation = __constant_cpu_to_le16(256); nv->execution_throttle = __constant_cpu_to_le16(16); nv->retry_count = 8; nv->retry_delay = 1; nv->port_name[0] = 33; nv->port_name[3] = 224; nv->port_name[4] = 139; nv->login_timeout = 4; /* * Set default host adapter parameters */ nv->host_p[1] = BIT_2; nv->reset_delay = 5; nv->port_down_retry_count = 8; nv->max_luns_per_target = __constant_cpu_to_le16(8); nv->link_down_timeout = 60; rval = 1; } #if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_SGI_SN2) /* * The SN2 does not provide BIOS emulation which means you can't change * potentially bogus BIOS settings. Force the use of default settings * for link rate and frame size. Hope that the rest of the settings * are valid. */ if (ia64_platform_is("sn2")) { nv->frame_payload_size = __constant_cpu_to_le16(2048); if (IS_QLA23XX(ha)) nv->special_options[1] = BIT_7; } #endif /* Reset Initialization control block */ memset(icb, 0, ha->init_cb_size); /* * Setup driver NVRAM options. */ nv->firmware_options[0] |= (BIT_6 | BIT_1); nv->firmware_options[0] &= ~(BIT_5 | BIT_4); nv->firmware_options[1] |= (BIT_5 | BIT_0); nv->firmware_options[1] &= ~BIT_4; if (IS_QLA23XX(ha)) { nv->firmware_options[0] |= BIT_2; nv->firmware_options[0] &= ~BIT_3; nv->add_firmware_options[1] |= BIT_5 | BIT_4; if (IS_QLA2300(ha)) { if (ha->fb_rev == FPM_2310) { strcpy(ha->model_number, "QLA2310"); } else { strcpy(ha->model_number, "QLA2300"); } } else { if (rval == 0 && memcmp(nv->model_number, BINZERO, sizeof(nv->model_number)) != 0) { char *st, *en; strncpy(ha->model_number, nv->model_number, sizeof(nv->model_number)); st = en = ha->model_number; en += sizeof(nv->model_number) - 1; while (en > st) { if (*en != 0x20 && *en != 0x00) break; *en-- = '\0'; } } else { uint16_t index; index = (ha->pdev->subsystem_device & 0xff); if (index < QLA_MODEL_NAMES) { strcpy(ha->model_number, qla2x00_model_name[index]); ha->model_desc = qla2x00_model_desc[index]; } else { strcpy(ha->model_number, "QLA23xx"); } } } } else if (IS_QLA2200(ha)) { nv->firmware_options[0] |= BIT_2; /* * 'Point-to-point preferred, else loop' is not a safe * connection mode setting. */ if ((nv->add_firmware_options[0] & (BIT_6 | BIT_5 | BIT_4)) == (BIT_5 | BIT_4)) { /* Force 'loop preferred, else point-to-point'. */ nv->add_firmware_options[0] &= ~(BIT_6 | BIT_5 | BIT_4); nv->add_firmware_options[0] |= BIT_5; } strcpy(ha->model_number, "QLA22xx"); } else /*if (IS_QLA2100(ha))*/ { strcpy(ha->model_number, "QLA2100"); } /* * Copy over NVRAM RISC parameter block to initialization control block. */ dptr1 = (uint8_t *)icb; dptr2 = (uint8_t *)&nv->parameter_block_version; cnt = (uint8_t *)&icb->request_q_outpointer - (uint8_t *)&icb->version; while (cnt--) *dptr1++ = *dptr2++; /* Copy 2nd half. */ dptr1 = (uint8_t *)icb->add_firmware_options; cnt = (uint8_t *)icb->reserved_3 - (uint8_t *)icb->add_firmware_options; while (cnt--) *dptr1++ = *dptr2++; /* Prepare nodename */ if ((icb->firmware_options[1] & BIT_6) == 0) { /* * Firmware will apply the following mask if the nodename was * not provided. */ memcpy(icb->node_name, icb->port_name, WWN_SIZE); icb->node_name[0] &= 0xF0; } /* * Set host adapter parameters. */ ha->flags.disable_risc_code_load = ((nv->host_p[0] & BIT_4) ? 1 : 0); /* Always load RISC code on non ISP2[12]00 chips. */ if (!IS_QLA2100(ha) && !IS_QLA2200(ha)) ha->flags.disable_risc_code_load = 0; ha->flags.enable_lip_reset = ((nv->host_p[1] & BIT_1) ? 1 : 0); ha->flags.enable_lip_full_login = ((nv->host_p[1] & BIT_2) ? 1 : 0); ha->flags.enable_target_reset = ((nv->host_p[1] & BIT_3) ? 1 : 0); ha->flags.enable_led_scheme = ((nv->efi_parameters & BIT_3) ? 1 : 0); ha->operating_mode = (icb->add_firmware_options[0] & (BIT_6 | BIT_5 | BIT_4)) >> 4; memcpy(ha->fw_seriallink_options, nv->seriallink_options, sizeof(ha->fw_seriallink_options)); /* save HBA serial number */ ha->serial0 = icb->port_name[5]; ha->serial1 = icb->port_name[6]; ha->serial2 = icb->port_name[7]; ha->node_name = icb->node_name; ha->port_name = icb->port_name; icb->execution_throttle = __constant_cpu_to_le16(0xFFFF); ha->retry_count = nv->retry_count; /* Set minimum login_timeout to 4 seconds. */ if (nv->login_timeout < ql2xlogintimeout) nv->login_timeout = ql2xlogintimeout; if (nv->login_timeout < 4) nv->login_timeout = 4; ha->login_timeout = nv->login_timeout; icb->login_timeout = nv->login_timeout; /* Set minimum RATOV to 200 tenths of a second. */ ha->r_a_tov = 200; ha->loop_reset_delay = nv->reset_delay; /* Link Down Timeout = 0: * * When Port Down timer expires we will start returning * I/O's to OS with "DID_NO_CONNECT". * * Link Down Timeout != 0: * * The driver waits for the link to come up after link down * before returning I/Os to OS with "DID_NO_CONNECT". */ if (nv->link_down_timeout == 0) { ha->loop_down_abort_time = (LOOP_DOWN_TIME - LOOP_DOWN_TIMEOUT); } else { ha->link_down_timeout = nv->link_down_timeout; ha->loop_down_abort_time = (LOOP_DOWN_TIME - ha->link_down_timeout); } /* * Need enough time to try and get the port back. */ ha->port_down_retry_count = nv->port_down_retry_count; if (qlport_down_retry) ha->port_down_retry_count = qlport_down_retry; /* Set login_retry_count */ ha->login_retry_count = nv->retry_count; if (ha->port_down_retry_count == nv->port_down_retry_count && ha->port_down_retry_count > 3) ha->login_retry_count = ha->port_down_retry_count; else if (ha->port_down_retry_count > (int)ha->login_retry_count) ha->login_retry_count = ha->port_down_retry_count; if (ql2xloginretrycount) ha->login_retry_count = ql2xloginretrycount; icb->lun_enables = __constant_cpu_to_le16(0); icb->command_resource_count = 0; icb->immediate_notify_resource_count = 0; icb->timeout = __constant_cpu_to_le16(0); if (IS_QLA2100(ha) || IS_QLA2200(ha)) { /* Enable RIO */ icb->firmware_options[0] &= ~BIT_3; icb->add_firmware_options[0] &= ~(BIT_3 | BIT_2 | BIT_1 | BIT_0); icb->add_firmware_options[0] |= BIT_2; icb->response_accumulation_timer = 3; icb->interrupt_delay_timer = 5; ha->flags.process_response_queue = 1; } else { /* Enable ZIO -- Support mode 5 only. */ timer_mode = icb->add_firmware_options[0] & (BIT_3 | BIT_2 | BIT_1 | BIT_0); icb->add_firmware_options[0] &= ~(BIT_3 | BIT_2 | BIT_1 | BIT_0); if (ql2xenablezio) timer_mode = BIT_2 | BIT_0; if (timer_mode == (BIT_2 | BIT_0)) { DEBUG2(printk("scsi(%ld): ZIO enabled; timer delay " "(%d).\n", ha->host_no, ql2xintrdelaytimer)); qla_printk(KERN_INFO, ha, "ZIO enabled; timer delay (%d).\n", ql2xintrdelaytimer); icb->add_firmware_options[0] |= timer_mode; icb->interrupt_delay_timer = ql2xintrdelaytimer; ha->flags.process_response_queue = 1; } } if (rval) { DEBUG2_3(printk(KERN_WARNING "scsi(%ld): NVRAM configuration failed!\n", ha->host_no)); } return (rval); } /** * qla2x00_alloc_fcport() - Allocate a generic fcport. * @ha: HA context * @flags: allocation flags * * Returns a pointer to the allocated fcport, or NULL, if none available. */ fc_port_t * qla2x00_alloc_fcport(scsi_qla_host_t *ha, int flags) { fc_port_t *fcport; fcport = kmalloc(sizeof(fc_port_t), flags); if (fcport == NULL) return (fcport); /* Setup fcport template structure. */ memset(fcport, 0, sizeof (fc_port_t)); fcport->ha = ha; fcport->port_type = FCT_UNKNOWN; fcport->loop_id = FC_NO_LOOP_ID; fcport->iodesc_idx_sent = IODESC_INVALID_INDEX; atomic_set(&fcport->state, FCS_UNCONFIGURED); fcport->flags = FCF_RLC_SUPPORT; return (fcport); } /* * qla2x00_configure_loop * Updates Fibre Channel Device Database with what is actually on loop. * * Input: * ha = adapter block pointer. * * Returns: * 0 = success. * 1 = error. * 2 = database was full and device was not configured. */ static int qla2x00_configure_loop(scsi_qla_host_t *ha) { int rval; unsigned long flags, save_flags; rval = QLA_SUCCESS; /* Get Initiator ID */ if (test_bit(LOCAL_LOOP_UPDATE, &ha->dpc_flags)) { rval = qla2x00_configure_hba(ha); if (rval != QLA_SUCCESS) { DEBUG(printk("scsi(%ld): Unable to configure HBA.\n", ha->host_no)); return (rval); } } save_flags = flags = ha->dpc_flags; DEBUG(printk("scsi(%ld): Configure loop -- dpc flags =0x%lx\n", ha->host_no, flags)); /* * If we have both an RSCN and PORT UPDATE pending then handle them * both at the same time. */ clear_bit(LOCAL_LOOP_UPDATE, &ha->dpc_flags); clear_bit(RSCN_UPDATE, &ha->dpc_flags); /* Determine what we need to do */ if (ha->current_topology == ISP_CFG_FL && (test_bit(LOCAL_LOOP_UPDATE, &flags))) { ha->flags.rscn_queue_overflow = 1; set_bit(RSCN_UPDATE, &flags); } else if (ha->current_topology == ISP_CFG_F && (test_bit(LOCAL_LOOP_UPDATE, &flags))) { ha->flags.rscn_queue_overflow = 1; set_bit(RSCN_UPDATE, &flags); clear_bit(LOCAL_LOOP_UPDATE, &flags); } else if (!ha->flags.online || (test_bit(ABORT_ISP_ACTIVE, &flags))) { ha->flags.rscn_queue_overflow = 1; set_bit(RSCN_UPDATE, &flags); set_bit(LOCAL_LOOP_UPDATE, &flags); } if (test_bit(LOCAL_LOOP_UPDATE, &flags)) { if (test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags)) { rval = QLA_FUNCTION_FAILED; } else { rval = qla2x00_configure_local_loop(ha); } } if (rval == QLA_SUCCESS && test_bit(RSCN_UPDATE, &flags)) { if (test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags)) { rval = QLA_FUNCTION_FAILED; } else { rval = qla2x00_configure_fabric(ha); } } if (rval == QLA_SUCCESS) { if (atomic_read(&ha->loop_down_timer) || test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags)) { rval = QLA_FUNCTION_FAILED; } else { atomic_set(&ha->loop_state, LOOP_READY); DEBUG(printk("scsi(%ld): LOOP READY\n", ha->host_no)); } } if (rval) { DEBUG2_3(printk("%s(%ld): *** FAILED ***\n", __func__, ha->host_no)); } else { DEBUG3(printk("%s: exiting normally\n", __func__)); } /* Restore state if a resync event occured during processing */ if (test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags)) { if (test_bit(LOCAL_LOOP_UPDATE, &save_flags)) set_bit(LOCAL_LOOP_UPDATE, &ha->dpc_flags); if (test_bit(RSCN_UPDATE, &save_flags)) set_bit(RSCN_UPDATE, &ha->dpc_flags); } return (rval); } /* * qla2x00_configure_local_loop * Updates Fibre Channel Device Database with local loop devices. * * Input: * ha = adapter block pointer. * * Returns: * 0 = success. */ static int qla2x00_configure_local_loop(scsi_qla_host_t *ha) { int rval, rval2; int found_devs; int found; fc_port_t *fcport, *new_fcport; uint16_t index; uint16_t entries; char *id_iter; uint16_t loop_id; uint8_t domain, area, al_pa; found_devs = 0; new_fcport = NULL; entries = MAX_FIBRE_DEVICES; DEBUG3(printk("scsi(%ld): Getting FCAL position map\n", ha->host_no)); DEBUG3(qla2x00_get_fcal_position_map(ha, NULL)); /* Get list of logged in devices. */ memset(ha->gid_list, 0, GID_LIST_SIZE); rval = qla2x00_get_id_list(ha, ha->gid_list, ha->gid_list_dma, &entries); if (rval != QLA_SUCCESS) goto cleanup_allocation; DEBUG3(printk("scsi(%ld): Entries in ID list (%d)\n", ha->host_no, entries)); DEBUG3(qla2x00_dump_buffer((uint8_t *)ha->gid_list, entries * sizeof(struct gid_list_info))); /* Allocate temporary fcport for any new fcports discovered. */ new_fcport = qla2x00_alloc_fcport(ha, GFP_KERNEL); if (new_fcport == NULL) { rval = QLA_MEMORY_ALLOC_FAILED; goto cleanup_allocation; } new_fcport->flags &= ~FCF_FABRIC_DEVICE; /* * Mark local devices that were present with FCF_DEVICE_LOST for now. */ list_for_each_entry(fcport, &ha->fcports, list) { if (atomic_read(&fcport->state) == FCS_ONLINE && fcport->port_type != FCT_BROADCAST && (fcport->flags & FCF_FABRIC_DEVICE) == 0) { DEBUG(printk("scsi(%ld): Marking port lost, " "loop_id=0x%04x\n", ha->host_no, fcport->loop_id)); atomic_set(&fcport->state, FCS_DEVICE_LOST); fcport->flags &= ~FCF_FARP_DONE; } } /* Add devices to port list. */ id_iter = (char *)ha->gid_list; for (index = 0; index < entries; index++) { domain = ((struct gid_list_info *)id_iter)->domain; area = ((struct gid_list_info *)id_iter)->area; al_pa = ((struct gid_list_info *)id_iter)->al_pa; if (IS_QLA2100(ha) || IS_QLA2200(ha)) loop_id = (uint16_t) ((struct gid_list_info *)id_iter)->loop_id_2100; else loop_id = le16_to_cpu( ((struct gid_list_info *)id_iter)->loop_id); id_iter += ha->gid_list_info_size; /* Bypass reserved domain fields. */ if ((domain & 0xf0) == 0xf0) continue; /* Bypass if not same domain and area of adapter. */ if (area != ha->d_id.b.area || domain != ha->d_id.b.domain) continue; /* Bypass invalid local loop ID. */ if (loop_id > LAST_LOCAL_LOOP_ID) continue; /* Fill in member data. */ new_fcport->d_id.b.domain = domain; new_fcport->d_id.b.area = area; new_fcport->d_id.b.al_pa = al_pa; new_fcport->loop_id = loop_id; rval2 = qla2x00_get_port_database(ha, new_fcport, 0); if (rval2 != QLA_SUCCESS) { DEBUG2(printk("scsi(%ld): Failed to retrieve fcport " "information -- get_port_database=%x, " "loop_id=0x%04x\n", ha->host_no, rval2, new_fcport->loop_id)); continue; } /* Check for matching device in port list. */ found = 0; fcport = NULL; list_for_each_entry(fcport, &ha->fcports, list) { if (memcmp(new_fcport->port_name, fcport->port_name, WWN_SIZE)) continue; fcport->flags &= ~(FCF_FABRIC_DEVICE | FCF_PERSISTENT_BOUND); fcport->loop_id = new_fcport->loop_id; fcport->port_type = new_fcport->port_type; fcport->d_id.b24 = new_fcport->d_id.b24; memcpy(fcport->node_name, new_fcport->node_name, WWN_SIZE); found++; break; } if (!found) { /* New device, add to fcports list. */ new_fcport->flags &= ~FCF_PERSISTENT_BOUND; list_add_tail(&new_fcport->list, &ha->fcports); /* Allocate a new replacement fcport. */ fcport = new_fcport; new_fcport = qla2x00_alloc_fcport(ha, GFP_KERNEL); if (new_fcport == NULL) { rval = QLA_MEMORY_ALLOC_FAILED; goto cleanup_allocation; } new_fcport->flags &= ~FCF_FABRIC_DEVICE; } qla2x00_update_fcport(ha, fcport); found_devs++; } cleanup_allocation: if (new_fcport) kfree(new_fcport); if (rval != QLA_SUCCESS) { DEBUG2(printk("scsi(%ld): Configure local loop error exit: " "rval=%x\n", ha->host_no, rval)); } if (found_devs) { ha->device_flags |= DFLG_LOCAL_DEVICES; ha->device_flags &= ~DFLG_RETRY_LOCAL_DEVICES; } return (rval); } static void qla2x00_probe_for_all_luns(scsi_qla_host_t *ha) { fc_port_t *fcport; qla2x00_mark_all_devices_lost(ha); list_for_each_entry(fcport, &ha->fcports, list) { if (fcport->port_type != FCT_TARGET) continue; qla2x00_update_fcport(ha, fcport); } } /* * qla2x00_update_fcport * Updates device on list. * * Input: * ha = adapter block pointer. * fcport = port structure pointer. * * Return: * 0 - Success * BIT_0 - error * * Context: * Kernel context. */ static void qla2x00_update_fcport(scsi_qla_host_t *ha, fc_port_t *fcport) { uint16_t index; unsigned long flags; srb_t *sp; fcport->ha = ha; fcport->login_retry = 0; fcport->port_login_retry_count = ha->port_down_retry_count * PORT_RETRY_TIME; atomic_set(&fcport->port_down_timer, ha->port_down_retry_count * PORT_RETRY_TIME); fcport->flags &= ~FCF_LOGIN_NEEDED; /* * Check for outstanding cmd on tape Bypass LUN discovery if active * command on tape. */ if (fcport->flags & FCF_TAPE_PRESENT) { spin_lock_irqsave(&ha->hardware_lock, flags); for (index = 1; index < MAX_OUTSTANDING_COMMANDS; index++) { fc_port_t *sfcp; if ((sp = ha->outstanding_cmds[index]) != 0) { sfcp = sp->fcport; if (sfcp == fcport) { atomic_set(&fcport->state, FCS_ONLINE); spin_unlock_irqrestore( &ha->hardware_lock, flags); return; } } } spin_unlock_irqrestore(&ha->hardware_lock, flags); } if (fcport->port_type == FCT_INITIATOR || fcport->port_type == FCT_BROADCAST) fcport->device_type = TYPE_PROCESSOR; atomic_set(&fcport->state, FCS_ONLINE); if (ha->flags.init_done) qla2x00_reg_remote_port(ha, fcport); } void qla2x00_reg_remote_port(scsi_qla_host_t *ha, fc_port_t *fcport) { struct fc_rport_identifiers rport_ids; struct fc_rport *rport; if (fcport->rport) { fc_remote_port_unblock(fcport->rport); return; } rport_ids.node_name = be64_to_cpu(*(uint64_t *)fcport->node_name); rport_ids.port_name = be64_to_cpu(*(uint64_t *)fcport->port_name); rport_ids.port_id = fcport->d_id.b.domain << 16 | fcport->d_id.b.area << 8 | fcport->d_id.b.al_pa; rport_ids.roles = FC_RPORT_ROLE_UNKNOWN; if (fcport->port_type == FCT_INITIATOR) rport_ids.roles |= FC_RPORT_ROLE_FCP_INITIATOR; if (fcport->port_type == FCT_TARGET) rport_ids.roles |= FC_RPORT_ROLE_FCP_TARGET; fcport->rport = rport = fc_remote_port_add(ha->host, 0, &rport_ids); if (!rport) qla_printk(KERN_WARNING, ha, "Unable to allocate fc remote port!\n"); if (rport->scsi_target_id != -1 && rport->scsi_target_id < ha->host->max_id) fcport->os_target_id = rport->scsi_target_id; rport->dd_data = fcport; } /* * qla2x00_configure_fabric * Setup SNS devices with loop ID's. * * Input: * ha = adapter block pointer. * * Returns: * 0 = success. * BIT_0 = error */ static int qla2x00_configure_fabric(scsi_qla_host_t *ha) { int rval, rval2; fc_port_t *fcport, *fcptemp; uint16_t next_loopid; uint16_t mb[MAILBOX_REGISTER_COUNT]; uint16_t loop_id; LIST_HEAD(new_fcports); /* If FL port exists, then SNS is present */ if (IS_QLA24XX(ha) || IS_QLA25XX(ha)) loop_id = NPH_F_PORT; else loop_id = SNS_FL_PORT; rval = qla2x00_get_port_name(ha, loop_id, NULL, 0); if (rval != QLA_SUCCESS) { DEBUG2(printk("scsi(%ld): MBC_GET_PORT_NAME Failed, No FL " "Port\n", ha->host_no)); ha->device_flags &= ~SWITCH_FOUND; return (QLA_SUCCESS); } /* Mark devices that need re-synchronization. */ rval2 = qla2x00_device_resync(ha); if (rval2 == QLA_RSCNS_HANDLED) { /* No point doing the scan, just continue. */ return (QLA_SUCCESS); } do { /* Ensure we are logged into the SNS. */ if (IS_QLA24XX(ha) || IS_QLA25XX(ha)) loop_id = NPH_SNS; else loop_id = SIMPLE_NAME_SERVER; ha->isp_ops.fabric_login(ha, loop_id, 0xff, 0xff, 0xfc, mb, BIT_1 | BIT_0); if (mb[0] != MBS_COMMAND_COMPLETE) { DEBUG2(qla_printk(KERN_INFO, ha, "Failed SNS login: loop_id=%x mb[0]=%x mb[1]=%x " "mb[2]=%x mb[6]=%x mb[7]=%x\n", loop_id, mb[0], mb[1], mb[2], mb[6], mb[7])); return (QLA_SUCCESS); } if (test_and_clear_bit(REGISTER_FC4_NEEDED, &ha->dpc_flags)) { if (qla2x00_rft_id(ha)) { /* EMPTY */ DEBUG2(printk("scsi(%ld): Register FC-4 " "TYPE failed.\n", ha->host_no)); } if (qla2x00_rff_id(ha)) { /* EMPTY */ DEBUG2(printk("scsi(%ld): Register FC-4 " "Features failed.\n", ha->host_no)); } if (qla2x00_rnn_id(ha)) { /* EMPTY */ DEBUG2(printk("scsi(%ld): Register Node Name " "failed.\n", ha->host_no)); } else if (qla2x00_rsnn_nn(ha)) { /* EMPTY */ DEBUG2(printk("scsi(%ld): Register Symbolic " "Node Name failed.\n", ha->host_no)); } } rval = qla2x00_find_all_fabric_devs(ha, &new_fcports); if (rval != QLA_SUCCESS) break; /* * Logout all previous fabric devices marked lost, except * tape devices. */ list_for_each_entry(fcport, &ha->fcports, list) { if (test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags)) break; if ((fcport->flags & FCF_FABRIC_DEVICE) == 0) continue; if (atomic_read(&fcport->state) == FCS_DEVICE_LOST) { qla2x00_mark_device_lost(ha, fcport, ql2xplogiabsentdevice); if (fcport->loop_id != FC_NO_LOOP_ID && (fcport->flags & FCF_TAPE_PRESENT) == 0 && fcport->port_type != FCT_INITIATOR && fcport->port_type != FCT_BROADCAST) { ha->isp_ops.fabric_logout(ha, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa); fcport->loop_id = FC_NO_LOOP_ID; } } } /* Starting free loop ID. */ next_loopid = ha->min_external_loopid; /* * Scan through our port list and login entries that need to be * logged in. */ list_for_each_entry(fcport, &ha->fcports, list) { if (atomic_read(&ha->loop_down_timer) || test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags)) break; if ((fcport->flags & FCF_FABRIC_DEVICE) == 0 || (fcport->flags & FCF_LOGIN_NEEDED) == 0) continue; if (fcport->loop_id == FC_NO_LOOP_ID) { fcport->loop_id = next_loopid; rval = qla2x00_find_new_loop_id(ha, fcport); if (rval != QLA_SUCCESS) { /* Ran out of IDs to use */ break; } } /* Login and update database */ qla2x00_fabric_dev_login(ha, fcport, &next_loopid); } /* Exit if out of loop IDs. */ if (rval != QLA_SUCCESS) { break; } /* * Login and add the new devices to our port list. */ list_for_each_entry_safe(fcport, fcptemp, &new_fcports, list) { if (atomic_read(&ha->loop_down_timer) || test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags)) break; /* Find a new loop ID to use. */ fcport->loop_id = next_loopid; rval = qla2x00_find_new_loop_id(ha, fcport); if (rval != QLA_SUCCESS) { /* Ran out of IDs to use */ break; } /* Remove device from the new list and add it to DB */ list_del(&fcport->list); list_add_tail(&fcport->list, &ha->fcports); /* Login and update database */ qla2x00_fabric_dev_login(ha, fcport, &next_loopid); } } while (0); /* Free all new device structures not processed. */ list_for_each_entry_safe(fcport, fcptemp, &new_fcports, list) { list_del(&fcport->list); kfree(fcport); } if (rval) { DEBUG2(printk("scsi(%ld): Configure fabric error exit: " "rval=%d\n", ha->host_no, rval)); } return (rval); } /* * qla2x00_find_all_fabric_devs * * Input: * ha = adapter block pointer. * dev = database device entry pointer. * * Returns: * 0 = success. * * Context: * Kernel context. */ static int qla2x00_find_all_fabric_devs(scsi_qla_host_t *ha, struct list_head *new_fcports) { int rval; uint16_t loop_id; fc_port_t *fcport, *new_fcport, *fcptemp; int found; sw_info_t *swl; int swl_idx; int first_dev, last_dev; port_id_t wrap, nxt_d_id; rval = QLA_SUCCESS; /* Try GID_PT to get device list, else GAN. */ swl = kmalloc(sizeof(sw_info_t) * MAX_FIBRE_DEVICES, GFP_ATOMIC); if (swl == NULL) { /*EMPTY*/ DEBUG2(printk("scsi(%ld): GID_PT allocations failed, fallback " "on GA_NXT\n", ha->host_no)); } else { memset(swl, 0, sizeof(sw_info_t) * MAX_FIBRE_DEVICES); if (qla2x00_gid_pt(ha, swl) != QLA_SUCCESS) { kfree(swl); swl = NULL; } else if (qla2x00_gpn_id(ha, swl) != QLA_SUCCESS) { kfree(swl); swl = NULL; } else if (qla2x00_gnn_id(ha, swl) != QLA_SUCCESS) { kfree(swl); swl = NULL; } } swl_idx = 0; /* Allocate temporary fcport for any new fcports discovered. */ new_fcport = qla2x00_alloc_fcport(ha, GFP_KERNEL); if (new_fcport == NULL) { if (swl) kfree(swl); return (QLA_MEMORY_ALLOC_FAILED); } new_fcport->flags |= (FCF_FABRIC_DEVICE | FCF_LOGIN_NEEDED); /* Set start port ID scan at adapter ID. */ first_dev = 1; last_dev = 0; /* Starting free loop ID. */ loop_id = ha->min_external_loopid; for (; loop_id <= ha->last_loop_id; loop_id++) { if (qla2x00_is_reserved_id(ha, loop_id)) continue; if (atomic_read(&ha->loop_down_timer) || test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags)) break; if (swl != NULL) { if (last_dev) { wrap.b24 = new_fcport->d_id.b24; } else { new_fcport->d_id.b24 = swl[swl_idx].d_id.b24; memcpy(new_fcport->node_name, swl[swl_idx].node_name, WWN_SIZE); memcpy(new_fcport->port_name, swl[swl_idx].port_name, WWN_SIZE); if (swl[swl_idx].d_id.b.rsvd_1 != 0) { last_dev = 1; } swl_idx++; } } else { /* Send GA_NXT to the switch */ rval = qla2x00_ga_nxt(ha, new_fcport); if (rval != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "SNS scan failed -- assuming zero-entry " "result...\n"); list_for_each_entry_safe(fcport, fcptemp, new_fcports, list) { list_del(&fcport->list); kfree(fcport); } rval = QLA_SUCCESS; break; } } /* If wrap on switch device list, exit. */ if (first_dev) { wrap.b24 = new_fcport->d_id.b24; first_dev = 0; } else if (new_fcport->d_id.b24 == wrap.b24) { DEBUG2(printk("scsi(%ld): device wrap (%02x%02x%02x)\n", ha->host_no, new_fcport->d_id.b.domain, new_fcport->d_id.b.area, new_fcport->d_id.b.al_pa)); break; } /* Bypass if host adapter. */ if (new_fcport->d_id.b24 == ha->d_id.b24) continue; /* Bypass reserved domain fields. */ if ((new_fcport->d_id.b.domain & 0xf0) == 0xf0) continue; /* Locate matching device in database. */ found = 0; list_for_each_entry(fcport, &ha->fcports, list) { if (memcmp(new_fcport->port_name, fcport->port_name, WWN_SIZE)) continue; found++; /* * If address the same and state FCS_ONLINE, nothing * changed. */ if (fcport->d_id.b24 == new_fcport->d_id.b24 && atomic_read(&fcport->state) == FCS_ONLINE) { break; } /* * If device was not a fabric device before. */ if ((fcport->flags & FCF_FABRIC_DEVICE) == 0) { fcport->d_id.b24 = new_fcport->d_id.b24; fcport->loop_id = FC_NO_LOOP_ID; fcport->flags |= (FCF_FABRIC_DEVICE | FCF_LOGIN_NEEDED); fcport->flags &= ~FCF_PERSISTENT_BOUND; break; } /* * Port ID changed or device was marked to be updated; * Log it out if still logged in and mark it for * relogin later. */ fcport->d_id.b24 = new_fcport->d_id.b24; fcport->flags |= FCF_LOGIN_NEEDED; if (fcport->loop_id != FC_NO_LOOP_ID && (fcport->flags & FCF_TAPE_PRESENT) == 0 && fcport->port_type != FCT_INITIATOR && fcport->port_type != FCT_BROADCAST) { ha->isp_ops.fabric_logout(ha, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa); fcport->loop_id = FC_NO_LOOP_ID; } break; } if (found) continue; /* If device was not in our fcports list, then add it. */ list_add_tail(&new_fcport->list, new_fcports); /* Allocate a new replacement fcport. */ nxt_d_id.b24 = new_fcport->d_id.b24; new_fcport = qla2x00_alloc_fcport(ha, GFP_KERNEL); if (new_fcport == NULL) { if (swl) kfree(swl); return (QLA_MEMORY_ALLOC_FAILED); } new_fcport->flags |= (FCF_FABRIC_DEVICE | FCF_LOGIN_NEEDED); new_fcport->d_id.b24 = nxt_d_id.b24; } if (swl) kfree(swl); if (new_fcport) kfree(new_fcport); if (!list_empty(new_fcports)) ha->device_flags |= DFLG_FABRIC_DEVICES; return (rval); } /* * qla2x00_find_new_loop_id * Scan through our port list and find a new usable loop ID. * * Input: * ha: adapter state pointer. * dev: port structure pointer. * * Returns: * qla2x00 local function return status code. * * Context: * Kernel context. */ int qla2x00_find_new_loop_id(scsi_qla_host_t *ha, fc_port_t *dev) { int rval; int found; fc_port_t *fcport; uint16_t first_loop_id; rval = QLA_SUCCESS; /* Save starting loop ID. */ first_loop_id = dev->loop_id; for (;;) { /* Skip loop ID if already used by adapter. */ if (dev->loop_id == ha->loop_id) { dev->loop_id++; } /* Skip reserved loop IDs. */ while (qla2x00_is_reserved_id(ha, dev->loop_id)) { dev->loop_id++; } /* Reset loop ID if passed the end. */ if (dev->loop_id > ha->last_loop_id) { /* first loop ID. */ dev->loop_id = ha->min_external_loopid; } /* Check for loop ID being already in use. */ found = 0; fcport = NULL; list_for_each_entry(fcport, &ha->fcports, list) { if (fcport->loop_id == dev->loop_id && fcport != dev) { /* ID possibly in use */ found++; break; } } /* If not in use then it is free to use. */ if (!found) { break; } /* ID in use. Try next value. */ dev->loop_id++; /* If wrap around. No free ID to use. */ if (dev->loop_id == first_loop_id) { dev->loop_id = FC_NO_LOOP_ID; rval = QLA_FUNCTION_FAILED; break; } } return (rval); } /* * qla2x00_device_resync * Marks devices in the database that needs resynchronization. * * Input: * ha = adapter block pointer. * * Context: * Kernel context. */ static int qla2x00_device_resync(scsi_qla_host_t *ha) { int rval; int rval2; uint32_t mask; fc_port_t *fcport; uint32_t rscn_entry; uint8_t rscn_out_iter; uint8_t format; port_id_t d_id; rval = QLA_RSCNS_HANDLED; while (ha->rscn_out_ptr != ha->rscn_in_ptr || ha->flags.rscn_queue_overflow) { rscn_entry = ha->rscn_queue[ha->rscn_out_ptr]; format = MSB(MSW(rscn_entry)); d_id.b.domain = LSB(MSW(rscn_entry)); d_id.b.area = MSB(LSW(rscn_entry)); d_id.b.al_pa = LSB(LSW(rscn_entry)); DEBUG(printk("scsi(%ld): RSCN queue entry[%d] = " "[%02x/%02x%02x%02x].\n", ha->host_no, ha->rscn_out_ptr, format, d_id.b.domain, d_id.b.area, d_id.b.al_pa)); ha->rscn_out_ptr++; if (ha->rscn_out_ptr == MAX_RSCN_COUNT) ha->rscn_out_ptr = 0; /* Skip duplicate entries. */ for (rscn_out_iter = ha->rscn_out_ptr; !ha->flags.rscn_queue_overflow && rscn_out_iter != ha->rscn_in_ptr; rscn_out_iter = (rscn_out_iter == (MAX_RSCN_COUNT - 1)) ? 0: rscn_out_iter + 1) { if (rscn_entry != ha->rscn_queue[rscn_out_iter]) break; DEBUG(printk("scsi(%ld): Skipping duplicate RSCN queue " "entry found at [%d].\n", ha->host_no, rscn_out_iter)); ha->rscn_out_ptr = rscn_out_iter; } /* Queue overflow, set switch default case. */ if (ha->flags.rscn_queue_overflow) { DEBUG(printk("scsi(%ld): device_resync: rscn " "overflow.\n", ha->host_no)); format = 3; ha->flags.rscn_queue_overflow = 0; } switch (format) { case 0: if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA6312(ha) && !IS_QLA6322(ha) && !IS_QLA24XX(ha) && !IS_QLA25XX(ha) && ha->flags.init_done) { /* Handle port RSCN via asyncronous IOCBs */ rval2 = qla2x00_handle_port_rscn(ha, rscn_entry, NULL, 0); if (rval2 == QLA_SUCCESS) continue; } mask = 0xffffff; break; case 1: mask = 0xffff00; break; case 2: mask = 0xff0000; break; default: mask = 0x0; d_id.b24 = 0; ha->rscn_out_ptr = ha->rscn_in_ptr; break; } rval = QLA_SUCCESS; /* Abort any outstanding IO descriptors. */ if (!IS_QLA2100(ha) && !IS_QLA2200(ha)) qla2x00_cancel_io_descriptors(ha); list_for_each_entry(fcport, &ha->fcports, list) { if ((fcport->flags & FCF_FABRIC_DEVICE) == 0 || (fcport->d_id.b24 & mask) != d_id.b24 || fcport->port_type == FCT_BROADCAST) continue; if (atomic_read(&fcport->state) == FCS_ONLINE) { if (format != 3 || fcport->port_type != FCT_INITIATOR) { qla2x00_mark_device_lost(ha, fcport, 0); } } fcport->flags &= ~FCF_FARP_DONE; } } return (rval); } /* * qla2x00_fabric_dev_login * Login fabric target device and update FC port database. * * Input: * ha: adapter state pointer. * fcport: port structure list pointer. * next_loopid: contains value of a new loop ID that can be used * by the next login attempt. * * Returns: * qla2x00 local function return status code. * * Context: * Kernel context. */ static int qla2x00_fabric_dev_login(scsi_qla_host_t *ha, fc_port_t *fcport, uint16_t *next_loopid) { int rval; int retry; uint8_t opts; rval = QLA_SUCCESS; retry = 0; rval = qla2x00_fabric_login(ha, fcport, next_loopid); if (rval == QLA_SUCCESS) { /* Send an ADISC to tape devices.*/ opts = 0; if (fcport->flags & FCF_TAPE_PRESENT) opts |= BIT_1; rval = qla2x00_get_port_database(ha, fcport, opts); if (rval != QLA_SUCCESS) { ha->isp_ops.fabric_logout(ha, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa); qla2x00_mark_device_lost(ha, fcport, 1); } else { qla2x00_update_fcport(ha, fcport); } } return (rval); } /* * qla2x00_fabric_login * Issue fabric login command. * * Input: * ha = adapter block pointer. * device = pointer to FC device type structure. * * Returns: * 0 - Login successfully * 1 - Login failed * 2 - Initiator device * 3 - Fatal error */ int qla2x00_fabric_login(scsi_qla_host_t *ha, fc_port_t *fcport, uint16_t *next_loopid) { int rval; int retry; uint16_t tmp_loopid; uint16_t mb[MAILBOX_REGISTER_COUNT]; retry = 0; tmp_loopid = 0; for (;;) { DEBUG(printk("scsi(%ld): Trying Fabric Login w/loop id 0x%04x " "for port %02x%02x%02x.\n", ha->host_no, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa)); /* Login fcport on switch. */ ha->isp_ops.fabric_login(ha, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa, mb, BIT_0); if (mb[0] == MBS_PORT_ID_USED) { /* * Device has another loop ID. The firmware team * recommends the driver perform an implicit login with * the specified ID again. The ID we just used is save * here so we return with an ID that can be tried by * the next login. */ retry++; tmp_loopid = fcport->loop_id; fcport->loop_id = mb[1]; DEBUG(printk("Fabric Login: port in use - next " "loop id=0x%04x, port Id=%02x%02x%02x.\n", fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa)); } else if (mb[0] == MBS_COMMAND_COMPLETE) { /* * Login succeeded. */ if (retry) { /* A retry occurred before. */ *next_loopid = tmp_loopid; } else { /* * No retry occurred before. Just increment the * ID value for next login. */ *next_loopid = (fcport->loop_id + 1); } if (mb[1] & BIT_0) { fcport->port_type = FCT_INITIATOR; } else { fcport->port_type = FCT_TARGET; if (mb[1] & BIT_1) { fcport->flags |= FCF_TAPE_PRESENT; } } rval = QLA_SUCCESS; break; } else if (mb[0] == MBS_LOOP_ID_USED) { /* * Loop ID already used, try next loop ID. */ fcport->loop_id++; rval = qla2x00_find_new_loop_id(ha, fcport); if (rval != QLA_SUCCESS) { /* Ran out of loop IDs to use */ break; } } else if (mb[0] == MBS_COMMAND_ERROR) { /* * Firmware possibly timed out during login. If NO * retries are left to do then the device is declared * dead. */ *next_loopid = fcport->loop_id; ha->isp_ops.fabric_logout(ha, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa); qla2x00_mark_device_lost(ha, fcport, 1); rval = 1; break; } else { /* * unrecoverable / not handled error */ DEBUG2(printk("%s(%ld): failed=%x port_id=%02x%02x%02x " "loop_id=%x jiffies=%lx.\n", __func__, ha->host_no, mb[0], fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa, fcport->loop_id, jiffies)); *next_loopid = fcport->loop_id; ha->isp_ops.fabric_logout(ha, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa); fcport->loop_id = FC_NO_LOOP_ID; atomic_set(&fcport->state, FCS_DEVICE_DEAD); rval = 3; break; } } return (rval); } /* * qla2x00_local_device_login * Issue local device login command. * * Input: * ha = adapter block pointer. * loop_id = loop id of device to login to. * * Returns (Where's the #define!!!!): * 0 - Login successfully * 1 - Login failed * 3 - Fatal error */ int qla2x00_local_device_login(scsi_qla_host_t *ha, uint16_t loop_id) { int rval; uint16_t mb[MAILBOX_REGISTER_COUNT]; memset(mb, 0, sizeof(mb)); rval = qla2x00_login_local_device(ha, loop_id, mb, BIT_0); if (rval == QLA_SUCCESS) { /* Interrogate mailbox registers for any errors */ if (mb[0] == MBS_COMMAND_ERROR) rval = 1; else if (mb[0] == MBS_COMMAND_PARAMETER_ERROR) /* device not in PCB table */ rval = 3; } return (rval); } /* * qla2x00_loop_resync * Resync with fibre channel devices. * * Input: * ha = adapter block pointer. * * Returns: * 0 = success */ int qla2x00_loop_resync(scsi_qla_host_t *ha) { int rval; uint32_t wait_time; rval = QLA_SUCCESS; atomic_set(&ha->loop_state, LOOP_UPDATE); clear_bit(ISP_ABORT_RETRY, &ha->dpc_flags); if (ha->flags.online) { if (!(rval = qla2x00_fw_ready(ha))) { /* Wait at most MAX_TARGET RSCNs for a stable link. */ wait_time = 256; do { atomic_set(&ha->loop_state, LOOP_UPDATE); /* Issue a marker after FW becomes ready. */ qla2x00_marker(ha, 0, 0, MK_SYNC_ALL); ha->marker_needed = 0; /* Remap devices on Loop. */ clear_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags); qla2x00_configure_loop(ha); wait_time--; } while (!atomic_read(&ha->loop_down_timer) && !(test_bit(ISP_ABORT_NEEDED, &ha->dpc_flags)) && wait_time && (test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags))); } } if (test_bit(ISP_ABORT_NEEDED, &ha->dpc_flags)) { return (QLA_FUNCTION_FAILED); } if (rval) { DEBUG2_3(printk("%s(): **** FAILED ****\n", __func__)); } return (rval); } void qla2x00_rescan_fcports(scsi_qla_host_t *ha) { int rescan_done; fc_port_t *fcport; rescan_done = 0; list_for_each_entry(fcport, &ha->fcports, list) { if ((fcport->flags & FCF_RESCAN_NEEDED) == 0) continue; qla2x00_update_fcport(ha, fcport); fcport->flags &= ~FCF_RESCAN_NEEDED; rescan_done = 1; } qla2x00_probe_for_all_luns(ha); } /* * qla2x00_abort_isp * Resets ISP and aborts all outstanding commands. * * Input: * ha = adapter block pointer. * * Returns: * 0 = success */ int qla2x00_abort_isp(scsi_qla_host_t *ha) { unsigned long flags = 0; uint16_t cnt; srb_t *sp; uint8_t status = 0; if (ha->flags.online) { ha->flags.online = 0; clear_bit(ISP_ABORT_NEEDED, &ha->dpc_flags); qla_printk(KERN_INFO, ha, "Performing ISP error recovery - ha= %p.\n", ha); ha->isp_ops.reset_chip(ha); atomic_set(&ha->loop_down_timer, LOOP_DOWN_TIME); if (atomic_read(&ha->loop_state) != LOOP_DOWN) { atomic_set(&ha->loop_state, LOOP_DOWN); qla2x00_mark_all_devices_lost(ha); } else { if (!atomic_read(&ha->loop_down_timer)) atomic_set(&ha->loop_down_timer, LOOP_DOWN_TIME); } spin_lock_irqsave(&ha->hardware_lock, flags); /* Requeue all commands in outstanding command list. */ for (cnt = 1; cnt < MAX_OUTSTANDING_COMMANDS; cnt++) { sp = ha->outstanding_cmds[cnt]; if (sp) { ha->outstanding_cmds[cnt] = NULL; sp->flags = 0; sp->cmd->result = DID_RESET << 16; sp->cmd->host_scribble = (unsigned char *)NULL; qla2x00_sp_compl(ha, sp); } } spin_unlock_irqrestore(&ha->hardware_lock, flags); ha->isp_ops.nvram_config(ha); if (!qla2x00_restart_isp(ha)) { clear_bit(RESET_MARKER_NEEDED, &ha->dpc_flags); if (!atomic_read(&ha->loop_down_timer)) { /* * Issue marker command only when we are going * to start the I/O . */ ha->marker_needed = 1; } ha->flags.online = 1; ha->isp_ops.enable_intrs(ha); ha->isp_abort_cnt = 0; clear_bit(ISP_ABORT_RETRY, &ha->dpc_flags); } else { /* failed the ISP abort */ ha->flags.online = 1; if (test_bit(ISP_ABORT_RETRY, &ha->dpc_flags)) { if (ha->isp_abort_cnt == 0) { qla_printk(KERN_WARNING, ha, "ISP error recovery failed - " "board disabled\n"); /* * The next call disables the board * completely. */ ha->isp_ops.reset_adapter(ha); ha->flags.online = 0; clear_bit(ISP_ABORT_RETRY, &ha->dpc_flags); status = 0; } else { /* schedule another ISP abort */ ha->isp_abort_cnt--; DEBUG(printk("qla%ld: ISP abort - " "retry remaining %d\n", ha->host_no, ha->isp_abort_cnt);) status = 1; } } else { ha->isp_abort_cnt = MAX_RETRIES_OF_ISP_ABORT; DEBUG(printk("qla2x00(%ld): ISP error recovery " "- retrying (%d) more times\n", ha->host_no, ha->isp_abort_cnt);) set_bit(ISP_ABORT_RETRY, &ha->dpc_flags); status = 1; } } } if (status) { qla_printk(KERN_INFO, ha, "qla2x00_abort_isp: **** FAILED ****\n"); } else { DEBUG(printk(KERN_INFO "qla2x00_abort_isp(%ld): exiting.\n", ha->host_no);) } return(status); } /* * qla2x00_restart_isp * restarts the ISP after a reset * * Input: * ha = adapter block pointer. * * Returns: * 0 = success */ static int qla2x00_restart_isp(scsi_qla_host_t *ha) { uint8_t status = 0; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; unsigned long flags = 0; uint32_t wait_time; /* If firmware needs to be loaded */ if (qla2x00_isp_firmware(ha)) { ha->flags.online = 0; if (!(status = ha->isp_ops.chip_diag(ha))) { if (IS_QLA2100(ha) || IS_QLA2200(ha)) { status = qla2x00_setup_chip(ha); goto done; } spin_lock_irqsave(&ha->hardware_lock, flags); if (!IS_QLA24XX(ha) && !IS_QLA25XX(ha)) { /* * Disable SRAM, Instruction RAM and GP RAM * parity. */ WRT_REG_WORD(®->hccr, (HCCR_ENABLE_PARITY + 0x0)); RD_REG_WORD(®->hccr); } spin_unlock_irqrestore(&ha->hardware_lock, flags); status = qla2x00_setup_chip(ha); spin_lock_irqsave(&ha->hardware_lock, flags); if (!IS_QLA24XX(ha) && !IS_QLA25XX(ha)) { /* Enable proper parity */ if (IS_QLA2300(ha)) /* SRAM parity */ WRT_REG_WORD(®->hccr, (HCCR_ENABLE_PARITY + 0x1)); else /* * SRAM, Instruction RAM and GP RAM * parity. */ WRT_REG_WORD(®->hccr, (HCCR_ENABLE_PARITY + 0x7)); RD_REG_WORD(®->hccr); } spin_unlock_irqrestore(&ha->hardware_lock, flags); } } done: if (!status && !(status = qla2x00_init_rings(ha))) { clear_bit(RESET_MARKER_NEEDED, &ha->dpc_flags); if (!(status = qla2x00_fw_ready(ha))) { DEBUG(printk("%s(): Start configure loop, " "status = %d\n", __func__, status);) /* Issue a marker after FW becomes ready. */ qla2x00_marker(ha, 0, 0, MK_SYNC_ALL); ha->flags.online = 1; /* Wait at most MAX_TARGET RSCNs for a stable link. */ wait_time = 256; do { clear_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags); qla2x00_configure_loop(ha); wait_time--; } while (!atomic_read(&ha->loop_down_timer) && !(test_bit(ISP_ABORT_NEEDED, &ha->dpc_flags)) && wait_time && (test_bit(LOOP_RESYNC_NEEDED, &ha->dpc_flags))); } /* if no cable then assume it's good */ if ((ha->device_flags & DFLG_NO_CABLE)) status = 0; DEBUG(printk("%s(): Configure loop done, status = 0x%x\n", __func__, status);) } return (status); } /* * qla2x00_reset_adapter * Reset adapter. * * Input: * ha = adapter block pointer. */ void qla2x00_reset_adapter(scsi_qla_host_t *ha) { unsigned long flags = 0; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; ha->flags.online = 0; ha->isp_ops.disable_intrs(ha); spin_lock_irqsave(&ha->hardware_lock, flags); WRT_REG_WORD(®->hccr, HCCR_RESET_RISC); RD_REG_WORD(®->hccr); /* PCI Posting. */ WRT_REG_WORD(®->hccr, HCCR_RELEASE_RISC); RD_REG_WORD(®->hccr); /* PCI Posting. */ spin_unlock_irqrestore(&ha->hardware_lock, flags); } void qla24xx_reset_adapter(scsi_qla_host_t *ha) { unsigned long flags = 0; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; ha->flags.online = 0; ha->isp_ops.disable_intrs(ha); spin_lock_irqsave(&ha->hardware_lock, flags); WRT_REG_DWORD(®->hccr, HCCRX_SET_RISC_RESET); RD_REG_DWORD(®->hccr); WRT_REG_DWORD(®->hccr, HCCRX_REL_RISC_PAUSE); RD_REG_DWORD(®->hccr); spin_unlock_irqrestore(&ha->hardware_lock, flags); } int qla24xx_nvram_config(scsi_qla_host_t *ha) { int rval; struct init_cb_24xx *icb; struct nvram_24xx *nv; uint32_t *dptr; uint8_t *dptr1, *dptr2; uint32_t chksum; uint16_t cnt; rval = QLA_SUCCESS; icb = (struct init_cb_24xx *)ha->init_cb; nv = (struct nvram_24xx *)ha->request_ring; /* Determine NVRAM starting address. */ ha->nvram_size = sizeof(struct nvram_24xx); ha->nvram_base = FA_NVRAM_FUNC0_ADDR; if (PCI_FUNC(ha->pdev->devfn)) ha->nvram_base = FA_NVRAM_FUNC1_ADDR; /* Get NVRAM data and calculate checksum. */ dptr = (uint32_t *)nv; ha->isp_ops.read_nvram(ha, (uint8_t *)dptr, ha->nvram_base, ha->nvram_size); for (cnt = 0, chksum = 0; cnt < ha->nvram_size >> 2; cnt++) chksum += le32_to_cpu(*dptr++); DEBUG5(printk("scsi(%ld): Contents of NVRAM\n", ha->host_no)); DEBUG5(qla2x00_dump_buffer((uint8_t *)ha->request_ring, ha->nvram_size)); /* Bad NVRAM data, set defaults parameters. */ if (chksum || nv->id[0] != 'I' || nv->id[1] != 'S' || nv->id[2] != 'P' || nv->id[3] != ' ' || nv->nvram_version < __constant_cpu_to_le16(ICB_VERSION)) { /* Reset NVRAM data. */ qla_printk(KERN_WARNING, ha, "Inconsistent NVRAM detected: " "checksum=0x%x id=%c version=0x%x.\n", chksum, nv->id[0], le16_to_cpu(nv->nvram_version)); qla_printk(KERN_WARNING, ha, "Falling back to functioning (yet " "invalid -- WWPN) defaults.\n"); /* * Set default initialization control block. */ memset(nv, 0, ha->nvram_size); nv->nvram_version = __constant_cpu_to_le16(ICB_VERSION); nv->version = __constant_cpu_to_le16(ICB_VERSION); nv->frame_payload_size = __constant_cpu_to_le16(2048); nv->execution_throttle = __constant_cpu_to_le16(0xFFFF); nv->exchange_count = __constant_cpu_to_le16(0); nv->hard_address = __constant_cpu_to_le16(124); nv->port_name[0] = 0x21; nv->port_name[1] = 0x00 + PCI_FUNC(ha->pdev->devfn); nv->port_name[2] = 0x00; nv->port_name[3] = 0xe0; nv->port_name[4] = 0x8b; nv->port_name[5] = 0x1c; nv->port_name[6] = 0x55; nv->port_name[7] = 0x86; nv->node_name[0] = 0x20; nv->node_name[1] = 0x00; nv->node_name[2] = 0x00; nv->node_name[3] = 0xe0; nv->node_name[4] = 0x8b; nv->node_name[5] = 0x1c; nv->node_name[6] = 0x55; nv->node_name[7] = 0x86; nv->login_retry_count = __constant_cpu_to_le16(8); nv->link_down_timeout = __constant_cpu_to_le16(200); nv->interrupt_delay_timer = __constant_cpu_to_le16(0); nv->login_timeout = __constant_cpu_to_le16(0); nv->firmware_options_1 = __constant_cpu_to_le32(BIT_14|BIT_13|BIT_2|BIT_1); nv->firmware_options_2 = __constant_cpu_to_le32(2 << 4); nv->firmware_options_2 |= __constant_cpu_to_le32(BIT_12); nv->firmware_options_3 = __constant_cpu_to_le32(2 << 13); nv->host_p = __constant_cpu_to_le32(BIT_11|BIT_10); nv->efi_parameters = __constant_cpu_to_le32(0); nv->reset_delay = 5; nv->max_luns_per_target = __constant_cpu_to_le16(128); nv->port_down_retry_count = __constant_cpu_to_le16(30); nv->link_down_timeout = __constant_cpu_to_le16(30); rval = 1; } /* Reset Initialization control block */ memset(icb, 0, sizeof(struct init_cb_24xx)); /* Copy 1st segment. */ dptr1 = (uint8_t *)icb; dptr2 = (uint8_t *)&nv->version; cnt = (uint8_t *)&icb->response_q_inpointer - (uint8_t *)&icb->version; while (cnt--) *dptr1++ = *dptr2++; icb->login_retry_count = nv->login_retry_count; icb->link_down_timeout = nv->link_down_timeout; /* Copy 2nd segment. */ dptr1 = (uint8_t *)&icb->interrupt_delay_timer; dptr2 = (uint8_t *)&nv->interrupt_delay_timer; cnt = (uint8_t *)&icb->reserved_3 - (uint8_t *)&icb->interrupt_delay_timer; while (cnt--) *dptr1++ = *dptr2++; /* * Setup driver NVRAM options. */ if (memcmp(nv->model_name, BINZERO, sizeof(nv->model_name)) != 0) { char *st, *en; uint16_t index; strncpy(ha->model_number, nv->model_name, sizeof(nv->model_name)); st = en = ha->model_number; en += sizeof(nv->model_name) - 1; while (en > st) { if (*en != 0x20 && *en != 0x00) break; *en-- = '\0'; } index = (ha->pdev->subsystem_device & 0xff); if (index < QLA_MODEL_NAMES) ha->model_desc = qla2x00_model_desc[index]; } else strcpy(ha->model_number, "QLA2462"); /* Prepare nodename */ if ((icb->firmware_options_1 & BIT_14) == 0) { /* * Firmware will apply the following mask if the nodename was * not provided. */ memcpy(icb->node_name, icb->port_name, WWN_SIZE); icb->node_name[0] &= 0xF0; } /* Set host adapter parameters. */ ha->flags.disable_risc_code_load = 0; ha->flags.enable_lip_reset = 1; ha->flags.enable_lip_full_login = 1; ha->flags.enable_target_reset = 1; ha->flags.enable_led_scheme = 0; ha->operating_mode = (icb->firmware_options_2 & (BIT_6 | BIT_5 | BIT_4)) >> 4; memcpy(ha->fw_seriallink_options24, nv->seriallink_options, sizeof(ha->fw_seriallink_options24)); /* save HBA serial number */ ha->serial0 = icb->port_name[5]; ha->serial1 = icb->port_name[6]; ha->serial2 = icb->port_name[7]; ha->node_name = icb->node_name; ha->port_name = icb->port_name; ha->retry_count = le16_to_cpu(nv->login_retry_count); /* Set minimum login_timeout to 4 seconds. */ if (le16_to_cpu(nv->login_timeout) < ql2xlogintimeout) nv->login_timeout = cpu_to_le16(ql2xlogintimeout); if (le16_to_cpu(nv->login_timeout) < 4) nv->login_timeout = __constant_cpu_to_le16(4); ha->login_timeout = le16_to_cpu(nv->login_timeout); icb->login_timeout = cpu_to_le16(nv->login_timeout); /* Set minimum RATOV to 200 tenths of a second. */ ha->r_a_tov = 200; ha->loop_reset_delay = nv->reset_delay; /* Link Down Timeout = 0: * * When Port Down timer expires we will start returning * I/O's to OS with "DID_NO_CONNECT". * * Link Down Timeout != 0: * * The driver waits for the link to come up after link down * before returning I/Os to OS with "DID_NO_CONNECT". */ if (le16_to_cpu(nv->link_down_timeout) == 0) { ha->loop_down_abort_time = (LOOP_DOWN_TIME - LOOP_DOWN_TIMEOUT); } else { ha->link_down_timeout = le16_to_cpu(nv->link_down_timeout); ha->loop_down_abort_time = (LOOP_DOWN_TIME - ha->link_down_timeout); } /* Need enough time to try and get the port back. */ ha->port_down_retry_count = le16_to_cpu(nv->port_down_retry_count); if (qlport_down_retry) ha->port_down_retry_count = qlport_down_retry; /* Set login_retry_count */ ha->login_retry_count = le16_to_cpu(nv->login_retry_count); if (ha->port_down_retry_count == le16_to_cpu(nv->port_down_retry_count) && ha->port_down_retry_count > 3) ha->login_retry_count = ha->port_down_retry_count; else if (ha->port_down_retry_count > (int)ha->login_retry_count) ha->login_retry_count = ha->port_down_retry_count; if (ql2xloginretrycount) ha->login_retry_count = ql2xloginretrycount; if (rval) { DEBUG2_3(printk(KERN_WARNING "scsi(%ld): NVRAM configuration failed!\n", ha->host_no)); } return (rval); } int qla2x00_load_risc(scsi_qla_host_t *ha, uint32_t *srisc_addr) { int rval; uint16_t cnt; uint16_t *risc_code; unsigned long risc_address; unsigned long risc_code_size; int num; int i; uint16_t *req_ring; struct qla_fw_info *fw_iter; rval = QLA_SUCCESS; /* Load firmware sequences */ fw_iter = ha->brd_info->fw_info; *srisc_addr = *ha->brd_info->fw_info->fwstart; while (fw_iter->addressing != FW_INFO_ADDR_NOMORE) { risc_code = fw_iter->fwcode; risc_code_size = *fw_iter->fwlen; if (fw_iter->addressing == FW_INFO_ADDR_NORMAL) { risc_address = *fw_iter->fwstart; } else { /* Extended address */ risc_address = *fw_iter->lfwstart; } num = 0; rval = 0; while (risc_code_size > 0 && !rval) { cnt = (uint16_t)(ha->fw_transfer_size >> 1); if (cnt > risc_code_size) cnt = risc_code_size; DEBUG7(printk("scsi(%ld): Loading risc segment@ " "addr %p, number of bytes 0x%x, offset 0x%lx.\n", ha->host_no, risc_code, cnt, risc_address)); req_ring = (uint16_t *)ha->request_ring; for (i = 0; i < cnt; i++) req_ring[i] = cpu_to_le16(risc_code[i]); if (fw_iter->addressing == FW_INFO_ADDR_NORMAL) { rval = qla2x00_load_ram(ha, ha->request_dma, risc_address, cnt); } else { rval = qla2x00_load_ram_ext(ha, ha->request_dma, risc_address, cnt); } if (rval) { DEBUG(printk("scsi(%ld): [ERROR] Failed to " "load segment %d of firmware\n", ha->host_no, num)); qla_printk(KERN_WARNING, ha, "[ERROR] Failed to load segment %d of " "firmware\n", num); qla2x00_dump_regs(ha); break; } risc_code += cnt; risc_address += cnt; risc_code_size -= cnt; num++; } /* Next firmware sequence */ fw_iter++; } return (rval); } int qla24xx_load_risc_flash(scsi_qla_host_t *ha, uint32_t *srisc_addr) { int rval; int segments, fragment; uint32_t faddr; uint32_t *dcode, dlen; uint32_t risc_addr; uint32_t risc_size; uint32_t i; rval = QLA_SUCCESS; segments = FA_RISC_CODE_SEGMENTS; faddr = FA_RISC_CODE_ADDR; dcode = (uint32_t *)ha->request_ring; *srisc_addr = 0; /* Validate firmware image by checking version. */ qla24xx_read_flash_data(ha, dcode, faddr + 4, 4); for (i = 0; i < 4; i++) dcode[i] = be32_to_cpu(dcode[i]); if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff && dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) || (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 && dcode[3] == 0)) { qla_printk(KERN_WARNING, ha, "Unable to verify integrity of flash firmware image!\n"); qla_printk(KERN_WARNING, ha, "Firmware data: %08x %08x %08x %08x!\n", dcode[0], dcode[1], dcode[2], dcode[3]); return QLA_FUNCTION_FAILED; } while (segments && rval == QLA_SUCCESS) { /* Read segment's load information. */ qla24xx_read_flash_data(ha, dcode, faddr, 4); risc_addr = be32_to_cpu(dcode[2]); *srisc_addr = *srisc_addr == 0 ? risc_addr : *srisc_addr; risc_size = be32_to_cpu(dcode[3]); fragment = 0; while (risc_size > 0 && rval == QLA_SUCCESS) { dlen = (uint32_t)(ha->fw_transfer_size >> 2); if (dlen > risc_size) dlen = risc_size; DEBUG7(printk("scsi(%ld): Loading risc segment@ risc " "addr %x, number of dwords 0x%x, offset 0x%x.\n", ha->host_no, risc_addr, dlen, faddr)); qla24xx_read_flash_data(ha, dcode, faddr, dlen); for (i = 0; i < dlen; i++) dcode[i] = swab32(dcode[i]); rval = qla2x00_load_ram_ext(ha, ha->request_dma, risc_addr, dlen); if (rval) { DEBUG(printk("scsi(%ld):[ERROR] Failed to load " "segment %d of firmware\n", ha->host_no, fragment)); qla_printk(KERN_WARNING, ha, "[ERROR] Failed to load segment %d of " "firmware\n", fragment); break; } faddr += dlen; risc_addr += dlen; risc_size -= dlen; fragment++; } /* Next segment. */ segments--; } return rval; } int qla24xx_load_risc_hotplug(scsi_qla_host_t *ha, uint32_t *srisc_addr) { int rval; int segments, fragment; uint32_t *dcode, dlen; uint32_t risc_addr; uint32_t risc_size; uint32_t i; const struct firmware *fw_entry; uint32_t *fwcode, fwclen; if (request_firmware(&fw_entry, ha->brd_info->fw_fname, &ha->pdev->dev)) { qla_printk(KERN_ERR, ha, "Firmware image file not available: '%s'\n", ha->brd_info->fw_fname); return QLA_FUNCTION_FAILED; } rval = QLA_SUCCESS; segments = FA_RISC_CODE_SEGMENTS; dcode = (uint32_t *)ha->request_ring; *srisc_addr = 0; fwcode = (uint32_t *)fw_entry->data; fwclen = 0; /* Validate firmware image by checking version. */ if (fw_entry->size < 8 * sizeof(uint32_t)) { qla_printk(KERN_WARNING, ha, "Unable to verify integrity of flash firmware image " "(%Zd)!\n", fw_entry->size); goto fail_fw_integrity; } for (i = 0; i < 4; i++) dcode[i] = be32_to_cpu(fwcode[i + 4]); if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff && dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) || (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 && dcode[3] == 0)) { qla_printk(KERN_WARNING, ha, "Unable to verify integrity of flash firmware image!\n"); qla_printk(KERN_WARNING, ha, "Firmware data: %08x %08x %08x %08x!\n", dcode[0], dcode[1], dcode[2], dcode[3]); goto fail_fw_integrity; } while (segments && rval == QLA_SUCCESS) { risc_addr = be32_to_cpu(fwcode[2]); *srisc_addr = *srisc_addr == 0 ? risc_addr : *srisc_addr; risc_size = be32_to_cpu(fwcode[3]); /* Validate firmware image size. */ fwclen += risc_size * sizeof(uint32_t); if (fw_entry->size < fwclen) { qla_printk(KERN_WARNING, ha, "Unable to verify integrity of flash firmware " "image (%Zd)!\n", fw_entry->size); goto fail_fw_integrity; } fragment = 0; while (risc_size > 0 && rval == QLA_SUCCESS) { dlen = (uint32_t)(ha->fw_transfer_size >> 2); if (dlen > risc_size) dlen = risc_size; DEBUG7(printk("scsi(%ld): Loading risc segment@ risc " "addr %x, number of dwords 0x%x.\n", ha->host_no, risc_addr, dlen)); for (i = 0; i < dlen; i++) dcode[i] = swab32(fwcode[i]); rval = qla2x00_load_ram_ext(ha, ha->request_dma, risc_addr, dlen); if (rval) { DEBUG(printk("scsi(%ld):[ERROR] Failed to load " "segment %d of firmware\n", ha->host_no, fragment)); qla_printk(KERN_WARNING, ha, "[ERROR] Failed to load segment %d of " "firmware\n", fragment); break; } fwcode += dlen; risc_addr += dlen; risc_size -= dlen; fragment++; } /* Next segment. */ segments--; } release_firmware(fw_entry); return rval; fail_fw_integrity: release_firmware(fw_entry); return QLA_FUNCTION_FAILED; }